I have written some code in cntk, which needs Python Version 3.6 or older. The problem is that I want to use this code in a Project, which only allows Python 3.8 or newer. What's the best solution to combine these two programms?
EDIT:
The 3.6 code does some deep learning predictions, which should be called from the 3.8 project to use them for other computations.
On Windows they get installed to separate folders, "C:\python26" and "C:\python31", but the executables have the same "python.exe" name.
I created another "C:\python" folder that contains "python.bat" and "python3.bat" that serve as wrappers to "python26" and "python31" respectively, and added "C:\python" to the PATH environment variable.
This allows me to type python or python3 in my .bat Python wrappers to start the one I desire.
On Linux, you can use the #! trick to specify which version you want a script to use.
I know there is some way to call Python from C++, like Python/C API or Boost.Python. My question is, how can I distribute the application? For example, does user still need to install Python and Python packages on their machine?
My user case is: I want to use some Python code from my C++ code. The main application is written in C++. Then I am going to deploy my app. The goal is to make the app self contained, and user don't need to install Python and Python packages at all.
The possible steps may be :
1, calling Python from C++ via Python/C API or boost.Python from source code.
2, bring Python/C libraries together with application.
I hope after these 2 steps, my app will be a self-contained and standalone software. User can just copy the app folder to any other machines which has no Python installed.
Note that due to license issue, I can not use PyInstaller. I also meet some problems when trying to use "Nuitka" to make the Python part self contained. So I am now trying directly calling Python from C++. I know it will run on my developer machine. But needs to confirm that this solution can also make app self-contained and won't ask user to install Python.
Update: Now I feel I need to do something to make my app self-contained if I use Python/C to call python from C++ :
1, I need to bring all needed runtime with my app. (C++ runtime of course, and the python_version.dll)
2, I need to deploy a Python interpreter inside my app. Simply copy the Python folder from Python installation and remove some not needed files (like header files, lib files)
3, use Py_SetPythonHome function to points to the copied Python interpreter inside the app.
I'd say you're on the right track. Basically, you should obtain a Python (shared or static) library, compile your program with it, and of course bundle the Python dependencies you have with your program. The best documentation I've read is available here: https://docs.python.org/3.8/extending/embedding.html#embedding-python-in-another-application. Roughly, the process is:
Get a Python library from python.org and compile with ./configure --enable-shared (I believe omitting --enable-shared does only produce the python binary).
Compile your program. Have it reference the headers under Include and link the library. Note that you can obtain the compiler and linker flags you need as described here.
Call Python code from within your application using e.g. PyRun_SimpleString() or other functions from the C API. Note that you may also depend on the Python standard library (under Lib in the distribution) if there's any functionality you use from it.
If you linked against Python statically, at this point you're done, aside from bundling any Python code you depend on, which I'm not sure is relevant in your case.
I am suffering from the same problem, I had a project which is made up of C++ and python(embedded) and there is a problem of deployment/distribution.
After research, I got a solution which is not perfect (means it will be helpful to run your app in other system)
change visual studio in release mode and compile(you got a folder in your working directory)
install pyinstaller (pip install pyinstaller)
then navigate to pyinstaller folder and command:-pyinstaller.exe "your script_file_path.py"
-it will create a dist folder
copy that folder in working folder where exe exists.
remember.
dist folder and c/python code compiled by same version of python.
now good to go.
it will work.
I have generated a Python module using SWIG and Python 2.7 64 bit.
This Python module can successfully be imported (i.e. used) with this Python version, but when trying to import the module using a different Python version, let's say 3.5 64 bit, it fails.
Inversely, when I generate the same Python module using SWIG and Python 3.5 64 bit, it can successfully be imported (i.e. used) with this version, but not with Python 2.7 64 bit.
It would seem that SWIG generates a Python module just for that Python version that it was used upon the generation. Is this conclusion correct? If yes, what would be the approach to take to "tell" SWIG to generate a Python module that is Python version agnostic?
SWIG ultimately produces a Python extension which is inherently tied to a single version (and configuration) of Python.
SWIG itself is responsible only for the generation of code, not building it. It produces both C code to implement a Python extension, and a Python wrapper around that. Both of these outputs that SWIG generates should be version-agnostic.
When you actually compile the code however, you have to point it at an include path for your specific version of Python.
If you use setuptools to build everything, this mutiple-step process is somewhat hidden from you, as the include path for the Python version running the script is used automatically.
Look at 36.2.3 Hand compiling a dynamic module
Does cx_freeze contain its own compiler that goes from Python -> binary? Or does it translate it (e.g. to C), and compile the translated code?
Edit: It appears to be compiled to byte-code. So does this mean a cx_freeze exe is just the byte-code -> binary part of the Python interpreter?
cx_Freeze doesn't really compile your code. It really just packages up your Python code along with the Python interpreter, so that when you launch your application, it sets up a Python interpreter and starts running your Python code. It has the necessary machinery to run from either Python source code or bytecode, but it mostly stores modules as bytecode, because that's quicker to load.
Options like Cython and Nuitka go a step further - they translate your code to C and compile it to machine code, but they still use the Python VM machinery. It's just compiled code calling Python functionality rather than the VM running Python bytecode.
Well, I have a Python package. I need to compile it as dll before distribute it in a way easily importable. How? You may suggest that *.pyc. But I read somewhere any *.pyc can be easily decompiled!
Update:
Follow these:
1) I wrote a python package
2) want to distribute it
3) do NOT want distribute the source
4) *.pyc is decompilable >> source can be extracted!
5) dll is standard
Write everything you want to hide in Cython, and compile it to pyd. That's as close as you can get to making compiled python code.
Also, dll is not a standard, not in Python world. They're not portable, either.
Nowadays a simple solutino exists: use Nuitka compiler as described in Nuitka User Manual
Use Case 2 - Extension Module compilation
If you want to compile a single extension module, all you have to do is this:
python -m nuitka --module some_module.py
The resulting file some_module.so can then be used instead of some_module.py.
You need to compile for each platform you want to support and write some initialization code to import so/pyd file ~~appropriate for given platform/python version etc.~~
[EDIT 2021-12]: Actually in python 3 the proper so/dll is determined automatically based on the file name (if it includes python version and platform - can't find PEP for this feature at the moment but Nuitka creates proper names for compiled modules). So for python 2.7 the library name would be something.pyd or something.so whereas for python 3 this would change to something.cp36-win32.pyd or something.cpython-36m-x86_64-linux-gnu.so (for 32bit python 3.6 on x86).
The result is not DLL as requested but Python-native compiled binary format (it is not bytecode like in pyc files; the so/pyd format cannot be easily decompiled - Nuitka compiles to machine code through C++ translation)
EDIT [2020-01]: The compiled module is prone to evaluation methods using python standard mechanisms - e.g. it can be imported as any other module and get its methods listed etc. To secure implementation from being exposed that way there is more work to be done than just compiling to a binary module.
You can use py2exe.org to convert python scripts into windows executables. Granted this will only work on windows, but it's better then nothing.
You can embed python inside C. The real trick is converting between C values and Python values. Once you've done that, though, making a DLL is pretty straightforward.
However, why do you need to make a dll? Do you need to use this from a non-python program?
Python embedding is supported in CFFI version 1.5, you can create a .dll file which can be used by a Windows C application.
I would also using Cython to generate pyd files, like Dikei wrote.
But if you really want to secure your code, you should better write the important stuff in C++. The best would be to combine both C++ and Python. The idea: you would leave the python code open for adjustments, so that you don't have to compile everything over and over again. That means, you would write the "core" in C++ (which is the most secure solution these days) and use those dll files in your python code. It really depends what kind of tool or program you are building and how you want to execute it. I create mostly an execution file (exe,app) once I finish a tool or a program, but this is more for the end user. This could be done with py2exe and py2app (both 64 bit compatible). If you implement the interpreter, the end user's machine doesn't have to have python installed on the system.
A pyd file is the same like a dll and fully supported inside python. So you can normally import your module. You can find more information about it here.
Using and generating pyd files is the fastest and easiest way to create safe and portable python code.
You could also write real dll files in C++ and import them with ctypes to use them (here a good post and here the python description of how it works)
To expand on the answer by Nick ODell
You must be on Windows for DLLs to work, they are not portable.
However the code below is cross platform and all platforms support run-times so this can be re-compiled for each platform you need it to work on.
Python does not (yet) provide an easy tool to create a dll, however you can do it in C/C++
First you will need a compiler (Windows does not have one by default) notably Cygwin, MinGW or Visual Studio.
A basic knowledge of C is also necessary (since we will be coding mainly in C).
You will also need to include the necessary headers, I will skip this so it does not become horribly long, and will assume everything is set up correctly.
For this demonstration I will print a traditional hello world:
Python code we will be converting to a DLL:
def foo(): print("hello world")
C code:
#include "Python.h" // Includes everything to use the Python-C API
int foo(void); // Declare foo
int foo(void) { // Name of our function in our DLL
Py_Initialize(); // Initialise Python
PyRun_SimpleString("print('hello world')"); // Run the Python commands
return 0; // Finish execution
}
Here is the tutorial for embedding Python. There are a few extra things that should be added here, but for brevity I have left those out.
Compile it and you should have a DLL. :)
That is not all. You will need to distribute whatever dependencies are needed, that will mean the python36.dll run-time and some other components to run the Python script.
My C coding is not perfect, so if anyone can spot any improvements please comment and I will do my best to fix the it.
It might also be possible in C# from this answer How do I call a specific Method from a Python Script in C#?, since C# can create DLLs, and you can call Python functions from C#.
You can use pyinstaller for converting the .py files into executable with all required packages into .dll format.
Step 1. pip install pyinstaller,
step 2. new python file let's name it code.py .
step 3. Write some lines of code i.e print("Hello World")
step 4. Open Command Prompt in the same location and write pyinstaller code.py hit enter. Last Step see in the same location two folders name build, dist will be created. inside dist folder there is folder code and inside that folder there is an exe file code.exe along with required .dll files.
If your only goal is to hide your source code, it is much simpler to just compile your code to an executable(use PyInstaller, for example), and use an module with readable source for communication.
NOTE: You might need more converter functions as shown in this example.
Example:
Module:
import subprocess
import codecs
def _encode_str(str):
encoded=str.encode("utf-32","surrogatepass")
return codecs.encode(encoded,"base64").replace(b"\n",b"")
def _decode_str(b64):
return codecs.decode(b64,"base64").decode("utf-32","surrogatepass")
def strlen(s:str):#return length of str;int
proc=subprocess.Popen(["path_to_your_exe.exe","strlen",_encode_str(str).decode("ascii")],stdout=subprocess.PIPE)
return int(proc.stdout.read())
def random_char_from_string(str):
proc=subprocess.Popen(["path_to_your_exe.exe","randchr",_encode_str(str).decode("ascii")],stdout=subprocess.PIPE)
return _decode_str(proc.stdout.read())
Executable:
import sys
import codecs
import random
def _encode_str(str):
encoded=str.encode("utf-32","surrogatepass")
return codecs.encode(encoded,"base64").replace(b"\n",b"")
def _decode_str(b64):
return codecs.decode(b64,"base64").decode("utf-32","surrogatepass")
command=sys.argv[1]
if command=="strlen":
s=_decode_str(sys.argv[2].encode("ascii"))
print(len(str))
if command=="randchr":
s_decode_str(sys.argv[2].encode("ascii"))
print(_encode_str(random.choice(s)).decode("ascii"))
You might also want to think about compiling different executables for different platforms, if your package isn't a windows-only package anyways.
This is my idea, it might work. I don't know, if that work or not.
1.Create your *.py files.
2.Rename them into *.pyx
3.Convert them into *.c files using Cython
4.Compile *.c into *.dll files.
But I don't recommend you because it won't work on any other platforms, except Windows.
Grab Visual Studio Express and IronPython and do it that way? You'll be in Python 2.7.6 world though.