For understanding decorators in Python, i created in a class an example. But when i run it i receive an error.
class Operation:
def __init__(self, groupe):
self.__groupe = groupe
#property
def groupe(self):
return self.__groupe
#groupe.setter
def groupe(self, value):
self.__groupe = value
def addition(self, func_goodbye):
ln_house = len('house')
ln_school = len('school')
add = ln_house + ln_school
print('The result is :' + str(add))
return func_goodbye
#addition
def goodbye(self):
print('Goodbye people !!')
if __name__ == '__main__':
p1 = Operation('Student')
p1.goodbye()
I receive this error :
Traceback (most recent call last):
File "Operation.py", line 1, in
class Operation:
File "Operation.py", line 21, in Operation
#addition
TypeError: addition() missing 1 required positional argument: 'func_goodbye'
You can have a class scoped decorator, however there won't be a self when the decorator is called
a decorator:
#foo
def bar(): ...
is roughly equivalent to
def bar(): ...
bar = foo(bar)
in your particular example, if you remove the self parameter, it should function as you expect:
def addition(func_goodbye):
ln_house = len('house')
ln_school = len('school')
add = ln_house + ln_school
print('The result is :' + str(add))
return func_goodbye
#addition
def goodbye(self):
print('Goodbye people !!')
for good measure, I might del addition after that just to ensure it isn't accidentally called later
(an aside: one unfortunate side-effect of this is many linters and type checkers will consider this "odd" so I've yet to find a way to appease them (for example mypy))
I am currently having an issue, as i am relatively new to python , it might be a very easy solution for others.
I want to pass a parameter between both functions 'eg1' and 'eg2', there is a common number the user will input (example:10) then 'eg1' will add 1 to it and 'eg2' will take the final value of 'eg1' and add 1 more to it, (example: 10 will become 11 then 12)
It is troubling me because this keeps popping up:
Traceback (most recent call last):
File "example.py", line 69, in <module>
eg2(a)
File "example.py", line 63, in eg2
b = a.d
AttributeError: 'int' object has no attribute 'd'
I can't seem to find my mistake.
class Helper:pass
a = Helper()
def one(a):
d = a
d += 1
print d
def two(a):
b = a.d
b += 1
print b
print
print ("Please enter a number.")
a = int(input('>> ')
print
one(a)
print
two(a)
Reference for parameter passing:
Python definition function parameter passing
'Print' with nothing means to leave an empty line, for me
I messed up the title, fixed.
Since you are already using a class, you can pass the number you want to increment twice as an instance attribute, and call your increment functions on that attribute. This will avoid passing the updated value after calling one in the method two
Calling one and then two makes sure that two is working on the updated value after calling one.
class Helper:
# Pass num as parameter
def __init__(self, num):
self.num = num
# Increment num
def one(self):
self.num += 1
# Increment num
def two(self):
self.num += 1
h = Helper(10)
h.one()
print(h.num) # 11
h.two()
print(h.num) # 12
Based on your comments, here's one way to get the result. I am using python3:
class Helper:
d = None
cl = Helper()
def one(a):
cl.d = a
cl.d += 1
return cl.d
def two():
cl.d += 1
return cl.d
print ("Please enter a number.")
a = int(input('>> '))
print(one(a))
print(two())
This question already has answers here:
I'm getting an IndentationError. How do I fix it?
(6 answers)
Closed 5 months ago.
I'm tasked to make a "Set" class that contains the variable self.list and be able to print and str() the object by writing the __repr__ and __str__ methods. A second file (driver1.py), a "driver file" creates a Set object and attempts to call print(str(set_object)) and print(set_object) but both calls only print a memory address, Set.Set instance at 0x1033d1488> or some other location. How do I change this? I want it to print out the contents of the set_object in the form {1,2,3}
Here is my code in it's entirety after updating indentation.
class Set:
def __init__(self):
self.list = []
def add_element(self, integer):
if integer not in self.list:
self.list.append(integer)
def remove_element(self, integer):
while integer in self.list: self.list.remove(integer)
def remove_all(self):
self.list = []
def has_element(self, x):
while x in self.list: return True
return False
#probably doesnt work, __repr__
def __repr__(self):
if self.list.len == 0:
return "{}"
return "{"+", ".join(str(e) for e in self.list) +"}"
#Same as above, probably doesnt work
def __str__(self):
if len(self.list) == 0:
return "{}"
return "{"+", ".join(str(e) for e in self.list) +"}"
def __add__(self, other):
counter = 0
while counter <= len(other.list):
if other.list[counter] not in self.list:
self.list.append(other.list[counter])
counter = counter + 1
Why do I get the error:
Traceback (most recent call last):
File "driver1.py", line 1, in <module>
from Set import *
File "/Users/josh/Documents/Set.py", line 23
return "{"+", ".join(str(e) for e in self.list) +"}"
^
IndentationError: unindent does not match any outer indentation level
You've mixed tabs and spaces. Don't do that; this is what happens when you do. Python thinks some of your methods are actually internal to some of your other methods, so the Set class doesn't actually have __str__ or __repr__ methods.
Fix your indentation, and your problem will go away. To avoid such problems in the future, turn on "show whitespace" in your editor, and try running Python with the -tt command line option if you think you might be seeing tab-related bugs.
There is another problem at:
if self.list.len == 0:
you probably meant to do:
if len(self.list) == 0:
Once this issue is fixed, the code works:
s = Set()
s.add_element(1)
s.add_element(1)
s.add_element(2)
s.add_element(3)
print s # prints {1, 2, 3}
I've just been reading an article that talks about implementing a parser in python:
http://effbot.org/zone/simple-top-down-parsing.htm
The general idea behind the code is described in this paper: http://mauke.hopto.org/stuff/papers/p41-pratt.pdf
Being fairly new to writing parsers in python so I'm trying to write something similar as a learning exercise. However when I attempted to try to code up something similar to what was found in the article I am getting an TypeError: unbound method TypeError. This is the first time I've encountered such an error and I've spent all day trying to figure this out but I haven't solved the issue. Here is a minimal code example (in it's entirety) that has this problem:
import re
class Symbol_base(object):
""" A base class for all symbols"""
id = None # node/token type name
value = None #used by literals
first = second = third = None #used by tree nodes
def nud(self):
""" A default implementation for nud """
raise SyntaxError("Syntax error (%r)." % self.id)
def led(self,left):
""" A default implementation for led """
raise SyntaxError("Unknown operator (%r)." % self.id)
def __repr__(self):
if self.id == "(name)" or self.id == "(literal)":
return "(%s %s)" % (self.id[1:-1], self.value)
out = [self.id, self.first, self.second, self.third]
out = map(str, filter(None,out))
return "(" + " ".join(out) + ")"
symbol_table = {}
def symbol(id, bindingpower=0):
""" If a given symbol is found in the symbol_table return it.
If the symblo cannot be found theni create the appropriate class
and add that to the symbol_table."""
try:
s = symbol_table[id]
except KeyError:
class s(Symbol_base):
pass
s.__name__ = "symbol:" + id #for debugging purposes
s.id = id
s.lbp = bindingpower
symbol_table[id] = s
else:
s.lbp = max(bindingpower,s.lbp)
return s
def infix(id, bp):
""" Helper function for defining the symbols for infix operations """
def infix_led(self, left):
self.first = left
self.second = expression(bp)
return self
symbol(id, bp).led = infix_led
#define all the symbols
infix("+", 10)
symbol("(literal)").nud = lambda self: self #literal values must return the symbol itself
symbol("(end)")
token_pat = re.compile("\s*(?:(\d+)|(.))")
def tokenize(program):
for number, operator in token_pat.findall(program):
if number:
symbol = symbol_table["(literal)"]
s = symbol()
s.value = number
yield s
else:
symbol = symbol_table.get(operator)
if not symbol:
raise SyntaxError("Unknown operator")
yield symbol
symbol = symbol_table["(end)"]
yield symbol()
def expression(rbp = 0):
global token
t = token
token = next()
left = t.nud()
while rbp < token.lbp:
t = token
token = next()
left = t.led(left)
return left
def parse(program):
global token, next
next = tokenize(program).next
token = next()
return expression()
def __main__():
print parse("1 + 2")
if __name__ == "__main__":
__main__()
When I try to run this with pypy:
Traceback (most recent call last):
File "app_main.py", line 72, in run_toplevel
File "parser_code_issue.py", line 93, in <module>
__main__()
File "parser_code_issue.py", line 90, in __main__
print parse("1 + 2")
File "parser_code_issue.py", line 87, in parse
return expression()
File "parser_code_issue.py", line 81, in expression
left = t.led(left)
TypeError: unbound method infix_led() must be called with symbol:+ instance as first argument (got symbol:(literal) instance instead)
I'm guessing this happens because I don't create an instance for the infix operations but I'm not really wanting to create an instance at that point. Is there some way I can change those methods without creating instances?
Any help explaining why this is happening and what I can do to fix the code is greatly appreciated!
Also is this behaviour going to change in python 3?
You forgot to create an instance of the symbol in your tokenize() function; when not a number, yield symbol(), not symbol:
else:
symbol = symbol_table.get(operator)
if not symbol:
raise SyntaxError("Unknown operator")
yield symbol()
With that one change your code prints:
(+ (literal 1) (literal 2))
You haven't bound new function to the instance of your object.
import types
obj = symbol(id, bp)
obj.led = types.MethodType(infix_led, obj)
See accepted answer to another SO question
Suppose I have a function like f(a, b, c=None). The aim is to call the function like f(*args, **kwargs), and then construct a new set of args and kwargs such that:
If the function had default values, I should be able to acquire their values. For example, if I call it like f(1, 2), I should be able to get the tuple (1, 2, None) and/or the dictionary {'c': None}.
If the value of any of the arguments was modified inside the function, get the new value. For example, if I call it like f(1, 100000, 3) and the function does if b > 500: b = 5 modifying the local variable, I should be able to get the the tuple (1, 5, 3).
The aim here is to create a a decorator that finishes the job of a function. The original function acts as a preamble setting up the data for the actual execution, and the decorator finishes the job.
Edit: I'm adding an example of what I'm trying to do. It's a module for making proxies for other classes.
class Spam(object):
"""A fictional class that we'll make a proxy for"""
def eggs(self, start, stop, step):
"""A fictional method"""
return range(start, stop, step)
class ProxyForSpam(clsproxy.Proxy):
proxy_for = Spam
#clsproxy.signature_preamble
def eggs(self, start, stop, step=1):
start = max(0, start)
stop = min(100, stop)
And then, we'll have that:
ProxyForSpam().eggs(-10, 200) -> Spam().eggs(0, 100, 1)
ProxyForSpam().eggs(3, 4) -> Spam().eggs(3, 4, 1)
There are two recipes available here, one which requires an external library and another that uses only the standard library. They don't quite do what you want, in that they actually modify the function being executed to obtain its locals() rather than obtain the locals() after function execution, which is impossible, since the local stack no longer exists after the function finishes execution.
Another option is to see what debuggers, such as WinPDB or even the pdb module do. I suspect they use the inspect module (possibly along with others), to get the frame inside which a function is executing and retrieve locals() that way.
EDIT: After reading some code in the standard library, the file you want to look at is probably bdb.py, which should be wherever the rest of your Python standard library is. Specifically, look at set_trace() and related functions. This will give you an idea of how the Python debugger breaks into the class. You might even be able to use it directly. To get the frame to pass to set_trace() look at the inspect module.
I've stumbled upon this very need today and wanted to share my solution.
import sys
def call_function_get_frame(func, *args, **kwargs):
"""
Calls the function *func* with the specified arguments and keyword
arguments and snatches its local frame before it actually executes.
"""
frame = None
trace = sys.gettrace()
def snatch_locals(_frame, name, arg):
nonlocal frame
if frame is None and name == 'call':
frame = _frame
sys.settrace(trace)
return trace
sys.settrace(snatch_locals)
try:
result = func(*args, **kwargs)
finally:
sys.settrace(trace)
return frame, result
The idea is to use sys.trace() to catch the frame of the next 'call'. Tested on CPython 3.6.
Example usage
import types
def namespace_decorator(func):
frame, result = call_function_get_frame(func)
try:
module = types.ModuleType(func.__name__)
module.__dict__.update(frame.f_locals)
return module
finally:
del frame
#namespace_decorator
def mynamespace():
eggs = 'spam'
class Bar:
def hello(self):
print("Hello, World!")
assert mynamespace.eggs == 'spam'
mynamespace.Bar().hello()
I don't see how you could do this non-intrusively -- after the function is done executing, it doesn't exist any more -- there's no way you can reach inside something that doesn't exist.
If you can control the functions that are being used, you can do an intrusive approach like
def fn(x, y, z, vars):
'''
vars is an empty dict that we use to pass things back to the caller
'''
x += 1
y -= 1
z *= 2
vars.update(locals())
>>> updated = {}
>>> fn(1, 2, 3, updated)
>>> print updated
{'y': 1, 'x': 2, 'z': 6, 'vars': {...}}
>>>
...or you can just require that those functions return locals() -- as #Thomas K asks above, what are you really trying to do here?
Witchcraft below read on your OWN danger(!)
I have no clue what you want to do with this, it's possible but it's an awful hack...
Anyways, I HAVE WARNED YOU(!), be lucky if such things don't work in your favorite language...
from inspect import getargspec, ismethod
import inspect
def main():
#get_modified_values
def foo(a, f, b):
print a, f, b
a = 10
if a == 2:
return a
f = 'Hello World'
b = 1223
e = 1
c = 2
foo(e, 1000, b = c)
# intercept a function and retrieve the modifed values
def get_modified_values(target):
def wrapper(*args, **kwargs):
# get the applied args
kargs = getcallargs(target, *args, **kwargs)
# get the source code
src = inspect.getsource(target)
lines = src.split('\n')
# oh noes string patching of the function
unindent = len(lines[0]) - len(lines[0].lstrip())
indent = lines[0][:len(lines[0]) - len(lines[0].lstrip())]
lines[0] = ''
lines[1] = indent + 'def _temp(_args, ' + lines[1].split('(')[1]
setter = []
for k in kargs.keys():
setter.append('_args["%s"] = %s' % (k, k))
i = 0
while i < len(lines):
indent = lines[i][:len(lines[i]) - len(lines[i].lstrip())]
if lines[i].find('return ') != -1 or lines[i].find('return\n') != -1:
for e in setter:
lines.insert(i, indent + e)
i += len(setter)
elif i == len(lines) - 2:
for e in setter:
lines.insert(i + 1, indent + e)
break
i += 1
for i in range(0, len(lines)):
lines[i] = lines[i][unindent:]
data = '\n'.join(lines) + "\n"
# setup variables
frame = inspect.currentframe()
loc = inspect.getouterframes(frame)[1][0].f_locals
glob = inspect.getouterframes(frame)[1][0].f_globals
loc['_temp'] = None
# compile patched function and call it
func = compile(data, '<witchstuff>', 'exec')
eval(func, glob, loc)
loc['_temp'](kargs, *args, **kwargs)
# there you go....
print kargs
# >> {'a': 10, 'b': 1223, 'f': 'Hello World'}
return wrapper
# from python 2.7 inspect module
def getcallargs(func, *positional, **named):
"""Get the mapping of arguments to values.
A dict is returned, with keys the function argument names (including the
names of the * and ** arguments, if any), and values the respective bound
values from 'positional' and 'named'."""
args, varargs, varkw, defaults = getargspec(func)
f_name = func.__name__
arg2value = {}
# The following closures are basically because of tuple parameter unpacking.
assigned_tuple_params = []
def assign(arg, value):
if isinstance(arg, str):
arg2value[arg] = value
else:
assigned_tuple_params.append(arg)
value = iter(value)
for i, subarg in enumerate(arg):
try:
subvalue = next(value)
except StopIteration:
raise ValueError('need more than %d %s to unpack' %
(i, 'values' if i > 1 else 'value'))
assign(subarg,subvalue)
try:
next(value)
except StopIteration:
pass
else:
raise ValueError('too many values to unpack')
def is_assigned(arg):
if isinstance(arg,str):
return arg in arg2value
return arg in assigned_tuple_params
if ismethod(func) and func.im_self is not None:
# implicit 'self' (or 'cls' for classmethods) argument
positional = (func.im_self,) + positional
num_pos = len(positional)
num_total = num_pos + len(named)
num_args = len(args)
num_defaults = len(defaults) if defaults else 0
for arg, value in zip(args, positional):
assign(arg, value)
if varargs:
if num_pos > num_args:
assign(varargs, positional[-(num_pos-num_args):])
else:
assign(varargs, ())
elif 0 < num_args < num_pos:
raise TypeError('%s() takes %s %d %s (%d given)' % (
f_name, 'at most' if defaults else 'exactly', num_args,
'arguments' if num_args > 1 else 'argument', num_total))
elif num_args == 0 and num_total:
raise TypeError('%s() takes no arguments (%d given)' %
(f_name, num_total))
for arg in args:
if isinstance(arg, str) and arg in named:
if is_assigned(arg):
raise TypeError("%s() got multiple values for keyword "
"argument '%s'" % (f_name, arg))
else:
assign(arg, named.pop(arg))
if defaults: # fill in any missing values with the defaults
for arg, value in zip(args[-num_defaults:], defaults):
if not is_assigned(arg):
assign(arg, value)
if varkw:
assign(varkw, named)
elif named:
unexpected = next(iter(named))
if isinstance(unexpected, unicode):
unexpected = unexpected.encode(sys.getdefaultencoding(), 'replace')
raise TypeError("%s() got an unexpected keyword argument '%s'" %
(f_name, unexpected))
unassigned = num_args - len([arg for arg in args if is_assigned(arg)])
if unassigned:
num_required = num_args - num_defaults
raise TypeError('%s() takes %s %d %s (%d given)' % (
f_name, 'at least' if defaults else 'exactly', num_required,
'arguments' if num_required > 1 else 'argument', num_total))
return arg2value
main()
Output:
1 1000 2
{'a': 10, 'b': 1223, 'f': 'Hello World'}
There you go... I'm not responsible for any small children that get eaten by demons or something the like (or if it breaks on complicated functions).
PS: The inspect module is the pure EVIL.
Since you are trying to manipulate variables in one function, and do some job based on those variables on another function, the cleanest way to do it is having these variables to be an object's attributes.
It could be a dictionary - that could be defined inside the decorator - therefore access to it inside the decorated function would be as a "nonlocal" variable. That cleans up the default parameter tuple of this dictionary, that #bgporter proposed.:
def eggs(self, a, b, c=None):
# nonlocal parms ## uncomment in Python 3
parms["a"] = a
...
To be even more clean, you probably should have all these parameters as attributes of the instance (self) - so that no "magical" variable has to be used inside the decorated function.
As for doing it "magically" without having the parameters set as attributes of certain object explicitly, nor having the decorated function to return the parameters themselves (which is also an option) - that is, to have it to work transparently with any decorated function - I can't think of a way that does not involve manipulating the bytecode of the function itself.
If you can think of a way to make the wrapped function raise an exception at return time, you could trap the exception and check the execution trace.
If it is so important to do it automatically that you consider altering the function bytecode an option, feel free to ask me further.