Ss there a simple way to iterate over an iterable object that allows the specification of an end point, say -1, as well as the start point in enumerate. e.g.
for i, row in enumerate(myiterable, start=2): # will start indexing at 2
So if my object has a length of 10, what is the simplest way to to get it to start iterating at index 2 and stop iterating at index 9?
Alternatively, is there something from itertools that is more suitable for this. I am specifically interested in high performance methods.
In addition, when the start option was introduced in 2.6, is there any reason why a stop option was not?
Cheers
for i, row in enumerate(myiterable[2:], start=2):
if i>= limit: break
...
or
for i,row in itertools.takewhile(lambda (i,val):i < limit,enumerate(myiterable[2:],2)):
to rephrase the other suggestion (note that it will only work if your iterable is a sliceable object)
start,stop = 11,20
my_items = range(100)
for i,row in enumerate(my_items[start:stop],start):
....
I think you've misunderstood the 'start' keyword, it doesn't skip to the nth item in the iterable, it starts counting at n, for example:
for i, c in enumerate(['a', 'b', 'c'], start=5):
print i, c
gives:
5 a
6 b
7 c
For simple iterables like lists and tuples the simplest and fastest method is going to be something like:
obj = range(100)
start = 11
stop = 22
for i, item in enumerate(obj[start:stop], start=start):
pass
If I'm not going to be using the whole length of the iterable item, I find it easier to use something like:
for i in range(2, len(myiterable)):
instead of enumerate. And then index based on i within the loop. It requires less typing than other approaches that use enumerate.
Creating the slice of an iterable object could be expensive. To avoid this, use itertools.islice:
import itertools
for item in itertools.islice('abc', 0, 2):
print(item)
# will print:
1
2
Related
Given a list of integers, I want to check a second list and remove from the first only those which can not be made from the sum of two numbers from the second. So given a = [3,19,20] and b = [1,2,17], I'd want [3,19].
Seems like a a cinch with two nested loops - except that I've gotten stuck with break and continue commands.
Here's what I have:
def myFunction(list_a, list_b):
for i in list_a:
for a in list_b:
for b in list_b:
if a + b == i:
break
else:
continue
break
else:
continue
list_a.remove(i)
return list_a
I know what I need to do, just the syntax seems unnecessarily confusing. Can someone show me an easier way? TIA!
You can do like this,
In [13]: from itertools import combinations
In [15]: [item for item in a if item in [sum(i) for i in combinations(b,2)]]
Out[15]: [3, 19]
combinations will give all possible combinations in b and get the list of sum. And just check the value is present in a
Edit
If you don't want to use the itertools wrote a function for it. Like this,
def comb(s):
for i, v1 in enumerate(s):
for j in range(i+1, len(s)):
yield [v1, s[j]]
result = [item for item in a if item in [sum(i) for i in comb(b)]]
Comments on code:
It's very dangerous to delete elements from a list while iterating over it. Perhaps you could append items you want to keep to a new list, and return that.
Your current algorithm is O(nm^2), where n is the size of list_a, and m is the size of list_b. This is pretty inefficient, but a good start to the problem.
Thee's also a lot of unnecessary continue and break statements, which can lead to complicated code that is hard to debug.
You also put everything into one function. If you split up each task into different functions, such as dedicating one function to finding pairs, and one for checking each item in list_a against list_b. This is a way of splitting problems into smaller problems, and using them to solve the bigger problem.
Overall I think your function is doing too much, and the logic could be condensed into much simpler code by breaking down the problem.
Another approach:
Since I found this task interesting, I decided to try it myself. My outlined approach is illustrated below.
1. You can first check if a list has a pair of a given sum in O(n) time using hashing:
def check_pairs(lst, sums):
lookup = set()
for x in lst:
current = sums - x
if current in lookup:
return True
lookup.add(x)
return False
2. Then you could use this function to check if any any pair in list_b is equal to the sum of numbers iterated in list_a:
def remove_first_sum(list_a, list_b):
new_list_a = []
for x in list_a:
check = check_pairs(list_b, x)
if check:
new_list_a.append(x)
return new_list_a
Which keeps numbers in list_a that contribute to a sum of two numbers in list_b.
3. The above can also be written with a list comprehension:
def remove_first_sum(list_a, list_b):
return [x for x in list_a if check_pairs(list_b, x)]
Both of which works as follows:
>>> remove_first_sum([3,19,20], [1,2,17])
[3, 19]
>>> remove_first_sum([3,19,20,18], [1,2,17])
[3, 19, 18]
>>> remove_first_sum([1,2,5,6],[2,3,4])
[5, 6]
Note: Overall the algorithm above is O(n) time complexity, which doesn't require anything too complicated. However, this also leads to O(n) extra auxiliary space, because a set is kept to record what items have been seen.
You can do it by first creating all possible sum combinations, then filtering out elements which don't belong to that combination list
Define the input lists
>>> a = [3,19,20]
>>> b = [1,2,17]
Next we will define all possible combinations of sum of two elements
>>> y = [i+j for k,j in enumerate(b) for i in b[k+1:]]
Next we will apply a function to every element of list a and check if it is present in above calculated list. map function can be use with an if/else clause. map will yield None in case of else clause is successful. To cater for this we can filter the list to remove None values
>>> list(filter(None, map(lambda x: x if x in y else None,a)))
The above operation will output:
>>> [3,19]
You can also write a one-line by combining all these lines into one, but I don't recommend this.
you can try something like that:
a = [3,19,20]
b= [1,2,17,5]
n_m_s=[]
data=[n_m_s.append(i+j) for i in b for j in b if i+j in a]
print(set(n_m_s))
print("after remove")
final_data=[]
for j,i in enumerate(a):
if i not in n_m_s:
final_data.append(i)
print(final_data)
output:
{19, 3}
after remove
[20]
I do not know much about python so i apologize if my question is a very basic one.
Let's say i have a list
lst = [1,2,3,4,5,6,7,8,9,10]
Now what i want to know is that if there is any way to write the following piece of code in python without using range() or xrange():
for i in lst:
for j in lst after element i: '''This is the line i want the syntax for'''
#Do Something
The second loop is to access elements after the element i i.e., if i = 3, j would have to loop through from 4 to 10, so the pairs of numbers if i and j are printed would be (1,2)..(1,10), (2,3)...(2,10), (3,4)..(3,10) etc.
I have no idea what to search for or what query to type on any search engine.
Any help would be much appreciated.
This is what list slicing is about, you can take part of your list from i'th element through
lst[i:]
furthermore, in order to have both index and value you need enumerate operation, which changes the list into list of pairs (index, value)
thus
for ind, i in enumerate(lst):
for j in lst[ind+1: ]:
#Do Something
It looks like you might want to use enumerate():
for index, item in enumerate(lst):
for j in lst[index+1:]:
#Do Something
What is the best way to add values to a List in terms of processing time, memory usage and just generally what is the best programming option.
list = []
for i in anotherArray:
list.append(i)
or
list = range(len(anotherArray))
for i in list:
list[i] = anotherArray[i]
Considering that anotherArray is for example an array of Tuples. (This is just a simple example)
It really depends on your use case. There is no generic answer here as it depends on what you are trying to do.
In your example, it looks like you are just trying to create a copy of the array, in which case the best way to do this would be to use copy:
from copy import copy
list = copy(anotherArray)
If you are trying to transform the array into another array you should use list comprehension.
list = [i[0] for i in anotherArray] # get the first item from tuples in anotherArray
If you are trying to use both indexes and objects, you should use enumerate:
for i, j in enumerate(list)
which is much better than your second example.
You can also use generators, lambas, maps, filters, etc. The reason all of these possibilities exist is because they are all "better" for different reasons. The writters of python are pretty big on "one right way", so trust me, if there was one generic way which was always better, that is the only way that would exist in python.
Edit: Ran some results of performance for tuple swap and here are the results:
comprehension: 2.682028295999771
enumerate: 5.359116118001111
for in append: 4.177091988000029
for in indexes: 4.612594166001145
As you can tell, comprehension is usually the best bet. Using enumerate is expensive.
Here is the code for the above test:
from timeit import timeit
some_array = [(i, 'a', True) for i in range(0,100000)]
def use_comprehension():
return [(b, a, i) for i, a, b in some_array]
def use_enumerate():
lst = []
for j, k in enumerate(some_array):
i, a, b = k
lst.append((b, a, i))
return lst
def use_for_in_with_append():
lst = []
for i in some_array:
i, a, b = i
lst.append((b, a, i))
return lst
def use_for_in_with_indexes():
lst = [None] * len(some_array)
for j in range(len(some_array)):
i, a, b = some_array[j]
lst[j] = (b, a, i)
return lst
print('comprehension:', timeit(use_comprehension, number=200))
print('enumerate:', timeit(use_enumerate, number=200))
print('for in append:', timeit(use_for_in_with_append, number=200))
print('for in indexes:', timeit(use_for_in_with_indexes, number=200))
Edit2:
It was pointed out to me the the OP just wanted to know the difference between "indexing" and "appending". Really, those are used for two different use cases as well. Indexing is for replacing objects, whereas appending is for adding. However, in a case where the list starts empty, appending will always be better because the indexing has the overhead of creating the list initially. You can see from the results above that indexing is slightly slower, mostly because you have to create the first list.
Best way is list comprehension :
my_list=[i for i in anotherArray]
But based on your problem you can use a generator expression (is more efficient than list comprehension when you just want to loop over your items and you don't need to use some list methods like indexing or len or ... )
my_list=(i for i in anotherArray)
I would actually say the best is a combination of index loops and value loops with enumeration:
for i, j in enumerate(list): # i is the index, j is the value, can't go wrong
I am supposed to do the following:
Define a function my_enumerate(items) that behaves in a similar way to the built-in enumerate function. It should return a list of pairs (i, item) where item is the ith item, with 0 origin, of the list items (see the examples below). Check the test cases for how the function should work. Your function must not call Python's in-built enumerate function.
Examples:
Input:
ans = my_enumerate([10, 20, 30])
print(ans)
Output:
[(0, 10), (1, 20), (2, 30)]
What does enumerate do? Try expressing it in English, and it may help you understand how to write the necessary code. If it doesn't then the practice of learning English language descriptions into code will be useful.
One way of describing enumerate is to say it iterates over each item in the list, and for each item in the input list it produces a pair of the item's index in the input list and the item.
So we know we need to iterate over the list:
for item in input_list:
pass
And we need to keep track of the index of the current item.:
index = 0
for item in input_list:
index += 1
Hmm, there's a better way of doing that:
for index in range(len(input_list)):
pass
Now to produce the pairs:
for index in range(len(input_list)):
pair = index, input_list[index]
You also need somewhere to store these pairs:
def my_enumerate(input_list):
output_list = []
for index in range(len(input_list)):
pair = index, input_list[index]
output_list.append(pair)
return output_list
Are there other ways to write code that produces the same output? Yes. Is this the best way to write this function? Not by a long shot. What this exercise should help you with is turning your thoughts into code, as you gain more experience doing that then you can combine multiple steps at a time, and start using more complicated programming concepts.
Use itertools.count and zip:
from itertools import count
def my_enumerate(values):
return list(zip(count(), values))
What does for row_number, row in enumerate(cursor): do in Python?
What does enumerate mean in this context?
The enumerate() function adds a counter to an iterable.
So for each element in cursor, a tuple is produced with (counter, element); the for loop binds that to row_number and row, respectively.
Demo:
>>> elements = ('foo', 'bar', 'baz')
>>> for elem in elements:
... print elem
...
foo
bar
baz
>>> for count, elem in enumerate(elements):
... print count, elem
...
0 foo
1 bar
2 baz
By default, enumerate() starts counting at 0 but if you give it a second integer argument, it'll start from that number instead:
>>> for count, elem in enumerate(elements, 42):
... print count, elem
...
42 foo
43 bar
44 baz
If you were to re-implement enumerate() in Python, here are two ways of achieving that; one using itertools.count() to do the counting, the other manually counting in a generator function:
from itertools import count
def enumerate(it, start=0):
# return an iterator that adds a counter to each element of it
return zip(count(start), it)
and
def enumerate(it, start=0):
count = start
for elem in it:
yield (count, elem)
count += 1
The actual implementation in C is closer to the latter, with optimisations to reuse a single tuple object for the common for i, ... unpacking case and using a standard C integer value for the counter until the counter becomes too large to avoid using a Python integer object (which is unbounded).
It's a builtin function that returns an object that can be iterated over. See the documentation.
In short, it loops over the elements of an iterable (like a list), as well as an index number, combined in a tuple:
for item in enumerate(["a", "b", "c"]):
print item
prints
(0, "a")
(1, "b")
(2, "c")
It's helpful if you want to loop over a sequence (or other iterable thing), and also want to have an index counter available. If you want the counter to start from some other value (usually 1), you can give that as second argument to enumerate.
I am reading a book (Effective Python) by Brett Slatkin and he shows another way to iterate over a list and also know the index of the current item in the list but he suggests that it is better not to use it and to use enumerate instead.
I know you asked what enumerate means, but when I understood the following, I also understood how enumerate makes iterating over a list while knowing the index of the current item easier (and more readable).
list_of_letters = ['a', 'b', 'c']
for i in range(len(list_of_letters)):
letter = list_of_letters[i]
print (i, letter)
The output is:
0 a
1 b
2 c
I also used to do something, even sillier before I read about the enumerate function.
i = 0
for n in list_of_letters:
print (i, n)
i += 1
It produces the same output.
But with enumerate I just have to write:
list_of_letters = ['a', 'b', 'c']
for i, letter in enumerate(list_of_letters):
print (i, letter)
As other users have mentioned, enumerate is a generator that adds an incremental index next to each item of an iterable.
So if you have a list say l = ["test_1", "test_2", "test_3"], the list(enumerate(l)) will give you something like this: [(0, 'test_1'), (1, 'test_2'), (2, 'test_3')].
Now, when this is useful? A possible use case is when you want to iterate over items, and you want to skip a specific item that you only know its index in the list but not its value (because its value is not known at the time).
for index, value in enumerate(joint_values):
if index == 3:
continue
# Do something with the other `value`
So your code reads better because you could also do a regular for loop with range but then to access the items you need to index them (i.e., joint_values[i]).
Although another user mentioned an implementation of enumerate using zip, I think a more pure (but slightly more complex) way without using itertools is the following:
def enumerate(l, start=0):
return zip(range(start, len(l) + start), l)
Example:
l = ["test_1", "test_2", "test_3"]
enumerate(l)
enumerate(l, 10)
Output:
[(0, 'test_1'), (1, 'test_2'), (2, 'test_3')]
[(10, 'test_1'), (11, 'test_2'), (12, 'test_3')]
As mentioned in the comments, this approach with range will not work with arbitrary iterables as the original enumerate function does.
The enumerate function works as follows:
doc = """I like movie. But I don't like the cast. The story is very nice"""
doc1 = doc.split('.')
for i in enumerate(doc1):
print(i)
The output is
(0, 'I like movie')
(1, " But I don't like the cast")
(2, ' The story is very nice')
I am assuming that you know how to iterate over elements in some list:
for el in my_list:
# do something
Now sometimes not only you need to iterate over the elements, but also you need the index for each iteration. One way to do it is:
i = 0
for el in my_list:
# do somethings, and use value of "i" somehow
i += 1
However, a nicer way is to user the function "enumerate". What enumerate does is that it receives a list, and it returns a list-like object (an iterable that you can iterate over) but each element of this new list itself contains 2 elements: the index and the value from that original input list:
So if you have
arr = ['a', 'b', 'c']
Then the command
enumerate(arr)
returns something like:
[(0,'a'), (1,'b'), (2,'c')]
Now If you iterate over a list (or an iterable) where each element itself has 2 sub-elements, you can capture both of those sub-elements in the for loop like below:
for index, value in enumerate(arr):
print(index,value)
which would print out the sub-elements of the output of enumerate.
And in general you can basically "unpack" multiple items from list into multiple variables like below:
idx,value = (2,'c')
print(idx)
print(value)
which would print
2
c
This is the kind of assignment happening in each iteration of that loop with enumerate(arr) as iterable.
the enumerate function calculates an elements index and the elements value at the same time. i believe the following code will help explain what is going on.
for i,item in enumerate(initial_config):
print(f'index{i} value{item}')