Cartesian projection issue in a FITS image through PyFITS / AstroPy - python

I've looked and looked for a solution to this problem and am turning up nothing.
I'm generating rectangular FITS images through matplotlib and subsequently applying WCS coordinates to them using AstroPy (or PyFITS). My images are in galactic latitude and longitude, so the header keywords appropriate for my maps should be GLON-CAR and GLAT-CAR (for Cartesian projection). I've looked at other maps that use this same map projection in SAO DS9 and the coordinates work great... the grid is perfectly orthogonal as it should be. The FITS standard projections can be found here.
But when I generate my maps, the coordinates are not at all Cartesian. Here's a side-by-side comparison of my map (left) and another reference map of roughly the same region (right). Both are listed GLON-CAR and GLAT-CAR in the FITS header, but mine is screwy when looked at in SAO DS9 (note that the coordinate grid is something SAO DS9 generates based on the data in the FITS header, or at least stored somewhere in the FITS file):
This is problematic, because the coordinate-assigning algorithm will assign incorrect coordinates to each pixel if the projection is wrong.
Has anyone encountered this, or know what could be the problem?
I've tried applying other projections (just to see how they perform in SAO DS9) and they come out fine... but my Cartesian and Mercator projections do not come out with the orthogonal grid like they should.
I can't believe this would be a bug in AstroPy, but I can't find any other cause... unless my arguments in the header are incorrectly formatted, but I still don't see how that could cause the problem I'm experiencing. Or would you recommend using something else? (I've looked at matplotlib basemap but have had some trouble getting that to work on my computer).
My header code is below:
from __future__ import division
import numpy as np
from astropy.io import fits as pyfits # or use 'import pyfits, same thing'
#(lots of code in between: defining variables and simple calculations...
#probably not relevant)
header['BSCALE'] = (1.00000, 'REAL = TAPE*BSCALE + BZERO')
header['BZERO'] = (0.0)
header['BUNIT'] = ('mag ', 'UNIT OF INTENSITY')
header['BLANK'] = (-100.00, 'BLANK VALUE')
header['CRVAL1'] = (glon_center, 'REF VALUE POINT DEGR') #FIRST COORDINATE OF THE CENTER
header['CRPIX1'] = (center_x+0.5, 'REF POINT PIXEL LOCATION') ## REFERENCE X PIXEL
header['CTYPE1'] = ('GLON-CAR', 'COORD TYPE : VALUE IS DEGR')
header['CDELT1'] = (-glon_length/x_length, 'COORD VALUE INCREMENT WITH COUNT DGR') ### degrees per pixel
header['CROTA1'] = (0, 'CCW ROTATION in DGR')
header['CRVAL2'] = (glat_center, 'REF VALUE POINT DEGR') #Y COORDINATE OF THE CENTER
header['CRPIX2'] = (center_y+0.5, 'REF POINT PIXEL LOCATION') #Y REFERENCE PIXEL
header['CTYPE2'] = ('GLAT-CAR', 'COORD TYPE: VALUE IS DEGR') # WAS CAR OR TAN
header['CDELT2'] = (glat_length/y_length, 'COORD VALUE INCREMENT WITH COUNT DGR') #degrees per pixel
header['CROTA2'] = (rotation, 'CCW ROTATION IN DEGR') #NEGATIVE ROTATES CCW around origin (bottom left).
header['DATAMIN'] = (data_min, 'Minimum data value in the file')
header['DATAMAX'] = (data_max, 'Maximum data value in the file')
header['TELESCOP'] = ("Produced from 2MASS")
pyfits.update(filename, map_data, header)
Thanks for any help you can provide.

In the modern definition of the -CAR projection (from Calabretta et al.), GLON-CAR/GLAT-CAR projection only produces a rectilinear grid if CRVAL2 is set to zero. If CRVAL2 is not zero, then the grid is curved (this should have nothing to do with Astropy). You can try and fix this by adjusting CRVAL2 and CRPIX2 so that CRVAL2 is zero. Does this help?
Just to clarify what I mean, try, after your code above, and before writing out the file:
header['CRPIX2'] -= header['CRVAL2'] / header['CDELT2']
header['CRVAL2'] = 0.
Any luck?
If you look at the header for the 'reference' file you looked at, you'll see that CRVAL2 is zero there. Just to be clear, there's nothing wrong with CRVAL2 being non-zero, but the grid is then no longer rectilinear.

Related

zonal_stats: width and height must be > 0 error

I am trying to use the function zonal_stats from rasterstats Python package to get the raster statistics from a .tif file of each shape in a .shp file. I manage to do it in QGIS without any problems, but I have to do the same with more than 200 files, which will take a lot of time, so I'm trying the Python way. Both files and replication code are in my Google Drive.
My script is:
import rasterio
import geopandas as gpd
import numpy as np
from rasterio.plot import show
from rasterstats import zonal_stats
from rasterio.transform import Affine
# Import .tif file
raster = rasterio.open(r'M:\PUBLIC\Felipe Dias\Pesquisa\Interpolação Espacial\Arroz_2019-03.tif')
# Read the raster values
array = raster.read(1)
# Get the affine
affine = raster.transform
# Import shape file
shapefile = gpd.read_file(r'M:\PUBLIC\Felipe Dias\Pesquisa\Interpolação Espacial\Setores_Censit_SP_WGS84.shp')
# Zonal stats
zs_shapefile = zonal_stats(shapefile, array, affine = affine,
stats=['min', 'max', 'mean', 'median', 'majority'])
I get the following error:
Input In [1] in <cell line: 22>
zs_shapefile = zonal_stats(shapefile, array, affine = affine,
File ~\Anaconda3\lib\site-packages\rasterstats\main.py:32 in zonal_stats
return list(gen_zonal_stats(*args, **kwargs))
File ~\Anaconda3\lib\site-packages\rasterstats\main.py:164 in gen_zonal_stats
rv_array = rasterize_geom(geom, like=fsrc, all_touched=all_touched)
File ~\Anaconda3\lib\site-packages\rasterstats\utils.py:41 in rasterize_geom
rv_array = features.rasterize(
File ~\Anaconda3\lib\site-packages\rasterio\env.py:387 in wrapper
return f(*args, **kwds)
File ~\Anaconda3\lib\site-packages\rasterio\features.py:353 in rasterize
raise ValueError("width and height must be > 0")
I have found this question about the same problem, but I can't make it work with the solution: I have tried to reverse the signal of the items in the Affine of my raster data, but I couldn't make it work:
''' Trying to use the same solution of question: https://stackoverflow.com/questions/62010050/from-zonal-stats-i-get-this-error-valueerror-width-and-height-must-be-0 '''
old_tif = rasterio.open(r'M:\PUBLIC\Felipe Dias\Pesquisa\Interpolação Espacial\Arroz_2019-03.tif')
print(old_tif.profile) # copy & paste the output and change signs
new_tif_profile = old_tif.profile
# Affine(0.004611149999999995, 0.0, -46.828504575,
# 0.0, 0.006521380000000008, -24.01169169)
new_tif_profile['transform'] = Affine(0.004611149999999995, 0.0, -46.828504575,
0.0, -0.006521380000000008, 24.01169169)
new_tif_array = old_tif.read(1)
new_tif_array = np.fliplr(np.flip(new_tif_array))
with rasterio.open(r'M:\PUBLIC\Felipe Dias\Pesquisa\Interpolação Espacial\tentativa.tif', "w", **new_tif_profile) as dest:
dest.write(new_tif_array, indexes=1)
dem = rasterio.open(r'M:\PUBLIC\Felipe Dias\Pesquisa\Interpolação Espacial\tentativa.tif')
# Read the raster values
array = dem.read(1)
# Get the affine
affine = dem.transform
# Import shape file
shapefile = gpd.read_file(r'M:\PUBLIC\Felipe Dias\Pesquisa\Interpolação Espacial\Setores_Censit_SP_WGS84.shp')
# Zonal stats
zs_shapefile = zonal_stats(shapefile, array, affine=affine,
stats=['min', 'max', 'mean', 'median', 'majority'])
Doing this way, I don't get the "width and height must be > 0" error! But every stat in zs_shapefile is "NoneType", so it doesn't help my problem.
Does anyone understands why this error happens, and which sign I have to reverse for making it work? Thanks in advance!
I would be careful with overriding the geotransform of your raster like this, unless you are really convinced the original metadata is incorrect. I'm not too familiar with Affine, but it looks like you're setting the latitude now as positive? Placing the raster on the northern hemisphere. My guess would be that this lack of intersection between the vector and raster causes the NoneType results.
I'm also not familiar with raster_stats, but I'm guessing it boils down to GDAL & Numpy at the core of it. So something you could try as a test is to add the all_touched=True keyword:
https://pythonhosted.org/rasterstats/manual.html#rasterization-strategy
If that works, it might indicate that the rasterization fails because your polygons are so small compared to the pixels, that the default rasterization method results in a rasterized polygon of size 0 (in at least one of the dimensions). And that's what the error also hints at (my guess).
Keep in mind that all_touched=True changes the stats you get in result, so I would only do it for testing, or if you're comfortable with this difference.
If you really need a valid value for these (too) small polygons, there are a few workarounds you could try. Something I've done is to simply take the centroid for these polygons, and take the value of the pixel where this centroid falls on.
A potential way to identify these polygons would be to use all_touched with the "count" statistic, every polygon with a count of only 1 might be too small to get rasterized correctly. To really find this out you would probably have to do the rasterization yourself using GDAL, given that raster_stats doesn't seem to allow it.
Note that due to the shape of some of the polygons you use, the centroid might fall outside of the polygon. But given how course your raster data is, relative to the vector, I don't think it would impact the result all that much.
An alternative is, instead of modifying the vector, to significantly increase the resolution of your raster. You could use gdal_translate to output this to a VRT, with some form of resampling, and avoid having to write this data to disk. Once the resolution is high enough that all polygons rasterize to at least a 1x1 array, it should probably work. But your polygons are tiny compared to the pixels, so it'll be a lot. You could guess it, or analyze the envelopes of all polygons. For example take the smallest edge of the envelope as more or less the resolution that's necessary for a correct rasterization.
Edit; To clarify the above a bit further.
The default rasterization strategy of GDAL (all_touched=False) is to consider a pixel "within" the polygon if the centroid of the pixel intersects with the polygon.
Using QGIS you can for example convert the pixels to points, and then do a spatial join with your vector. If you remove polygons that can't be joined (there's a checkbox), you'll get a different vector that most likely should work with raster_stats, given your current raster.
You could perhaps use that in the normal way (all_touched=False), and get the stats for the small polygons using all_touched=True.
In the image below, the green polygons are the ones that intersect with the centroid of a pixel, the red ones don't (and those are probably the ones raster_stats "tries" to rasterize to a size 0 array).

Using pyproj to transform shapely data is giving me strange results

I've got a polygon which looks something like this in WKT:
POLYGON ((-2.5079473598836624 51.34385834919997, -2.5081726654409133 51.34353499032948, -2.507909808957454 51.343441165566986, -2.507679138982173 51.34359530614682, -2.5079473598836624 51.34385834919997))
I'm trying to transform this from EPSG:3857 (web mercator) to EPSG:32630 (UTM 30N) to do some distance calculations on it but the results look weird:
wgs_proj = pyproj.CRS("EPSG:3857")
utm_proj = pyproj.CRS("EPSG:32630")
transform = pyproj.Transformer.from_crs(wgs_proj, utm_proj, always_xy=True).transform
shape = shapely.wkt.loads("POLYGON ((-2.5079473598836624 51.34385834919997, -2.5081726654409133 51.34353499032948, -2.507909808957454 51.343441165566986, -2.507679138982173 51.34359530614682, -2.5079473598836624 51.34385834919997))")
boundary = shapely.ops.transform(transform, shape)
print(str(boundary))
This outputs:
POLYGON ((833976.0465009063 51.05017626883035, 833976.04627538 51.04985475944731, 833976.0465384943 51.049761471464706, 833976.0467693905 51.0499147304722, 833976.0465009063 51.05017626883035))
This looks to me like it's got the longitude conversion roughly right but the latitude conversion completely wrong. The units are supposed to be in metres, I think. So unless the shape happens to be at a latitude about 51m North of the origin of UTM30N, something has gone wrong. Can anyone point me to what?
This is because the data is in long-lats, not in EPSG:3857. Almost everything online says that EPSG:3857 is what Google maps uses, but this is only true internally. EPSG:3857 is WGS84 projected into metres. Externally, Google still uses WGS84 long-lats, ie EPSG:4326. Changing the origin coordinate system in the code shown in the question produces the right result.

Given a geotiff file, how does one find the single pixel closest to a given latitude/longitude?

I have a geotiff file that I'm opening with gdal in Python, and I need to find the single pixel closest to a specified latitude/longitude. I was previously working with an unrelated file type for similar data, so I'm completely new to both gdal and geotiff.
How does one do this? What I have so far is
import gdal
ds = gdal.Open('foo.tiff')
width = ds.RasterXSize
height = ds.RasterYSize
gt = ds.GetGeoTransform()
gp = ds.GetProjection()
data = np.array(ds.ReadAsArray())
print(gt)
print(gp)
which produces (for my files)
(-3272421.457337171, 2539.703, 0.0, 3790842.1060354356, 0.0, -2539.703)
and
PROJCS["unnamed",GEOGCS["Coordinate System imported from GRIB file",DATUM["unnamed",SPHEROID["Sphere",6371200,0]],PRIMEM["Greenwich",0],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]]],PROJECTION["Lambert_Conformal_Conic_2SP"],PARAMETER["latitude_of_origin",25],PARAMETER["central_meridian",265],PARAMETER["standard_parallel_1",25],PARAMETER["standard_parallel_2",25],PARAMETER["false_easting",0],PARAMETER["false_northing",0],UNIT["metre",1,AUTHORITY["EPSG","9001"]],AXIS["Easting",EAST],AXIS["Northing",NORTH]]
Ideally, there'd be a single simple function call, and it would also return an indication whether the specified location falls outside the bounds of the raster.
My fallback is to obtain a grid from another source containing the latitudes and longitudes for each pixel and then do a brute force search for the desired location, but I'm hoping there's a more elegant way.
Note: I think what I'm trying to do is equivalent to the command line
gdallocationinfo -wgs84 foo.tif <longitude> <latitude>
which returns results like
Report:
Location: (1475P,1181L)
Band 1:
Value: 66
This suggests to me that the functionality is probably already in the gdal module, if I can just find the right method to call.
You basically need two steps:
Convert the lat/lon point to the raster-projection
Convert the mapx/mapy (in raster proj) to pixel coordinates
Given the code you already posted above, defining both projection systems can be done with:
from osgeo import gdal, osr
point_srs = osr.SpatialReference()
point_srs.ImportFromEPSG(4326) # hardcode for lon/lat
# GDAL>=3: make sure it's x/y
# see https://trac.osgeo.org/gdal/wiki/rfc73_proj6_wkt2_srsbarn
point_srs.SetAxisMappingStrategy(osr.OAMS_TRADITIONAL_GIS_ORDER)
file_srs = osr.SpatialReference()
file_srs.ImportFromWkt(gp)
Creating the coordinate transformation, and using it to convert the point from lon/lat to mapx/mapy coordinates (whatever projection it is) with:
ct = osr.CoordinateTransformation(point_srs, file_srs)
point_x = -114.06138 # lon
point_y = 51.03163 # lat
mapx, mapy, z = ct.TransformPoint(point_x, point_y)
To go from map coordinates to pixel coordinates, the geotransform needs to be inverted first. And can then be used to retrieve the pixel coordinates like:
gt_inv = gdal.InvGeoTransform(gt)
pixel_x, pixel_y = gdal.ApplyGeoTransform(gt_inv, mapx, mapy)
Rounding those pixel coordinates should allow you to use them for indexing the data array. You might need to clip them if the point you're querying is outside the raster.
# round to pixel
pixel_x = round(pixel_x)
pixel_y = round(pixel_y)
# clip to file extent
pixel_x = max(min(pixel_x, width-1), 0)
pixel_y = max(min(pixel_y, height-1), 0)
pixel_data = data[pixel_y, pixel_x]

generating a hemispherical surface with triangular_mesh and representing a data( as value or as colors) at each vertex

I want to generate a surface which should look like a hemisphere.. What I have done so far is to read an already existing BEM mesh and try to show the scalar values on it. But now I have to show the scalar values on a hemisphere instead of the Bem mesh. And I don't know how to generate using a triangular mesh that looks like an hemisphere.
This hemisphere needs to contain a set of N number of points(x,y,z)[using the mlab.triangular_mesh] and at each vertex I need to represent N data(float) either as a value or using variations in colormap(eg: blue(lowest value of the data) to red(highest value of the data)). data=its an array of size 2562, a set of float values, could be randomly generated as its part of another codes. Points were part of another set of code too.its of shape(2562,3). but the shape is not a hemisphere
This was the program I used for viewing using the BEM surface
fname = data_path + '/subjects/sample/bem/sample-5120-5120-5120-bem-sol.fif'
surfaces = mne.read_bem_surfaces(fname, add_geom=True)
print "Number of surfaces : %d" % len(surfaces)
head_col = (0.95, 0.83, 0.83) # light pink
colors = [head_col]
try:
from enthought.mayavi import mlab
except:
from mayavi import mlab
mlab.figure(size=(600, 600), bgcolor=(0, 0, 0))
for c, surf in zip(colors, surfaces):
points = surf['rr']
faces = surf['tris']
s=data
mlab.triangular_mesh(points[:, 0], points[:, 1], points[:, 2],faces,color=c, opacity=1,scalars=s[:,0])
#mesh= mlab.triangular_mesh(x,y,z,triangles,representation='wireframe',opacity=0) #point_data=mesh.mlab_source.dataset.point_data
#point_data.scalars=t
#point_data.scalars.name='Point data'
#mesh2= mlab.pipeline.set_active_attribute(mesh,point_scalars='Point data')
As others have pointed out your question is not very clear, and does not include an easily reproducible example -- your example would take considerable work for us to reproduce and you have not described the steps you have taken very clearly.
What you are trying to do is easy. Scalars can be defined for each vertex (i.e., each VTK point):
surf = mlab.triangular_mesh(x,y,z,triangles)
surf.mlab_source.scalars = t
And you need to set a flag to get them to appear, which I think might be your problem:
surf.actor.mapper.scalar_visibility=True
Here is some code to generate a half-sphere. It produces a VTK polydata. I'm not 100% sure if the mayavi source is the same source type as triangular_mesh but I think it is.
res = 250. #desired resolution (number of samples on sphere)
phi,theta = np.mgrid[0:np.pi:np.pi/res, 0:np.pi:np.pi/res]
x=np.cos(theta) * np.sin(phi)
y=np.sin(theta) * np.sin(phi)
z=np.cos(phi)
mlab.mesh(x,y,z,color=(1,1,1))

Assign WCS coordinates to a FITS image

I've been searching the documentation like crazy and cannot find an answer for this one.
I'm generating FITS images in python and need to assign WCS coordinates to the image. I know there are lots of ways to do this by matching up point sources with a known catalog, but in this case I'm generating a dust map, so point source matching won't work (as far as I can tell).
So the image is a 2D Numpy array of shape (240,240). It's written like so (the x and y coordinate assignments are a little weird, it works somehow):
H, xedges, yedges = np.histogram2d(glat, glon, bins=[ybins, xbins], weights=Av)
count, x, y = np.histogram2d(glat, glon, bins=[ybins, xbins])
H/=count
hdu = pyfits.PrimaryHDU(H)
hdu.writeto(filename)
>>> print H.shape
(240,240)
That all works fine on its own. For assigning galactic coordinates seems like all you'd need to do is something like:
glon_coords = np.linspace(np.amin(glon), np.amax(glon), 240)
glat_coords = np.linspace(np.amin(glat), np.amax(glat), 240)
But I don't understand how the FITS image stores these coordinates, so I don't know how to write them. I've tried assigning them in SAO DS9, too, but no luck. I just need a straightforward way of assigning these coordinates to the image.
Thanks for any help you can provide.
I would advise you to start using astropy. For the purposes of your project the astropy.wcs package can help you write a FITS WCS header, and the astropy.io.fits API is basically identical to the pyfits one you are using now. Moreover the help pages are excellent, and all I'm about to do is translate their WCS building page to match your example.
To your question: FITS does not "tag" each pixel with a coordinate. I suppose it is possible to create a pixel lookup table or something like that, but the actual WCS is an algorithmic translation of X,Y pixels to astrometric coordinates (in your case "Galactic"). A nice page is here.
The example I would point you to is here:
http://docs.astropy.org/en/latest/wcs/index.html#building-a-wcs-structure-programmatically
And here is my untested pseudocode for your project:
# untested code
from __future__ import division # confidence high
# astropy
from astropy.io import fits as pyfits
from astropy import wcs
# your code
H, xedges, yedges = np.histogram2d(glat, glon, bins=[ybins, xbins], weights=Av)
count, x, y = np.histogram2d(glat, glon, bins=[ybins, xbins])
H/=count
# characterize your data in terms of a linear translation from XY pixels to
# Galactic longitude, latitude.
# lambda function given min, max, n_pixels, return spacing, middle value.
linwcs = lambda x, y, n: ((x-y)/n, (x+y)/2)
cdeltaX, crvalX = linwcs(np.amin(glon), np.amax(glon), len(glon))
cdeltaY, crvalY = linwcs(np.amin(glat), np.amax(glat), len(glat))
# wcs code ripped from
# http://docs.astropy.org/en/latest/wcs/index.html
w = wcs.WCS(naxis=2)
# what is the center pixel of the XY grid.
w.wcs.crpix = [len(glon)/2, len(glat)/2]
# what is the galactic coordinate of that pixel.
w.wcs.crval = [crvalX, crvalY]
# what is the pixel scale in lon, lat.
w.wcs.cdelt = numpy.array([cdeltX, cdeltY])
# you would have to determine if this is in fact a tangential projection.
w.wcs.ctype = ["GLON-TAN", "GLAT-TAN"]
# write the HDU object WITH THE HEADER
header = w.to_header()
hdu = pyfits.PrimaryHDU(H, header=header)
hdu.writeto(filename)

Categories