Basically I'm trying to do something like this:
class A:
some_field = None # that is the field which should have 123 value
# what needs to be here?
class B(A(123)):
pass
class C(A(456)):
pass
I want one base class A. And I want children B and C to be able to pass arguments to it like that A(123).
And for example if I do B.some_field I should get 123
How can I do that?
unutbu's answer is correct. I'd just like to point out that you can even do this stuff dynamically...
def make_class(base, value):
class NewClass(base):
some_field = value
return NewClass
class A(object):
some_field = None
B = make_class(A, 123)
C = make_class(A, 456)
And actually, this one is important enough that python actually has a builtin to do it:
class A(object):
some_field = None
B = type('B', (A,), {'some_field': 123})
type takes 3 arguments -- The name of the class, a tuple of the base classes and a dictionary of class attributes.
If you define B and C like this:
class B(A):
some_field = 123
class C(A):
some_field = 123
then:
In [147]: B.some_field
Out[147]: 123
By the way, A(123) would pass 123 to A.__init__. It would not set some_field.
Also, in a class definition,
class B(...)
The stuff in parentheses must be a class or a comma-separated list of classes (or, in Python3, metaclass=SomeMetaClass). It can not be an instance of a class. So
class B(A(123))
is a definite no-no.
In response to the comment: You could use the A.__new__ method to return a class:
class A(object):
some_field = None
def __new__(cls, val):
cls.some_field = val
return cls
class B(A(123)): pass
then
In [161]: B.some_field
Out[161]: 123
But this is a non-standard use of __new__ since usually it is used to return an instance of A. When it does not return an instance of A, then A.__init__ is not called.
Instead of using a class A it would be more understandable to use a class factory:
class B(make_class(123)): ...
as you mentioned in the comment below.
Related
Is there a way in python to pass a function call to an inner object, maybe through a decorator or wrapper? In the example below, class A holds a list of class B objects, and one of the class B objects is selected as the active object. I want class A to function as a passthrough, just identifying which of the class B objects that the call goes to. However, class A doesn't know what type of class it is going to hold beforehand, so I can't just add a set_var function to class A. It has to work for any generic function that class B has. It will only have one type of class in its objects list, so it could take class B as an input when it is instantiated and dynamically create functions, if that's a possibility. The client wouldn't know whether it's dealing with class A or class B. The code below is as far as I got.
class A:
def __init__(self):
self.objects = []
self.current_object = 0
def add_object(self, object):
self.objects.append(object)
class B:
def __init__(self):
self.var = 10
def set_var(self, new_var):
self.var = new_var
a_obj = A()
b_obj1 = B()
b_obj2 = B()
a_obj.add_object(b_obj1)
a_obj.add_object(b_obj2)
a_obj.set_var(100)
You could use the generic __getattr__ to delegate to the wrapped object.
class A:
def __init__(self):
self.objects = []
self.current_object = 0
def add_object(self, obj):
self.objects.append(obj)
self.current_object = obj
def __getattr__(self, name):
return getattr(self.current_object, name)
class B:
def __init__(self):
self.var = 10
def set_var(self, new_var):
self.var = new_var
a_obj = A()
b_obj1 = B()
b_obj2 = B()
a_obj.add_object(b_obj1)
a_obj.add_object(b_obj2)
a_obj.set_var(100)
print(b_obj2.var)
That will print "100".
You will still get an AttributeError if the wrapped object doesn't have the expected method.
It was interesting to look at this, it is intentionally rough but it does indeed allow you to call one the B instance's set_var methods.
The code below uses sets as a quick and dirty way to see the difference in callable methods, and if there is; it sets the attribute based on that name. Binding the method to the A instance.
This would only bind set_var once from the first object given.
def add_object(self, object):
self.objects.append(object)
B_methods = set([m for m in dir(object) if callable(getattr(object, m))])
A_methods = set([m for m in dir(self) if callable(getattr(self, m))])
to_set = B_methods.difference(A_methods)
for method in to_set:
setattr(self, method, getattr(object, method))
I want to access an attribute of the class instance that called a function :
for example:
class A:
def a(self):
return B.q
class B:
q=0
def b(self):
M=A()
return M.a()
c=B()
c.q = 6
print(c.b())
the output will be 0 but I want it to print the q attribute of the instance c of the class B which has the value 6
Pass the instance as a parameter.
class A:
def a(self, b):
return b.q
class B:
q=0
def b(self):
M=A()
return M.a(self)
c=B()
c.q = 6
print(c.b())
This appears to be very bad program design. What are you trying to accomplish with this?
You have a class attribute and an instance attribute -- in that class -- of the same name, q. This makes your code difficult to follow and to maintain.
You have method B.b instantiate an instance of class A. You immediately call A.a, which has been assigned the questionable task of returning an instance attribute from and object of class B.
Clean up your design.
Use init appropriately for each class.
Design your class methods to work appropriately with the characteristics of instances of that class. Your question strongly suggests that your design is not yet clean in your mind, nor in code.
define an init method so that you can work with the instance attributes instead of the class variable
class A:
def a(self):
return B.q
class B:
def __init__(self):
self.q = 0
def b(self):
M=A()
return M.a()
c=B()
c.q = 6
print(c.b())
class Class:
_member = 1
def method(self):
I want to access _member from within method(), what is the correct way to do so?
class Class:
_member = 1
#classmethod
def method(cls):
print cls._member
Class.method()
And:
>>> Class().method()
1
>>>
You can use self._member, if it isn't an attribute of the object (in self.__dict__) I believe it looks in the classes __dict__ next, which should contain the class attributes.
class Class:
_member = 1
def method(self):
print "value is ",self._member
create an instance of the class and call the method
c = Class()
c.method()
output:
value is 1
class Class:
_member = 1
def method(self):
print(Class._member)
Class().method()
Would give the output:
1
That one is a Class attribute, by the way. You could call the method as a bound method. You have the option of staticmethod (no first parameter required), classmethod (first one parameter is a class) and normal method (like this one).
I have class:
class A(object):
def do_computing(self):
print "do_computing"
Then I have:
new_class = type('B', (object,), {'a': '#A', 'b': '#B'})
What I want to achieve is to make all methods and properties on class A a member of class B. Class A can have from 0 to N such elements. I want to make them all a member of class B.
So far I get to:
methods = {}
for el in dir(A):
if el.startswith('_'):
continue
tmp = getattr(A, el)
if isinstance(tmp, property):
methods[el] = tmp
if isinstance(tmp, types.MethodType):
methods[el] = tmp
instance_class = type('B', (object,), {'a': '#A', 'b': '#B'})
for name, func in methods.items():
new_method = types.MethodType(func, None, instance_class)
setattr(instance_class, name, new_method)
But then when I run:
instance().do_computing()
I get an error:
TypeError: unbound method do_computing() must be called with A instance as first argument (got B instance instead)
Why I had to do that? We have a lot of legacy code and I need fancy objects that will pretend they are old objects but really.
One more important thing. I cannot use inheritance, to much magic happens in the background.
If you do it like this, it will work:
import types
class A(object):
def do_computing(self):
print "do_computing"
methods = {name:value for name, value in A.__dict__.iteritems()
if not name.startswith('_')}
instance_class = type('B', (object,), {'a': '#A', 'b': '#B'})
for name, func in methods.iteritems():
new_method = types.MethodType(func, None, instance_class)
setattr(instance_class, name, new_method)
instance_class().do_computing()
Unless I'm missing something, you can do this with inheritance:
class B(A):
def __init__(self):
super(B, self).__init__()
Then:
>>> b = B()
>>> b.do_computing()
do_computing
Edit: cms_mgr said the same in the comments, also fixed indentation
are you creating a facade? maybe you want something like this:
Making a facade in Python 2.5
http://en.wikipedia.org/wiki/Facade_pattern
you could also use delegators. here's an example from the wxpython AGW:
_methods = ["GetIndent", "SetIndent", "GetSpacing", "SetSpacing", "GetImageList", "GetStateImageList",
"GetButtonsImageList", "AssignImageList", "AssignStateImageList", "AssignButtonsImageList",
"SetImageList", "SetButtonsImageList", "SetStateImageList", 'other_methods']
def create_delegator_for(method):
"""
Creates a method that forwards calls to `self._main_win` (an instance of :class:`TreeListMainWindow`).
:param `method`: one method inside the :class:`TreeListMainWindow` local scope.
"""
def delegate(self, *args, **kwargs):
return getattr(self._main_win, method)(*args, **kwargs)
return delegate
# Create methods that delegate to self._main_win. This approach allows for
# overriding these methods in possible subclasses of HyperTreeList
for method in _methods:
setattr(HyperTreeList, method, create_delegator_for(method))
Note that these wrap class methods... i.e both functions take a signature like def func(self, some, other, args) and are intended to be called like self.func(some, args). If you want to delegate a class function to a non-class function, you'll need to modify the delegator.
You can inherit from a parent class as such:
class Awesome():
def method_a():
return "blee"
class Beauty(Awesome):
def __init__(self):
self.x = self.method_a()
b = Beauty()
print(b.x)
>>> "blee"
This was freely typed, but the logic is the same none the less and should work.
You can also do fun things with setattr like so:
#as you can see this class is worthless and is nothing
class blee():
pass
b = blee()
setattr(b, "variable_1", "123456")
print(b.variable_1)
>>> 123456
essentially you can assign any object, method to a class instance with setattr.
EDIT: Just realized that you did use setattr, woops ;)
Hope this helps!
From this answer to "what is a metaclass?" I got this:
You write class Foo(object) first, but the class object Foo is not created in memory yet.
Python will look for metaclass in the class definition. If it finds it, it will use it to create the object class Foo. If it doesn't, it will use type to create the class.
Having tested it, it seems that the attributes of the class are instantiated before the constructor of the class is run. What am I misunderstanding?
Test code:
class meta(type):
def __init__(cls, name, bases, dic):
type.__init__(cls, name, bases, dic)
print hasattr(cls, "a")
cls.a = "1"
class A(object):
a = "a"
__metaclass__ = meta
class B(object):
__metaclass__ = meta
class C(object):
__metaclass__ = meta
a = "a"
print A.a
print B.a
print C.a
Output:
True
False
True
1
1
1
The class body is run before the class is constructed, yes.
The body of the class provides a temporary namespace, and all local names in that namespace are given as a dictionary to construct the class object, together with the base classes and a name for the class.
You can do this with the type() constructor too:
>>> Foo = type('Foo', (), {'a': 1})
>>> Foo.a
1
The class body is basically executed as a function, with the local namespace of that function being used to create the class attributes, the 3rd argument to type() above.
In python 3 you have a little more influence on that process with the __prepare__ hook on a metaclass. __prepare__ should be a class method that returns a initial namespace for the class body; use it to inject extra names into the generated class body before the class body is executed:
class MyMeta(type):
#classmethod
def __prepare__(mcl, name, bases):
return {'a': 1}