NUMPY create, fill with random binary data - python

I need to create an 2D array.
import numpy as np
self.col = 10
self.row = 5
...
matrix = np.array(self.row, self.col) # NOT WORKING
What is the right syntax please
i also need to fill it with random binary data

Generate a random matrix with binary values:
import numpy as np
row, col = 10, 5
matrix = np.random.randint(2, size=(row,col))

import numpy as np
def toBit(x):
if x<= 0:
x = 0
else:
x = 1
return x
VtoBit = np.vectorize(toBit)
arr1 = np.random.randn(6,10)
arr2 = VtoBit(arr1)
print(arr2)

Related

For loop alternitive to array subtraction

import numpy as np
x = np.array([[1,1,1],[2,2,2],[3,3,3]])
xt = np.array([1,2,3])
L = len(xt)
for i in range(0,L):
s = x-xt[i]
is there another way to get the same results without the use of a for loop, thanks.

dumping a numpy array into a CSV file: table elements look like printed arrays

I'm trying to use the OpenCV Python wrapper to calculate the Discrete wavelet Haar transform for an image. Supposedly, images == numpy arrays == CV matrices, so I thought this should work:
import cv2
import numpy as np
import pywt
from pywt import wavedec
import csv
imgcv1 = cv2.split(resize)[0]
cv2.boxFilter(imgcv1, 0, (7,7), imgcv1, (-1,-1), False, cv2.BORDER_DEFAULT)
cv2.resize( imgcv1, (32, 32 ) ,imgcv1)
imf = np.float32(imgcv1)/255.0 # float conversion/scale
coeffs = pywt.dwt(imf, "haar") # the dwt
cA = coeffs
#imgout = pywt.dwt(coeffs, "haar")
print(cA)
def zigzag(matrix):
rows=len(matrix)
columns=len(matrix[0])
solution=[[] for i in range(rows+columns-1)]
for i in range(rows):
for j in range(columns):
sum=i+j
if(sum%2 ==0):
solution[sum].insert(0,matrix[i][j])
else:
solution[sum].append(matrix[i][j])
data = (rows*columns)/3
data = round(data)
mtx_zigzag = []
for i in solution:
for j in i:
mtx_zigzag.append(j)
mtxawal = mtx_zigzag[2:26]
# mtxtengah = mtx_zigzag[83:107]
# mtxakhir = mtx_zigzag[191:215]
mtx = mtxawal
# +mtxtengah+mtxakhir
return mtx
hasil_zigzag= zigzag(cA)
print(hasil_zigzag)
zg=[]
zg.append(hasil_zigzag)
citra="tangan {}".format(counter)
file=open('database.csv','a+',newline='')
with file:
write=csv.writer(file)
write.writerows(zg)
the excel /csv data output is like this:
I want the matrix or csv/excel output to be like this:
can you guys help me

Python - generate random figures in ratio

I need a script which returns a list of random figures from
range(-100;+100) in ratio of positive/negative figures = 2/1. Current
wording returns voluntary ratio
import numpy as np
x=[]
for y in range(10):
y=np.random.randint(-100,100)
x.append(y)
print(x)
import numpy as np
neg = np.random.randint(-100, -1, 10)
poz = np.random.randint(0, 100, 20)
res = np.concatenate((neg, poz), axis=0)
print(res)
np.random.shuffle(res)#If you need to mix
print(res)
As an option.

Creating a vector of values based off a test using a for loop

This feels like it should be a simple problem but I am newer to python, in R i would use a foreach loop that gave me an option to combine.
I have tried a for loop that lets me print out all the values i need but i want them collected into a vector of values that i can use later.
from scipy.stats import gamma
import scipy.stats as stats
import numpy as np
import random
data2 = np.random.gamma(1,2, size = 500)
gammT = np.log(data2 + 1)
mean = np.mean(gammT)
sd = np.std(gammT)
a = (mean/ sd)**2
b = (sd**2)/ mean
for i in range(1,100):
gammT = random.sample(list(gammT), 500)
gamm = np.random.gamma(a,b, size = len(gammT))
s = stats.anderson_ksamp([gammT,gamm])
s = s[2]
print(s)
So i am able to print all the values i want but i want them all to be gathered together in a vector of values. I have tried to append and make lists but am not able to get them together.
from scipy.stats import gamma
import scipy.stats as stats
import numpy as np
import random
gammT = np.log(data2.iScore + 1)
mean = np.mean(gammT)
sd = np.std(gammT)
a = (mean/ sd)**2
b = (sd**2)/ mean
#initialize empty list
result=[]
for i in range(100):
# removed (1,100) you only need range(100) for 100 elements
gammT = random.sample(list(gammT), 500)
gamm = np.random.gamma(a,b, size = len(gammT))
s = stats.anderson_ksamp([gammT,gamm])
s = s[2]
#append calculation to list
result.append(s)
print(s)
print(result)

How to append the first element of a matrix onto a list over a loop?

I have two loops that runs for a different x and y coordinates and for each different (x,y) coordinates, a linear equation is being solved for force 1 and force 2 using matrices method i.e. finding the inverse of A if Ax = C. For each loop it gives an answer as a matrix where first element is force 1 and 2nd element is force 2 at those specific coordinates. Here's my code:
import numpy as np
from scipy import linalg
def Force():
Force1 = np.zeros((160,90))
Force2 = np.zeros((160,90))
for x in np.arange(0,16.1,0.1):
for y in np.arange(1,9.1,0.1):
l1 = np.hypot(x,y)
l2 = np.hypot(15-x,y)
A = np.array([[(x/l1),((x-15)/l2)],[(y/l1),(y/l2)]])
c = np.array([[0],[70*9.81]])
F = linalg.solve(A,c)
Force1[x,y] = F[0]
Force2[x,y] = F[1]
print("Force 1 = {} \nForce 2 = {}\n".format(F[0], F[1]))
so at each point (x,y) a matrix [[Force 1],[Force 2]] is solved. Now I would like to append all the Force1(s) into a list of Force1[x,y] and similarly for Forces2(s) so that I can do
plt.imshow[Force1]
plt.imshow[Force2]
to plot a 2 heatmaps. How would I go about doing that?
This solves your issue - you were trying to assign to indices in Force1 and Force2 of type float. I've changed the for loops to use enumerate instead, and tweaked the assignment so it assigns F[0][0] and F[1][0].
import numpy as np
from scipy import linalg
def Force():
Force1 = np.zeros((160,90))
Force2 = np.zeros((160,90))
for i, x in enumerate(np.arange(0,16,0.1)):
for j, y in enumerate(np.arange(1,9,0.1)):
l1 = np.hypot(x,y)
l2 = np.hypot(15-x,y)
A = np.array([[(x/l1),((x-15)/l2)],[(y/l1),(y/l2)]])
c = np.array([[0],[70*9.81]])
F = linalg.solve(A,c)
Force1[i, j] = F[0][0]
Force2[i, j] = F[1][0]
# print("Force 1 = {} \nForce 2 = {}\n".format(F[0], F[1]))
plt.imshow(Force1)
plt.show()
plt.imshow(Force2)
plt.show()
Force()
The generated plots are:
and

Categories