i used jscript.net to create a .dll file.
as a test, i can successfully call the function hello() in another jscript.net program, which compiled as .exe.
BUT my question is:
how can i call the function in python?
this dll can be successfully loaded by using ctypes.windll.LoadLibrary("power.dll"). however, the name of function can't be found...
i have done some tests of my dll file.
i used "dumpbin /all" to check my dll, but i can't find any usable funciton names. it is odd...
the code of my dll file in jscript.net
""""""""""""""""""""""
import System;
import System.Console;
import System.IO;
package power{
public class testp {
function hello (){
var time_1 = DateTime.Now;
for (var i =0; i<10000; i++){
Console.WriteLine ("hello world!");
};
var time_2 = DateTime.Now;
Console.WriteLine (time_2-time_1);
};
};
};
""""""""""""""""""""""
Yes, you can consume any DLL in python if you make the code COM-exposed. I only skimmed through it, but this tutorial seems to give a good example of how to do this:
http://www.codeproject.com/Articles/73880/Using-COM-Objects-in-Scripting-Languages-Part-2-Py
Related
I have a C++ program and it has sort of plugin structure: when program starts up, it's looking for dll in the plugin folder with certain exported function signatures, such as:
void InitPlugin(FuncTable* funcTable);
Then the program will call the function in the dll to initialize and pass function pointers to the dll. From that time on, the dll can talk to the program.
I know Cython let you call C function in Python, but I'm not sure can I write a Cython code and compile it to a dll so my C++ program can initialize with it. An example code would be great.
Using cython-module in a dll is not unlike using a cython-module in an embeded python interpreter.
The first step would be to mark cdef-function which should be used from external C-code with public, for example:
#cyfun.pyx:
#doesn't need python interpreter
cdef public int double_me(int me):
return 2*me;
#needs initialized python interpreter
cdef public void print_me(int me):
print("I'm", me);
cyfun.c and cyfun.h can be generated with
cython -3 cyfun.pyx
These files will be used for building of the dll.
The dll will need one function to initialize the python interpreter and another to finalize it, which should be called only once before double_me and print_me can be used (Ok, double_me would work also without interpreter, but this is an implementation detail). Note: the initialization/clean-up could be put also in DllMain - see such a version further bellow.
The header-file for the dll would look like following:
//cyfun_dll.h
#ifdef BUILDING_DLL
#define DLL_PUBLIC __declspec(dllexport)
#else
#define DLL_PUBLIC __declspec(dllimport)
#endif
//return 0 if everything ok
DLL_PUBLIC int cyfun_init();
DLL_PUBLIC void cyfun_finalize();
DLL_PUBLIC int cyfun_double_me(int me);
DLL_PUBLIC void cyfun_print_me(int me);
So there are the necessary init/finalize-functions and the symbols are exported via DLL_PUBLIC (which needs to be done see this SO-post) so it can be used outside of the dll.
The implementation follows in cyfun_dll.c-file:
//cyfun_dll.c
#define BUILDING_DLL
#include "cyfun_dll.h"
#define PY_SSIZE_T_CLEAN
#include <Python.h>
#include "cyfun.h"
DLL_PUBLIC int cyfun_init(){
int status=PyImport_AppendInittab("cyfun", PyInit_cyfun);
if(status==-1){
return -1;//error
}
Py_Initialize();
PyObject *module = PyImport_ImportModule("cyfun");
if(module==NULL){
Py_Finalize();
return -1;//error
}
return 0;
}
DLL_PUBLIC void cyfun_finalize(){
Py_Finalize();
}
DLL_PUBLIC int cyfun_double_me(int me){
return double_me(me);
}
DLL_PUBLIC void cyfun_print_me(int me){
print_me(me);
}
Noteworthy details:
we define BUILDING_DLL so DLL_PUBLIC becomes __declspec(dllexport).
we use cyfun.h generated by cython from cyfun.pyx.
cyfun_init inizializes python interpreter and imports the built-in module cyfun. The somewhat complicated code is because since Cython-0.29, PEP-489 is default. More information can be found in this SO-post. If the Python-interpreter isn't initialized or if the module cyfun is not imported, the chances are high, that calling the functionality from cyfun.h will end in a segmentation fault.
cyfun_double_me just wraps double_me so it becomes visible outside of the dll.
Now we can build the dll!
:: set up tool chain
call "<path_to_vcvarsall>\vcvarsall.bat" x64
:: build cyfun.c generated by cython
cl /Tccyfun.c /Focyfun.obj /c <other_coptions> -I<path_to_python_include>
:: build dll-wrapper
cl /Tccyfun_dll.c /Focyfun_dll.obj /c <other_coptions> -I<path_to_python_include>
:: link both obj-files into a dll
link cyfun.obj cyfun_dll.obj /OUT:cyfun.dll /IMPLIB:cyfun.lib /DLL <other_loptions> -L<path_to_python_dll>
The dll is now built, but the following details are noteworthy:
<other_coptions> and <other_loptions> can vary from installation to installation. An easy way is to see them is to run cythonize some_file.pyx` and to inspect the log.
we don't need to pass python-dll, because it will be linked automatically, but we need to set the right library-path.
we have the dependency on the python-dll, so later on it must be somewhere where it can be found.
Were you go from here depends on your task, we test our dll with a simple main:
//test.c
#include "cyfun_dll.h"
int main(){
if(0!=cyfun_init()){
return -1;
}
cyfun_print_me(cyfun_double_me(2));
cyfun_finalize();
return 0;
}
which can be build via
...
:: build main-program
cl /Tctest.c /Focytest.obj /c <other_coptions> -I<path_to_python_include>
:: link the exe
link test.obj cyfun.lib /OUT:test_prog.exe <other_loptions> -L<path_to_python_dll>
And now calling test_prog.exe leads to the expected output "I'm 4".
Depending on your installation, following things must be considered:
test_prog.exe depends on pythonX.Y.dll which should be somewhere in the path so it can be found (the easiest way is to copy it next to the exe)
The embeded python interpreter needs an installation, see this and/or this SO-posts.
IIRC, it is not a great idea to initialize, then to finalize and then to initialize the Python-interpreter again (that might work for some scenarios, but not all , see for example this) - the interpreter should be initialized only once and stay alive until the programs ends.
Thus, it may make sense to put initialization/clean-up code into DllMain (and make cyfun_init() and cyfun_finalize() private), e.g.
BOOL WINAPI DllMain(
HINSTANCE hinstDLL, // handle to DLL module
DWORD fdwReason, // reason for calling function
LPVOID lpReserved ) // reserved
{
// Perform actions based on the reason for calling.
switch( fdwReason )
{
case DLL_PROCESS_ATTACH:
return cyfun_init()==0;
case DLL_PROCESS_DETACH:
cyfun_finalize();
break;
case DLL_THREAD_ATTACH:
// Do thread-specific initialization.
break;
case DLL_THREAD_DETACH:
// Do thread-specific cleanup.
break;
}
return TRUE;
}
If your C/C++-program already has an initialized Python-interpreter it would make sense to offer a function which only imports the module cyfun and doesn't initialize the python-interpreter. In this case I would define CYTHON_PEP489_MULTI_PHASE_INIT=0, because PyImport_AppendInittab must be called before Py_Initialize, which might be already too late when the dll is loaded.
I'd imagine it'd be difficult to call it directly, with Cython depending so much on the Python runtime.
Your best bet is to embed a Python interpreter directly inside your app, e.g. as described in this answer, and call your Cython code from the interpreter. That's what I would do.
I have the following code in the Qt Quick Application together with Boost.
In this Cpp there is a personal module created using BOOST_PYTHON_MODULE(hello). The main goal is to be able to import hello in Python and call the methods of hello struct. My Python script only contains very simple structure as i just want to see no errors when importing hello.
import hello
print("Import was successful!")
Most of the codes below are copied from a different question in stackoverflow but not entirely so i had to repost the parts.
Main.cpp
#include <cstdlib> // setenv, atoi
#include <iostream> // cerr, cout, endl
#include <boost/python.hpp>
#include <QGuiApplication>
#include <QQmlApplicationEngine>
struct World
{
void set(std::string msg) { this->msg = msg; }
std::string greet() { return msg; }
std::string msg;
};
//---------------------------------------------------------------------------------------------------------------------
/// Staticly linking a Python extension for embedded Python.
BOOST_PYTHON_MODULE(hello)
{
namespace python = boost::python;
python::class_<World>("World")
.def("greet", &World::greet)
.def("set", &World::set)
;
}
//---------------------------------------------------------------------------------------------------------------------
int main(int argc, char *argv[])
{
QCoreApplication::setAttribute(Qt::AA_EnableHighDpiScaling);
QGuiApplication app(argc, argv);
namespace python = boost::python;
try
{
int uploaded = PyImport_AppendInittab("hello", &PyInit_hello);
//This executes else part
if(uploaded == -1)
std::cout<< "Module table was not extended: " << uploaded << std::endl;
else
std::cout<< "Module Table was extended" << std::endl;
Py_Initialize();
} catch (...)
{
PyErr_Print();
return 1;
}
return app.exec();
}
Finally, I run my QT application and the return app.exec(); keeps it running while i try and run my python script as mentioned above from the terminal. The python script is in the same directory as the currently running application, not sure if that makes any difference.
Then the error i get is:
Traceback (most recent call last):
File "test_hilton.py", line 1, in <module>
import hello
ModuleNotFoundError: No module named 'hello'
Not sure what i am missing here. According to the Python API:
PyImport_AppendInittab - Add a single module to the existing table of
built-in modules. This is a convenience wrapper around
PyImport_ExtendInittab(), returning -1 if the table could not be
extended. The new module can be imported by the name name, and uses
the function initfunc as the initialization function called on the
first attempted import.
And the If-else part inside the try-catch block inside the main proves that the hello module is being added to the table. Out of ideas on what to do, looked in different places. But still stuck with this part of the problem.
Since the hello module is defined in that Qt program it is available only in that program. Executing the program doesn't make it available to python interpreter that expects to find hello.py or hello.so (the file extension may vary depending on the operating system) when importing hello by import hello.
You need to build a python module, answer might help.
I am totally new to boost.python.
I reviewed a lot of recommending of using boost.python to apply with python, however still not easy to understand and find a solution for me.
What I want is to import a function or class that directly from a python "SourceFile"
Example File:
Main.cpp
MyPythonClass.py
Let's says if there is a "Dog" class in "MyPythonClass.py" with "bark()" function, how do I get callback and send argument in cpp?
I have no idea what I should do!
Please help me!
When one needs to call Python from C++, and C++ owns the main function, then one must embed the Python interrupter within the C++ program. The Boost.Python API is not a complete wrapper around the Python/C API, so one may find the need to directly invoke parts of the Python/C API. Nevertheless, Boost.Python's API can make interoperability easier. Consider reading the official Boost.Python embedding tutorial for more information.
Here is a basic skeleton for a C++ program that embeds Python:
int main()
{
// Initialize Python.
Py_Initialize();
namespace python = boost::python;
try
{
... Boost.Python calls ...
}
catch (const python::error_already_set&)
{
PyErr_Print();
return 1;
}
// Do not call Py_Finalize() with Boost.Python.
}
When embedding Python, it may be necessary to augment the module search path via PYTHONPATH so that modules can be imported from custom locations.
// Allow Python to load modules from the current directory.
setenv("PYTHONPATH", ".", 1);
// Initialize Python.
Py_Initialize();
Often times, the Boost.Python API provides a way to write C++ code in a Python-ish manner. The following example demonstrates embedding a Python interpreter in C++, and having C++ import a MyPythonClass Python module from disk, instantiate an instance of MyPythonClass.Dog, and then invoking bark() on the Dog instance:
#include <boost/python.hpp>
#include <cstdlib> // setenv
int main()
{
// Allow Python to load modules from the current directory.
setenv("PYTHONPATH", ".", 1);
// Initialize Python.
Py_Initialize();
namespace python = boost::python;
try
{
// >>> import MyPythonClass
python::object my_python_class_module = python::import("MyPythonClass");
// >>> dog = MyPythonClass.Dog()
python::object dog = my_python_class_module.attr("Dog")();
// >>> dog.bark("woof");
dog.attr("bark")("woof");
}
catch (const python::error_already_set&)
{
PyErr_Print();
return 1;
}
// Do not call Py_Finalize() with Boost.Python.
}
Given a MyPythonClass module that contains:
class Dog():
def bark(self, message):
print "The dog barks: {}".format(message)
The above program outputs:
The dog barks: woof
Boost python is used to call cplusplus functions from a python source. Pretty much like the Perl xs module.
If you have a function say bark() in main.cpp, you can use boost python to convert this main.cpp into a python callable module.
Then from python script(assuming link output file is main.so):
import main
main.bark()
I know pickles can be easily loaded into python using
import pickle
p = pickle.load(open("file.pkl"))
I was wondering how to load the same pickle file in pyx/C code in python? I couldn't find the method to directly load it.
Perhaps a solution would be to load in python and pass reference to object in C?
The easy answer would be to just compile your code with Cython. Everything there will be done automatically.
In context of the Python C API, you could easily replicate this code with something like:
PyObject *file = NULL, *p = NULL;
PyObject *pickle = PyImport_ImportModule("pickle"); // import module
if (!pickle) goto error;
file = PyFile_FromString("file.pkl", "r"); // open("file.pkl")
if (!pickle) goto error;
p = PyObject_CallMethod(pickle, "load", "O", file); // pickle.load(file)
error:
Py_XDECREF(pickle);
Py_XDECREF(file);
This is done for Python 2, while for Python 3 open("file.pkl") needs to be implemented by using the io module.
I'm trying to call some function from Kernel32.dll in my Python script running on Linux. As Johannes Weiß pointed How to call Wine dll from python on Linux? I'm loading kernel32.dll.so library via ctypes.cdll.LoadLibrary() and it loads fine. I can see kernel32 loaded and even has GetLastError() function inside. However whenever I'm trying to call the function i'm gettings segfault.
import ctypes
kernel32 = ctypes.cdll.LoadLibrary('/usr/lib/i386-linux-gnu/wine/kernel32.dll.so')
print kernel32
# <CDLL '/usr/lib/i386-linux-gnu/wine/kernel32.dll.so', handle 8843c10 at b7412e8c>
print kernel32.GetLastError
# <_FuncPtr object at 0xb740b094>
gle = kernel32.GetLastError
# OK
gle_result = gle()
# fails with
# Segmentation fault (core dumped)
print gle_result
First I was thinking about calling convention differences but it seems to be okay after all. I'm ending with testing simple function GetLastError function without any params but I'm still getting Segmentation fault anyway.
My testing system is Ubuntu 12.10, Python 2.7.3 and wine-1.4.1 (everything is 32bit)
UPD
I proceed with my testing and find several functions that I can call via ctypes without segfault. For instance I can name Beep() and GetCurrentThread() functions, many other functions still give me segfault. I created a small C application to test kernel32.dll.so library without python but i've got essentially the same results.
int main(int argc, char **argv)
{
void *lib_handle;
#define LOAD_LIBRARY_AS_DATAFILE 0x00000002
long (*GetCurrentThread)(void);
long (*beep)(long,long);
void (*sleep)(long);
long (*LoadLibraryExA)(char*, long, long);
long x;
char *error;
lib_handle = dlopen("/usr/local/lib/wine/kernel32.dll.so", RTLD_LAZY);
if (!lib_handle)
{
fprintf(stderr, "%s\n", dlerror());
exit(1);
}
// All the functions are loaded e.g. sleep != NULL
GetCurrentThread = dlsym(lib_handle, "GetCurrentThread");
beep = dlsym(lib_handle, "Beep");
LoadLibraryExA = dlsym(lib_handle, "LoadLibraryExA");
sleep = dlsym(lib_handle, "Sleep");
if ((error = dlerror()) != NULL)
{
fprintf(stderr, "%s\n", error);
exit(1);
}
// Works
x = (*GetCurrentThread)();
printf("Val x=%d\n",x);
// Works (no beeping, but no segfault too)
(*beep)(500,500);
// Segfault
(*sleep)(5000);
// Segfault
(*LoadLibraryExA)("/home/ubuntu/test.dll",0,LOAD_LIBRARY_AS_DATAFILE);
printf("The End\n");
dlclose(lib_handle);
return 0;
}
I was trying to use different calling conventions for Sleep() function but got no luck with it too. When I comparing function declarations\implementation in Wine sources they are essentially the same
Declarations
HANDLE WINAPI GetCurrentThread(void) // http://source.winehq.org/source/dlls/kernel32/thread.c#L573
BOOL WINAPI Beep( DWORD dwFreq, DWORD dwDur ) // http://source.winehq.org/source/dlls/kernel32/console.c#L354
HMODULE WINAPI DECLSPEC_HOTPATCH LoadLibraryExA(LPCSTR libname, HANDLE hfile, DWORD flags) // http://source.winehq.org/source/dlls/kernel32/module.c#L928
VOID WINAPI DECLSPEC_HOTPATCH Sleep( DWORD timeout ) // http://source.winehq.org/source/dlls/kernel32/sync.c#L95
WINAPI is defined to be __stdcall
However some of them works and some don't. As I can understand this sources are for kernel32.dll file and kernel32.dll.so file is a some kind of proxy that supposed to provide access to kernel32.dll for linux code. Probably I need to find exact sources of kernel32.dll.so file and take a look on declarations.
Is there any tool I can use to take a look inside .so file and find out what functions and what calling conventions are used?
The simplest way to examine a DLL is to use the nm command, i.e.
$ nm kernel32.dll.so | grep GetLastError
7b86aae0 T _GetLastError
As others have pointed out, the default calling convention for Windows C DLLs is stdcall. It has nothing to do with using Python. On the Windows platform, ctypes.windll is available.
However, I am not even sure what you are trying to do is at all possible. Wine is a full-blown Windows emulator and it is safe to guess that at least you would have to start it with wine_init before loading any other functions. The Windows API probably have some state (set when Windows boots).
The easiest way to continue is probably to install a Windows version of Python under Wine and run your script from there.