Awkward Substitution in Sympy - python

Is there a simpler way to do substitution in Sympy which is similar to Sage or Mathematica.
In Mathematica You have something called as eliminate() which given a set of equations you can ask it to eliminate certain variables.
In Sage you need to be more hands on with it but its still more or less similar to Mathematica.
In Sympy comparatively its more awkward to do substitution.
In the screenshot the red arrows show what i am talking about. The white Arrow is the method i think would be more appropriate.
edit 1: here is a link to the function in mathematica http://reference.wolfram.com/mathematica/ref/Eliminate.html

You can have equations (actually Equality object) in SymPy:
>>> eq1=Eq(x,y);eq2=Eq(x,5)
But you are right, subs doesn't guess everything for you. It looks like Sage assumes that if a variable is isolated on one side of an equation, that is the variable to be replaced. But there is no guarantee that you will always conveniently have the desired variable isolated. It's not hard to use solve to give you the desired variable isolated:
>>> solve(eq2,x,dict=1)
[{x:5}]
And then that can be substituted into the equation from which you want to eliminate that variable.
>>> eq1.subs(solve(eq2,x,dict=1)[0])
5=y
Use of the "exclude" keyword doesn't presently behave quite as I would expect; perhaps it should act in an elimination sense:
>>> solve((eq1,eq2), exclude=(x,))
{y:x}

Following up on the above comments and https://github.com/sympy/sympy/issues/14741, one way to do the above in Sympy would be:
from sympy import Eq, var
var('P, F, K, M, E0, E1, E2, E3, E4')
a = Eq(E1, (E0 + P - F)*K - M)
b = Eq(E2, (E1 + P - F)*K - M)
c = Eq(E3, (E2 + P - F)*K - M)
d = Eq(E4, (E3 + P - F)*K - M - F)
d.subs(*c.args).subs(*b.args).subs(*a.args)

Related

How to solve equations in python

I try to write a script that simulates a resistor. It takes 2 arguments for example P and R and it should calculate all missing values of this resistor.
The problem is that I don't want to write every single possible equation for every value. This means I want to write something like (U=RxI, R=U/R, I=U/R , P=UxI) and the script should then complete all equation with the given values for every equation.
For example, something like this:
in R=10
in I=5
out U=R*I
out P=I**2 * R
You can use https://pypi.org/project/Equation/ Packages.
Example
>>> from Equation import Expression
>>> fn = Expression("sin(x+y^2)",["y","x"])
>>> fn
sin((x + (y ^ (2+0j))))
>>> print fn
\sin\left(\left(x + y^{(2+0j)}\right)\right)
>>> fn(3,4)
(0.42016703682664092+0j)
Sympy
Second: https://github.com/sympy/sympy/wiki
Arbitrary precision integers, rationals and floats, as well as symbolic expressions
Simplification (e.g. ( abb + 2bab ) → (3ab^2)), expansion (e.g. ((a+b)^2) → (a^2 + 2ab + b^2)), and other methods of rewriting expressions
Functions (exp, log, sin, ...)
Complex numbers (like exp(Ix).expand(complex=True) → cos(x)+Isin(x))
Taylor (Laurent) series and limits
Differentiation and integration
In vanilla python, there is no solution as general as the one you are looking for.
The typical solution would be to write an algorithm for every option (only given U, only given R) and then logically select which option to execute.
You may also want to consider using a module like SymPy, which has a solver module that may be more up your alley.

Export cubic equation formulas to code in Python

I'm writing code for the method to solve this cubic equation. I use python's math library.
(float)(-b+pow(pow(b,3)-27*pow(a,2)*d,1/3))/3*a;
(float)((math.sqrt(delta))/(3*a))*((pow(abs(k)+math.sqrt(pow(k,2)+1),1/3))+(pow(abs(k)-math.sqrt(pow(k,2)+1),1/3)))-(b/(3*a));
Below are pictures of 2 math formulas I need to solve:
A few comments to begin with:
/3*a at the end of your first line does not do what you think it does. Use parentheses!! Parentheses are important. Write / (3 * a) instead.
It's mostly a matter of style, but personally I think A**B is easier to read than pow(A, B) (they are equivalent, as you can see in the documentation).
Note that your code will require b, a, d, Delta and k to be already-existing variables with already-given values. One way to get around that is to encapsulate your code into a function, with these four variables as arguments of the function. Another way to get around that is to use the symbolic expression library sympy.
With these comments in mind, here are two ways to rewrite your first expression and use it in python code. I will let you adapt the second expression yourself.
First way: encapsulating in a function with arguments
def expr1(a,b,d):
numerator = - b + (b**3 - 27*a*a*d)**(1/3)
denominator = 3 * a
return numerator / denominator
print(expr1(2,7,3))
# -0.7219330585463425
Second way: using sympy
Sympy is a library for symbolic calculus. This means we can use it to define symbols, which are basically variables without a value, and then ask it to remember expressions that use these symbols. We are going to use the function sympy.symbols to define our symbols, and expr.subs to evaluate an expression expr by giving values to those symbols. I encourage you to read sympy's documentation.
import sympy
a, b, d = sympy.symbols('a b d')
numerator = - b + (b**3 - 27*a*a*d) ** (1/3)
denominator = 3 * a
expr1 = numerator / denominator
print(expr1)
# (-b + (-27*a**2*d + b**3)**0.333333333333333)/(3*a)
print(expr1.subs([(a,2), (b,7), (d,3)]))
# -0.721933058546343

get sympy result as trig function rather than complex log

I'm doing some manipulation of trig equations and would like the results back in trig form.
What I'm doing is this:
from sympy import *
B,D,a=symbols(r'B,D,alpha',real=True,positive=True)
eq1=Eq(D,B*((sin(a)*sin(a))/(sin(a+a))))
solve(eq1,a)
I expect the result to be atan(2*D/B) but I'm getting:
[-I*log(-sqrt((B + 2*I*D)/(B - 2*I*D))), -I*log((B + 2*I*D)/(B - 2*I*D))/2]
I know sympy is expanding the trig functions into exponential form, but I can't seem to convince it to convert the results back.
I've tried:
[n.rewrite(atan) for n in solve(eq1,a)]
but I get the same result back...
If you simplify before solving, the result looks better.
>>> solve(eq1.simplify(), a)
[atan(2*D/B)]
Also, the more mathematically rigorous solveset (a modern alternative to solve) returns a more mathematically correct answer without the need for simplification:
>>> solveset(eq1, a)
ConditionSet(alpha, Eq(tan(alpha)/2 - D/B, 0), Reals)
The point being that there are infinitely many solutions, so they cannot be given as a list: so, solveset presents them as the set of all alpha such that tan(alpha) is 2*D/B.

Sympy cannot evaluate an infinite sum involving gamma functions

I am using Sympy to evaluate some symbolic sums that involve manipulations of the gamma functions but I noticed that in this case it's not evaluating the sum and keeps it unevaluated.
import sympy as sp
a = sp.Symbol('a',real=True)
b = sp.Symbol('b',real=True)
d = sp.Symbol('d',real=True)
c = sp.Symbol('c',integer=True)
z = sp.Symbol('z',complex=True)
t = sp.Symbol('t',complex=True)
sp.simplify(t-sp.summation((sp.exp(-d)*(d**c)/sp.gamma(c+1))/(z-c-a*t),(c,0,sp.oo)))
I then need to lambdify this expression, and unfortunately this becomes impossible to do.
With Matlab symbolic toolbox however I get the following answer:
Matlab
>> a=sym('a')
>> b=sym('b');
>> c=sym('c')
>> d=sym('d');
>> z=sym('z');
>> t=sym('t');
>> symsum((exp(-d)*(d^c)/factorial(c))/(z-c-a*t),c,0,inf)
ans =
(-d)^(z - a*t)*exp(-d)*(gamma(a*t - z) - igamma(a*t - z, -d))
The formula involves lower incomplete gamma functions, as expected.
Any idea why of this behaviour? I thought sympy was able to do this summation symbolically.
Running your code with SymPy 1.2 results in
d**(-a*t + z)*exp(-I*pi*a*t - d + I*pi*z)*lowergamma(a*t - z, d*exp_polar(I*pi)) + t
By the way, summation already attempts to evaluate the sum (and succeeds in case of SymPy 1.2), subsequent simplification is cosmetic. (And can sometimes be harmful).
The presence of exp_polar means that SymPy found it necessary to consider the points on the Riemann surface of logarithmic function instead of regular complex numbers. (Related bit of docs). The function lower_gamma is branched and so we must distinguish between "the value at -1, if we arrive to -1 from 1 going clockwise" from "the value at -1, if we arrive to -1 from 1 going counterclockwise". The former is exp_polar(-I*pi), the latter is exp_polar(I*pi).
All this is very interesting but not really helpful when you need concrete evaluation of the expression. We have to unpolarify this expression, and from what Matlab shows, simply replacing exp_polar with exp is a correct way to do so here.
rv = sp.simplify(t-sp.summation((sp.exp(-d)*(d**c)/sp.gamma(c+1))/(z-c-a*t),(c,0,sp.oo)))
rv = rv.subs(sp.exp_polar, sp.exp)
Result: d**(-a*t + z)*exp(-I*pi*a*t - d + I*pi*z)*lowergamma(a*t - z, -d) + t
There is still something to think about here, with complex numbers and so on. Is d positive or negative? What does raising it to the power -a*t+z mean, what branch of multivalued power function do we take? The same issues are present in Matlab output, where -d is raised to a power.
I recommend testing this with floating point input (direct summation of series vs evaluation of the SymPy expression for it), and adding assumptions on the sign of d if possible.

How to avoid useless piecewised solutions from sympy

From
from sympy import *
t,r = symbols('t r', real=True, nonnegative=True)
c_x,c_y,a1,a2 = symbols('c_x c_y a1 a2', real=True)
integrate(-r*(a1 - a2)*(c_x*cos(-a1*t + a1 + a2*t) + c_y*sin(-a1*t + a1 + a2*t) + r)/2,(t,0,1))
I obtain the piecewise solution
Piecewise((-a1*c_x*r*cos(a2)/2 - a1*c_y*r*sin(a2)/2 - a1*r**2/2 + a2*c_x*r*cos(a2)/2 + a2*c_y*r*sin(a2)/2 + a2*r**2/2, Eq(a1, a2)), (-a1*r**2/2 + a2*r**2/2 - c_x*r*sin(a1)/2 + c_x*r*sin(a2)/2 + c_y*r*cos(a1)/2 - c_y*r*cos(a2)/2, True))
which does not need to be piecewised because if a1=a2 both expressions are 0, therefore the second expression is actually a global non-piecewise solution.
So my first question is: can I make sympy give me the non-piecewise solution? (by setting some option or anything else)
Regardless of the above mentioned possibility, since I can accept that a1 is not equal to a2 (it is a limit case of no interest), is there a way to tell sympy of such assumption? (again in order to obatin the non-piecewise solution)
Thanks in advance from a sympy novice.
P.S. For the same problem Maxima gives directly the non-piecewise solution.
there is a keyword conds of which the default is "piecewise". It can also be set to "separate" or "none". However, as it is a definite integral, probably you can try the keyword manual=True as well..
If you set the keyword to conds='separate', it should return a distinct tuple with the convergence conditions. I tried it, only gives a single solution. I don't know yet why this behaviour is not as expected.
The conds='none' keyword should not return the convergence conditions, just the solution. This is I think what you are looking for.
Another option, which is only valid in context of definite integrals, is another keyword manual=True. This mimics integrating by hand, conveniently "forgetting" about checking for convergence conditions.

Categories