identifying strings which cant be spelt in a list item - python

I have a list
['mPXSz0qd6j0 youtube ', 'lBz5XJRLHQM youtube ', 'search OpHQOO-DwlQ ',
'sachin 47427243 ', 'alex smith ', 'birthday JEaM8Lg9oK4 ',
'nebula 8x41n9thAU8 ', 'chuck norris ',
'searcher O6tUtqPcHDw ', 'graham wXqsg59z7m0 ', 'queries K70QnTfGjoM ']
Is there some way to identify the strings which can't be spelt in the list item and remove them?

You can use, e.g. PyEnchant for basic dictionary checking and NLTK to take minor spelling issues into account, like this:
import enchant
import nltk
spell_dict = enchant.Dict('en_US') # or whatever language supported
def get_distance_limit(w):
'''
The word is considered good
if it's no further from a known word than this limit.
'''
return len(w)/5 + 2 # just for example, allowing around 1 typo per 5 chars.
def check_word(word):
if spell_dict.check(word):
return True # a known dictionary word
# try similar words
max_dist = get_distance_limit(word)
for suggestion in spell_dict.suggest(word):
if nltk.edit_distance(suggestion, word) < max_dist:
return True
return False
Add a case normalisation and a filter for digits and you'll get a pretty good heuristics.

It is entirely possible to compare your list members to words that you don't believe to be valid for your input.
This can be done in many ways, partially depending on your definition of "properly spelled" and what you end up using for a comparison list. If you decide that numbers preclude an entry from being valid, or underscores, or mixed case, you could test for regex matching.
Post regex, you would have to decide what a valid character to split on should be. Is it spaces (are you willing to break on 'ad hoc' ('ad' is an abbreviation, 'hoc' is not a word))? Is it hyphens (this will break on hyphenated last names)?
With these above criteria decided, it's just a decision of what word, proper name, and common slang list to use and a list comprehension:
word_list[:] = [term for term in word_list if passes_my_membership_criteria(term)]
where passes_my_membership_criteria() is a function that contains the rules for staying in the list of words, returning False for things that you've decided are not valid.

Related

Check if there are numbers around a keyword in a text file

I am having a text file 'Filter.txt' which contains a specific keyword 'D&O insurance'. I would check if there are numbers in the sentence which contains that keyword, as well as the 2 sentences before and after that.
For example, I have a long paragraphe like this:
"International insurance programs necessary for companies with global subsidiaries and offices. Coverage is usually for current, future and past directors and officers of a company and its subsidiaries. D&O insurance grants cover on a claims-made basis. How much is enough? What and who is covered – and not covered? "
The target word is "D&O insurance." If I wanted to extract the target sentence (D&O insurance grants cover on a claims-made basis.) as well as the preceding and following sentences (Coverage is usually for current, future and past directors and officers of a company and its subsidiaries. and How much is enough?), what would be a good approach?
This is what I'm trying to do so far. However I don't really know how to apply to find ways to check in the whole sentence and the ones around it.
for line in open('Filter.txt'):
match = re.search('D&O insurance(\d+)',line)
if match:
print match.group(1)
I'm new to programming, so I'm looking for the possible solutions for that purpose.
Thank you for your help!
Okay I'm going to take a stab at this. Assume string is the entire contents of your .txt file (you may need to clean the '/n's out).
You're going to want to make a list of potential sentence endings, use that list to find the index positions of the sentence endings, and then use THAT list to make a list of the sentences in the file.
string = "International insurance programs necessary for companies with global subsidiaries and offices. Coverage is usually for current, future and past directors and officers of a company and its subsidiaries. D&O insurance grants cover on a claims-made basis. How much is enough? What and who is covered – and not covered?"
endings = ['! ', '? ','. ']
def pos_find(string):
lst = []
for ending in endings:
i = string.find(ending)
if i != -1:
lst.append(string.find(ending))
return min(lst)
def sort_sentences(string):
sentences = []
while True:
try:
i = pos_find(string)
sentences.append(string[0:i+1])
string = string[i+2:]
except ValueError:
sentences.append(string)
break
return sentences
sentences = sort_sentences(string)
Once you have the list of sentences (I got a little weary here, so forgive the spaghetti code - the functionality is there), you will need to comb through that list to find characters that could be integers (this is how I'm checking for numbers...but you COULD do it different).
for i in range(len(sentences)):
sentence = sentences[i]
match = sentence.find('D&O insurance')
print(match)
if match >= 0:
lst = [sentences[i-1],sentence, sentences[i+2]]
for j in range(len(lst)):
sen = lst[j]
for char in sen:
try:
int(char)
print(f'Found {char} in "{sen}", index {j}')
except ValueError:
pass
Note that you will have to make some modifications to capture multi-number numbers. This will just print something for each integer in the full number (i.e. it will print a statement for 1, 0, and 0 if it finds 100 in the file). You will also need to catch the two edge cases where the D&O insurance substring is found in the first or last sentences. In the code above, you would throw an error because there would be no i-1 (if it's the first) index location.

In Python, how to check if words in a string are keys in a dictionary?

For a class I am talking the twitter sentiment analysis problem. I have looked at the other questions on the site and they don't help for my particular issue.
I am given a string that is one tweet with its letters changed so that they are all in lowercase. For example,
'after 23 years i still love this place. (# tel aviv kosher pizza) http://t.co/jklp0uj'
as well as a dictionary of words where the key is the word and the value is the value for the sentiment for that word. To be more specific, a key can be a single word (such as 'hello'), more than one word separated by a space (such as 'yellow hornet'), or a hyphenated compound word (such as '2-dimensional'), or a number (such as '365').
I need to find the sentiment of the tweet by adding the sentiments for every eligible word and dividing by the number of eligible words (by eligible word, I mean word that is in the dictionary). I'm not sure what's the best way to go about checking if a tweet has a word in the dictionary.
I tried using the "key in string" convention with looping through all the keys, but this was problematic because there are a lot of keys and word-in-words would be counted (e.g. eradicate counts cat, ate, era, etc. as well)
I then tried using .split(' ') and looping through the elements of the resultant list but I ran into problems because of punctuation and keys which are two words.
Anyone have any ideas on how I can more suitably tackle this?
For example: using the example above, still : -0.625, love : 0.625, every other word is not in the dictionary. so this should return (-0.625 + 0.625)/2 = 0.
The whole point of dictionaries is that they are quick at looking things up:
for word in instring.split():
if wordsdict.has_key(word):
print word
You would probably do better at getting rid of punctuation, etc, (thank-you Soke), by using regular expressions rather than split, e.g.
for word in re.findall(r'[\w]', instring):
if wordsdict.get(word) is not None:
print word
Of course you will have to have some maximum length of word groupings, possibly generated with a single run through of the dictionary and then take your pairs, triples, etc. and also check them.
you can use nltk its very powerfull what you want to do, it can be done by split too:
>>> import string
>>> a= 'after 23 years i still love this place. (# tel aviv kosher pizza) http://t.co/jklp0uj'
>>> import nltk
>>> my_dict = {'still' : -0.625, 'love' : 0.625}
>>> words = nltk.word_tokenize(a)
>>> words
['after', '23', 'years', 'i', 'still', 'love', 'this', 'place.', '(', '#', 'tel', 'aviv', 'kosher', 'pizza', ')', 'http', ':', '//t.co/jklp0uj']
>>> sum(my_dict.get(x.strip(string.punctuation),0) for x in words)/2
0.0
using split:
>>> words = a.split()
>>> words
['after', '23', 'years', 'i', 'still', 'love', 'this', 'place.', '(#', 'tel', 'aviv', 'kosher', 'pizza)', 'http://t.co/jklp0uj']
>>> sum(my_dict.get(x.strip(string.punctuation),0) for x in words)/2
0.0
my_dict.get(key,default), so get will return value if key is found in dictionary else it will return default. In this case '0'
check this example: you asked for place
>>> import string
>>> my_dict = {'still' : -0.625, 'love' : 0.625,'place':1}
>>> a= 'after 23 years i still love this place. (# tel aviv kosher pizza) http://t.co/jklp0uj'
>>> words = nltk.word_tokenize(a)
>>> sum(my_dict.get(x.strip(string.punctuation),0) for x in words)/2
0.5
going by length of the dictionary key might be one solution.
For example, you have the dict as:
Sentimentdict = {"habit":5, "bad habit":-1}
the sentence might be:
s1="He has good habit"
s2="He has bad habit"
s1 should be getting good sentiment compare to s2. Now, you can do this:
for w in sorted(Sentimentdict.keys(), key=lambda x: len(x)):
if w in s1:
remove the word and do your sentiment calculation

fixing words with spaces using a dictionary look up in python?

I have extracted the list of sentences from a document. I am pre-processing this list of sentences to make it more sensible. I am faced with the following problem
I have sentences such as "more recen t ly the develop ment, wh ich is a po ten t "
I would like to correct such sentences using a look up dictionary? to remove the unwanted spaces.
The final output should be "more recently the development, which is a potent "
I would assume that this is a straight forward task in preprocessing text? I need help with some pointers to look for such approaches. Thanks.
Take a look at word or text segmentation. The problem is to find the most probable split of a string into a group of words. Example:
thequickbrownfoxjumpsoverthelazydog
The most probable segmentation should be of course:
the quick brown fox jumps over the lazy dog
Here's an article including prototypical source code for the problem using Google Ngram corpus:
http://jeremykun.com/2012/01/15/word-segmentation/
The key for this algorithm to work is access to knowledge about the world, in this case word frequencies in some language. I implemented a version of the algorithm described in the article here:
https://gist.github.com/miku/7279824
Example usage:
$ python segmentation.py t hequi ckbrownfoxjum ped
thequickbrownfoxjumped
['the', 'quick', 'brown', 'fox', 'jumped']
Using data, even this can be reordered:
$ python segmentation.py lmaoro fll olwt f pwned
lmaorofllolwtfpwned
['lmao', 'rofl', 'lol', 'wtf', 'pwned']
Note that the algorithm is quite slow - it's prototypical.
Another approach using NLTK:
http://web.archive.org/web/20160123234612/http://www.winwaed.com:80/blog/2012/03/13/segmenting-words-and-sentences/
As for your problem, you could just concatenate all string parts you have to get a single string and the run a segmentation algorithm on it.
Your goal is to improve text, not necessarily to make it perfect; so the approach you outline makes sense in my opinion. I would keep it simple and use a "greedy" approach: Start with the first fragment and stick pieces to it as long as the result is in the dictionary; if the result is not, spit out what you have so far and start over with the next fragment. Yes, occasionally you'll make a mistake with cases like the me thod, so if you'll be using this a lot, you could look for something more sophisticated. However, it's probably good enough.
Mainly what you require is a large dictionary. If you'll be using it a lot, I would encode it as a "prefix tree" (a.k.a. trie), so that you can quickly find out if a fragment is the start of a real word. The nltk provides a Trie implementation.
Since this kind of spurious word breaks are inconsistent, I would also extend my dictionary with words already processed in the current document; you may have seen the complete word earlier, but now it's broken up.
--Solution 1:
Lets think of these chunks in your sentence as beads on an abacus, with each bead consisting of a partial string, the beads can be moved left or right to generate the permutations. The position of each fragment is fixed between two adjacent fragments.
In current case, the beads would be :
(more)(recen)(t)(ly)(the)(develop)(ment,)(wh)(ich)(is)(a)(po)(ten)(t)
This solves 2 subproblems:
a) Bead is a single unit,so We do not care about permutations within the bead i.e. permutations of "more" are not possible.
b) The order of the beads is constant, only the spacing between them changes. i.e. "more" will always be before "recen" and so on.
Now, generate all the permutations of these beads , which will give output like :
morerecentlythedevelopment,which is a potent
morerecentlythedevelopment,which is a poten t
morerecentlythedevelop ment, wh ich is a po tent
morerecentlythedevelop ment, wh ich is a po ten t
morerecentlythe development,whichisapotent
Then score these permutations based on how many words from your relevant dictionary they contain, most correct results can be easily filtered out.
more recently the development, which is a potent will score higher than morerecentlythedevelop ment, wh ich is a po ten t
Code which does the permutation part of the beads:
import re
def gen_abacus_perms(frags):
if len(frags) == 0:
return []
if len(frags) == 1:
return [frags[0]]
prefix_1 = "{0}{1}".format(frags[0],frags[1])
prefix_2 = "{0} {1}".format(frags[0],frags[1])
if len(frags) == 2:
nres = [prefix_1,prefix_2]
return nres
rem_perms = gen_abacus_perms(frags[2:])
res = ["{0}{1}".format(prefix_1, x ) for x in rem_perms] + ["{0} {1}".format(prefix_1, x ) for x in rem_perms] + \
["{0}{1}".format(prefix_2, x ) for x in rem_perms] + ["{0} {1}".format(prefix_2 , x ) for x in rem_perms]
return res
broken = "more recen t ly the develop ment, wh ich is a po ten t"
frags = re.split("\s+",broken)
perms = gen_abacus_perms(frags)
print("\n".join(perms))
demo:http://ideone.com/pt4PSt
--Solution#2:
I would suggest an alternate approach which makes use of text analysis intelligence already developed by folks working on similar problems and having worked on big corpus of data which depends on dictionary and grammar .e.g. search engines.
I am not well aware of such public/paid apis, so my example is based on google results.
Lets try to use google :
You can keep putting your invalid terms to Google, for multiple passes, and keep evaluating the results for some score based on your lookup dictionary.
here are two relevant outputs by using 2 passes of your text :
This outout is used for a second pass :
Which gives you the conversion as ""more recently the development, which is a potent".
To verify the conversion, you will have to use some similarity algorithm and scoring to filter out invalid / not so good results.
One raw technique could be using a comparison of normalized strings using difflib.
>>> import difflib
>>> import re
>>> input = "more recen t ly the develop ment, wh ich is a po ten t "
>>> output = "more recently the development, which is a potent "
>>> input_norm = re.sub(r'\W+', '', input).lower()
>>> output_norm = re.sub(r'\W+', '', output).lower()
>>> input_norm
'morerecentlythedevelopmentwhichisapotent'
>>> output_norm
'morerecentlythedevelopmentwhichisapotent'
>>> difflib.SequenceMatcher(None,input_norm,output_norm).ratio()
1.0
I would recommend stripping away the spaces and looking for dictionary words to break it down into. There are a few things you can do to make it more accurate. To make it get the first word in text with no spaces, try taking the entire string, and going through dictionary words from a file (you can download several such files from http://wordlist.sourceforge.net/), the longest ones first, than taking off letters from the end of the string you want to segment. If you want it to work on a big string, you can make it automatically take off letters from the back so that the string you are looking for the first word in is only as long as the longest dictionary word. This should result in you finding the longest words, and making it less likely to do something like classify "asynchronous" as "a synchronous". Here is an example that uses raw input to take in the text to correct and a dictionary file called dictionary.txt:
dict = open("dictionary.txt",'r') #loads a file with a list of words to break string up into
words = raw_input("enter text to correct spaces on: ")
words = words.strip() #strips away spaces
spaced = [] #this is the list of newly broken up words
parsing = True #this represents when the while loop can end
while parsing:
if len(words) == 0: #checks if all of the text has been broken into words, if it has been it will end the while loop
parsing = False
iterating = True
for iteration in range(45): #goes through each of the possible word lengths, starting from the biggest
if iterating == False:
break
word = words[:45-iteration] #each iteration, the word has one letter removed from the back, starting with the longest possible number of letters, 45
for line in dict:
line = line[:-1] #this deletes the last character of the dictionary word, which will be a newline. delete this line of code if it is not a newline, or change it to [1:] if the newline character is at the beginning
if line == word: #this finds if this is the word we are looking for
spaced.append(word)
words = words[-(len(word)):] #takes away the word from the text list
iterating = False
break
print ' '.join(spaced) #prints the output
If you want it to be even more accurate, you could try using a natural language parsing program, there are several available for python free online.
Here's something really basic:
chunks = []
for chunk in my_str.split():
chunks.append(chunk)
joined = ''.join(chunks)
if is_word(joined):
print joined,
del chunks[:]
# deal with left overs
if chunks:
print ''.join(chunks)
I assume you have a set of valid words somewhere that can be used to implement is_word. You also have to make sure it deals with punctuation. Here's one way to do that:
def is_word(wd):
if not wd:
return False
# Strip of trailing punctuation. There might be stuff in front
# that you want to strip too, such as open parentheses; this is
# just to give the idea, not a complete solution.
if wd[-1] in ',.!?;:':
wd = wd[:-1]
return wd in valid_words
You can iterate through a dictionary of words to find the best fit. Adding the words together when a match is not found.
def iterate(word,dictionary):
for word in dictionary:
if words in possibleWord:
finished_sentence.append(words)
added = True
else:
added = False
return [added,finished_sentence]
sentence = "more recen t ly the develop ment, wh ich is a po ten t "
finished_sentence = ""
sentence = sentence.split()
for word in sentence:
added,new_word = interate(word,dictionary)
while True:
if added == False:
word += possible[sentence.find(possibleWord)]
iterate(word,dictionary)
else:
break
finished_sentence.append(word)
This should work. For the variable dictionary, download a txt file of every single english word, then open it in your program.
my index.py file be like
from wordsegment import load, segment
load()
print(segment('morerecentlythedevelopmentwhichisapotent'))
my index.php file be like
<html>
<head>
<title>py script</title>
</head>
<body>
<h1>Hey There!Python Working Successfully In A PHP Page.</h1>
<?php
$python = `python index.py`;
echo $python;
?>
</body>
</html>
Hope this will work

Discovering Poetic Form with NLTK and CMU Dict

Edit: This code has been worked on and released as a basic module: https://github.com/hyperreality/Poetry-Tools
I'm a linguist who has recently picked up python and I'm working on a project which hopes to automatically analyze poems, including detecting the form of the poem. I.e. if it found a 10 syllable line with 0101010101 stress pattern, it would declare that it's iambic pentameter. A poem with 5-7-5 syllable pattern would be a haiku.
I'm using the following code, part of a larger script, but I have a number of problems which are listed below the program:
corpus in the script is simply the raw text input of the poem.
import sys, getopt, nltk, re, string
from nltk.tokenize import RegexpTokenizer
from nltk.util import bigrams, trigrams
from nltk.corpus import cmudict
from curses.ascii import isdigit
...
def cmuform():
tokens = [word for sent in nltk.sent_tokenize(corpus) for word in nltk.word_tokenize(sent)]
d = cmudict.dict()
text = nltk.Text(tokens)
words = [w.lower() for w in text]
regexp = "[A-Za-z]+"
exp = re.compile(regexp)
def nsyl(word):
lowercase = word.lower()
if lowercase not in d:
return 0
else:
first = [' '.join([str(c) for c in lst]) for lst in max(d[lowercase])]
second = ''.join(first)
third = ''.join([i for i in second if i.isdigit()]).replace('2', '1')
return third
#return max([len([y for y in x if isdigit(y[-1])]) for x in d[lowercase]])
sum1 = 0
for a in words:
if exp.match(a):
print a,nsyl(a),
sum1 = sum1 + len(str(nsyl(a)))
print "\nTotal syllables:",sum1
I guess that the output that I want would be like this:
1101111101
0101111001
1101010111
The first problem is that I lost the line breaks during the tokenization, and I really need the line breaks to be able to identify form. This should not be too hard to deal with though. The bigger problems are that:
I can't deal with non-dictionary words. At the moment I return 0 for them, but this will confound any attempt to identify the poem, as the syllabic count of the line will probably decrease.
In addition, the CMU dictionary often says that there is stress on a word - '1' - when there is not - '0 - . Which is why the output looks like this: 1101111101, when it should be the stress of iambic pentameter: 0101010101
So how would I add some fudging factor so the poem still gets identified as iambic pentameter when it only approximates the pattern? It's no good to code a function that identifies lines of 01's when the CMU dictionary is not going to output such a clean result. I suppose I'm asking how to code a 'partial match' algorithm.
Welcome to stack overflow. I'm not that familiar with Python, but I see you have not received many answers yet so I'll try to help you with your queries.
First some advice: You'll find that if you focus your questions your chances of getting answers are greatly improved. Your post is too long and contains several different questions, so it is beyond the "attention span" of most people answering questions here.
Back on topic:
Before you revised your question you asked how to make it less messy. That's a big question, but you might want to use the top-down procedural approach and break your code into functional units:
split corpus into lines
For each line: find the syllable length and stress pattern.
Classify stress patterns.
You'll find that the first step is a single function call in python:
corpus.split("\n");
and can remain in the main function but the second step would be better placed in its own function and the third step would require to be split up itself, and would probably be better tackled with an object oriented approach. If you're in academy you might be able to convince the CS faculty to lend you a post-grad for a couple of months and help you instead of some workshop requirement.
Now to your other questions:
Not loosing line breaks: as #ykaganovich mentioned, you probably want to split the corpus into lines and feed those to the tokenizer.
Words not in dictionary/errors: The CMU dictionary home page says:
Find an error? Please contact the developers. We will look at the problem and improve the dictionary. (See at bottom for contact information.)
There is probably a way to add custom words to the dictionary / change existing ones, look in their site, or contact the dictionary maintainers directly.
You can also ask here in a separate question if you can't figure it out. There's bound to be someone in stackoverflow that knows the answer or can point you to the correct resource.
Whatever you decide, you'll want to contact the maintainers and offer them any extra words and corrections anyway to improve the dictionary.
Classifying input corpus when it doesn't exactly match the pattern: You might want to look at the link ykaganovich provided for fuzzy string comparisons. Some algorithms to look for:
Levenshtein distance: gives you a measure of how different two strings are as the number of changes needed to turn one string into another. Pros: easy to implement, Cons: not normalized, a score of 2 means a good match for a pattern of length 20 but a bad match for a pattern of length 3.
Jaro-Winkler string similarity measure: similar to Levenshtein, but based on how many character sequences appear in the same order in both strings. It is a bit harder to implement but gives you normalized values (0.0 - completely different, 1.0 - the same) and is suitable for classifying the stress patterns. A CS postgrad or last year undergrad should not have too much trouble with it ( hint hint ).
I think those were all your questions. Hope this helps a bit.
To preserve newlines, parse line by line before sending each line to the cmu parser.
For dealing with single-syllable words, you probably want to try both 0 and 1 for it when nltk returns 1 (looks like nltk already returns 0 for some words that would never get stressed, like "the"). So, you'll end up with multiple permutations:
1101111101
0101010101
1101010101
and so forth. Then you have to pick ones that look like a known forms.
For non-dictionary words, I'd also fudge it the same way: figure out the number of syllables (the dumbest way would be by counting the vowels), and permutate all possible stresses. Maybe add some more rules like "ea is a single syllable, trailing e is silent"...
I've never worked with other kinds of fuzzying, but you can check https://stackoverflow.com/questions/682367/good-python-modules-for-fuzzy-string-comparison for some ideas.
This is my first post on stackoverflow.
And I'm a python newbie, so please excuse any deficits in code style.
But I too am attempting to extract accurate metre from poems.
And the code included in this question helped me, so I post what I came up with that builds on that foundation. It is one way to extract the stress as a single string, correct with a 'fudging factor' for the cmudict bias, and not lose words that are not in the cmudict.
import nltk
from nltk.corpus import cmudict
prondict = cmudict.dict()
#
# parseStressOfLine(line)
# function that takes a line
# parses it for stress
# corrects the cmudict bias toward 1
# and returns two strings
#
# 'stress' in form '0101*,*110110'
# -- 'stress' also returns words not in cmudict '0101*,*1*zeon*10110'
# 'stress_no_punct' in form '0101110110'
def parseStressOfLine(line):
stress=""
stress_no_punct=""
print line
tokens = [words.lower() for words in nltk.word_tokenize(line)]
for word in tokens:
word_punct = strip_punctuation_stressed(word.lower())
word = word_punct['word']
punct = word_punct['punct']
#print word
if word not in prondict:
# if word is not in dictionary
# add it to the string that includes punctuation
stress= stress+"*"+word+"*"
else:
zero_bool=True
for s in prondict[word]:
# oppose the cmudict bias toward 1
# search for a zero in array returned from prondict
# if it exists use it
# print strip_letters(s),word
if strip_letters(s)=="0":
stress = stress + "0"
stress_no_punct = stress_no_punct + "0"
zero_bool=False
break
if zero_bool:
stress = stress + strip_letters(prondict[word][0])
stress_no_punct=stress_no_punct + strip_letters(prondict[word][0])
if len(punct)>0:
stress= stress+"*"+punct+"*"
return {'stress':stress,'stress_no_punct':stress_no_punct}
# STRIP PUNCTUATION but keep it
def strip_punctuation_stressed(word):
# define punctuations
punctuations = '!()-[]{};:"\,<>./?##$%^&*_~'
my_str = word
# remove punctuations from the string
no_punct = ""
punct=""
for char in my_str:
if char not in punctuations:
no_punct = no_punct + char
else:
punct = punct+char
return {'word':no_punct,'punct':punct}
# CONVERT the cmudict prondict into just numbers
def strip_letters(ls):
#print "strip_letters"
nm = ''
for ws in ls:
#print "ws",ws
for ch in list(ws):
#print "ch",ch
if ch.isdigit():
nm=nm+ch
#print "ad to nm",nm, type(nm)
return nm
# TESTING results
# i do not correct for the '2'
line = "This day (the year I dare not tell)"
print parseStressOfLine(line)
line = "Apollo play'd the midwife's part;"
print parseStressOfLine(line)
line = "Into the world Corinna fell,"
print parseStressOfLine(line)
"""
OUTPUT
This day (the year I dare not tell)
{'stress': '01***(*011111***)*', 'stress_no_punct': '01011111'}
Apollo play'd the midwife's part;
{'stress': "0101*'d*01211***;*", 'stress_no_punct': '010101211'}
Into the world Corinna fell,
{'stress': '01012101*,*', 'stress_no_punct': '01012101'}

Counting the number of unique words [duplicate]

This question already has answers here:
Counting the number of unique words in a document with Python
(8 answers)
Closed 9 years ago.
I want to count unique words in a text, but I want to make sure that words followed by special characters aren't treated differently, and that the evaluation is case-insensitive.
Take this example
text = "There is one handsome boy. The boy has now grown up. He is no longer a boy now."
print len(set(w.lower() for w in text.split()))
The result would be 16, but I expect it to return 14. The problem is that 'boy.' and 'boy' are evaluated differently, because of the punctuation.
import re
print len(re.findall('\w+', text))
Using a regular expression makes this very simple. All you need to keep in mind is to make sure that all the characters are in lowercase, and finally combine the result using set to ensure that there are no duplicate items.
print len(set(re.findall('\w+', text.lower())))
you can use regex here:
In [65]: text = "There is one handsome boy. The boy has now grown up. He is no longer a boy now."
In [66]: import re
In [68]: set(m.group(0).lower() for m in re.finditer(r"\w+",text))
Out[68]:
set(['grown',
'boy',
'he',
'now',
'longer',
'no',
'is',
'there',
'up',
'one',
'a',
'the',
'has',
'handsome'])
I think that you have the right idea of using the Python built-in set type.
I think that it can be done if you first remove the '.' by doing a replace:
text = "There is one handsome boy. The boy has now grown up. He is no longer a boy now."
punc_char= ",.?!'"
for letter in text:
if letter == '"' or letter in punc_char:
text= text.replace(letter, '')
text= set(text.split())
len(text)
that should work for you. And if you need any of the other signs or punctuation points you can easily
add them into punc_char and they will be filtered out.
Abraham J.
First, you need to get a list of words. You can use a regex as eandersson suggested:
import re
words = re.findall('\w+', text)
Now, you want to get the number of unique entries. There are a couple of ways to do this. One way would be iterate through the words list and use a dictionary to keep track of the number of times you have seen a word:
cwords = {}
for word in words:
try:
cwords[word] += 1
except KeyError:
cwords[word] = 1
Now, finally, you can get the number of unique words by
len(cwords)

Categories