I'm trying to create a program that displays a large grid of numbers (say, filling up a 6 by 4000 grid), where the user can move a cursor around via keyboard or mouse and enter in numbers into the grid. (This is for a guitar tablature program.) I'm new to python GUI programming, and thus far my idea is to have a very large QWidget window (say, 1000x80000 pixels) inside of a QScrollArea inside of the main window. The problem is that every mouse click or cursor movement causes the whole thing to repaint, causing a delay, when I just want to repaint whatever changes I just made to make things faster. In PyQt, is there a way to buffer already-painted graphics and change just the graphics that need changing?
edit: I've posted the code below, which I've run with python3.3 on Mac OS 10.7. The main point is that in the TabWindow init function, the grid size can be set by numXGrid and numYGrid (currently set to 200 and 6), and this grid is filled with random numbers by the generateRandomTablatureData() method. If the grid is filled with numbers, then there's a noticeable lag with every key press, which gets worse with larger grids. (There is also an initial delay due to generating the data, but my question is on the delay after each key press which I assume is due to having to repaint every number.)
There are two files. This is the main one, which I called FAIT.py:
import time
start_time = time.time()
import random
import sys
from PyQt4 import QtGui, QtCore
import Tracks
# generate tracks
tracks = [Tracks.Track(), Tracks.Track(), Tracks.Track()]
fontSize = 16
# margins
xMar = 50
yMar = 50
trackMar = 50 # margin between tracks
class MainWindow(QtGui.QWidget):
def __init__(self):
super(MainWindow, self).__init__()
self.initUI()
end_time = time.time()
print("Initializing time was %g seconds" % (end_time - start_time))
def initUI(self):
# attach QScrollArea to MainWindow
l = QtGui.QVBoxLayout(self)
l.setContentsMargins(0,0,0,0)
l.setSpacing(0)
s=QtGui.QScrollArea()
l.addWidget(s)
# attach TabWindow to QScrollArea so we can paint on it
self.tabWindow=TabWindow(self)
self.tabWindow.setFocusPolicy(QtCore.Qt.StrongFocus)
self.setFocusPolicy(QtCore.Qt.NoFocus)
vbox=QtGui.QVBoxLayout(self.tabWindow)
s.setWidget(self.tabWindow)
self.positionWindow() # set size and position of main window
self.setWindowTitle('MainWindow')
self.show()
def positionWindow(self):
qr = self.frameGeometry()
cp = QtGui.QDesktopWidget().availableGeometry().center()
width = QtGui.QDesktopWidget().availableGeometry().width() - 100
height = QtGui.QDesktopWidget().availableGeometry().height() - 100
self.resize(width, height)
qr = self.frameGeometry()
cp = QtGui.QDesktopWidget().availableGeometry().center()
qr.moveCenter(cp)
self.move(qr.topLeft())
def keyPressEvent(self, e):
print('key pressed in MainWindow')
def mousePressEvent(self, e):
print('mouse click in MainWindow')
class TabWindow(QtGui.QWidget):
def __init__(self, parent=None):
QtGui.QWidget.__init__(self, parent)
# size of tablature grid
numXGrid = 200
numYGrid = 6
# initialize tablature information first
for i in range(0, len(tracks)):
tracks[i].numXGrid = numXGrid
self.arrangeTracks() # figure out offsets for each track
self.trackFocusNum = 0 # to begin with, focus is on track 0
self.windowSizeX = tracks[0].x0 + tracks[0].dx*(tracks[0].numXGrid+2)
self.windowSizeY = tracks[0].y0
for i in range(0, len(tracks)):
self.windowSizeY = self.windowSizeY + tracks[i].dy * tracks[i].numYGrid + trackMar
self.resize(self.windowSizeX,self.windowSizeY) # size of actual tablature area
# generate random tablature data for testing
self.generateRandomTablatureData()
def keyPressEvent(self, e):
print('key pressed in TabWindow')
i = self.trackFocusNum
if e.key() == QtCore.Qt.Key_Up:
tracks[i].moveCursorUp()
if e.key() == QtCore.Qt.Key_Down:
tracks[i].moveCursorDown()
if e.key() == QtCore.Qt.Key_Left:
tracks[i].moveCursorLeft()
if e.key() == QtCore.Qt.Key_Right:
tracks[i].moveCursorRight()
# check for number input
numberKeys = (QtCore.Qt.Key_0,
QtCore.Qt.Key_1,
QtCore.Qt.Key_2,
QtCore.Qt.Key_3,
QtCore.Qt.Key_4,
QtCore.Qt.Key_5,
QtCore.Qt.Key_6,
QtCore.Qt.Key_7,
QtCore.Qt.Key_8,
QtCore.Qt.Key_9)
if e.key() in numberKeys:
num = int(e.key())-48
# add data
tracks[i].data.addToTab(tracks[i].iCursor, tracks[i].jCursor, num)
# convert entered number to pitch and play note (do later)
# spacebar, backspace, or delete remove data
if e.key() in (QtCore.Qt.Key_Space, QtCore.Qt.Key_Backspace, QtCore.Qt.Key_Delete):
tracks[i].data.removeFromTab(tracks[i].iCursor, tracks[i].jCursor)
self.update()
def mousePressEvent(self, e):
print('mouse click in TabWindow')
xPos = e.x()
yPos = e.y()
# check tracks one by one
for i in range(0, len(tracks)):
if (tracks[i].isPositionInside(xPos, yPos)):
tracks[i].moveCursorToPosition(xPos, yPos)
self.trackFocusNum = i
break
else:
continue
self.update()
def paintEvent(self, e):
qp = QtGui.QPainter()
qp.begin(self)
qp.setPen(QtCore.Qt.black)
qp.setBrush(QtCore.Qt.white)
qp.drawRect(0, 0, self.windowSizeX, self.windowSizeY)
self.paintTracks(qp)
self.paintTunings(qp)
self.paintCursor(qp)
self.paintNumbers(qp)
qp.end()
def paintTracks(self, qp):
qp.setPen(QtCore.Qt.black)
qp.setBrush(QtCore.Qt.white)
for i in range(0, len(tracks)):
qp.drawPolyline(tracks[i].polyline)
def paintCursor(self, qp):
i = self.trackFocusNum
qp.setPen(QtCore.Qt.black)
qp.setBrush(QtCore.Qt.black)
qp.drawPolygon(tracks[i].getCursorQPolygon())
def paintNumbers(self, qp):
# iterate through tracks, and iterate through numbers on each track
for i in range(0, len(tracks)):
# make sure track has data to draw
if len(tracks[i].data.data) > 0:
for j in range(0, len(tracks[i].data.data)):
# do actual painting here
# first set color to be inverse cursor color if at cursor
if i == self.trackFocusNum and \
tracks[i].iCursor == tracks[i].data.data[j][0] and \
tracks[i].jCursor == tracks[i].data.data[j][1]:
qp.setPen(QtCore.Qt.white)
else:
qp.setPen(QtCore.Qt.black)
font = QtGui.QFont('Helvetica', fontSize)
qp.setFont(font)
text = str(tracks[i].data.data[j][2])
x1 = tracks[i].convertIndexToPositionX(tracks[i].data.data[j][0])
y1 = tracks[i].convertIndexToPositionY(tracks[i].data.data[j][1])
dx = tracks[i].dx
dy = tracks[i].dy
# height and width of number character(s)
metrics = QtGui.QFontMetrics(font)
tx = metrics.width(text)
ty = metrics.height()
# formula for alignment:
# xMar = (dx-tx)/2 plus offset
x11 = x1 + (dx-tx)/2
y11 = y1 + dy/2+ty/2
qp.drawText(x11, y11, text)
def paintTunings(self, qp):
qp.setPen(QtCore.Qt.black)
font = QtGui.QFont('Helvetica', fontSize)
qp.setFont(font)
for i in range(0, len(tracks)):
for j in range(0, tracks[i].numStrings):
text = tracks[i].convertPitchToLetter(tracks[i].stringTuning[j])
# height and width of characters
metrics = QtGui.QFontMetrics(font)
tx = metrics.width(text)
ty = metrics.height()
x11 = tracks[i].x0 - tx - 10
y11 = tracks[i].convertIndexToPositionY(j) + (tracks[i].dy+ty)/2
qp.drawText(x11, y11, text)
def arrangeTracks(self):
tracks[0].x0 = xMar
tracks[0].y0 = yMar
tracks[0].generateGridQPolyline()
for i in range(1, len(tracks)):
tracks[i].x0 = xMar
tracks[i].y0 = tracks[i-1].y0 + tracks[i-1].height + trackMar
tracks[i].generateGridQPolyline()
def generateRandomTablatureData(self):
t1 = time.time()
for i in range(0, len(tracks)):
# worst case scenario: fill every number
for jx in range(0, tracks[i].numXGrid):
for jy in range(0, tracks[i].numYGrid):
val = random.randint(0,9)
tracks[i].data.addToTab(jx, jy, val)
t2 = time.time()
print("Random number generating time was %g seconds" % (t2 - t1))
def main():
app = QtGui.QApplication(sys.argv)
ex = MainWindow()
sys.exit(app.exec_())
if __name__ == '__main__':
main()
This is the other file, Tracks.py, which contains the Track class and supplementary methods:
# contains classes and methods relating to individual tracks
import math
from PyQt4 import QtGui, QtCore
# class for containing information about a track
class Track:
def __init__(self):
self.data = TabulatureData()
# position offset
self.x0 = 0
self.y0 = 0
self.dx = 20 # default rectangle width
self.dy = 40 # default rectangle height
# current cursor index coordinates
self.iCursor = 0
self.jCursor = 0
# default size of grid
self.numXGrid = 4000
self.numYGrid = 6
self.numStrings = self.numYGrid
# calculated maximum width and height in pixels
self.maxWidth = self.dx * self.numXGrid
self.maxHeight = self.dy * self.numYGrid
# generate points of grid and cursor
self.generateGridQPolyline()
# tuning
self.setTuning([40, 45, 50, 55, 59, 64])
# calculate bounds
self.height = self.numYGrid*self.dy
self.width = self.numXGrid*self.dx
def getCursorIndexX(self, xPos):
iPos = int(math.floor( (xPos-self.x0)/self.dx ))
return iPos
def getCursorIndexY(self, yPos):
jPos = int(math.floor( (yPos-self.y0)/self.dy ))
return jPos
def convertIndexToCoordinates(self, iPos, jPos):
return [self.ConvertIndexToPositionX(iPos),
self.ConvertIndexToPositionY(jPos)]
def convertIndexToPositionX(self, iPos):
return self.x0 + iPos*self.dx
def convertIndexToPositionY(self, jPos):
return self.y0 + jPos*self.dy
def getCursorQPolygon(self):
x1 = self.convertIndexToPositionX(self.iCursor)
y1 = self.convertIndexToPositionY(self.jCursor)
x2 = self.convertIndexToPositionX(self.iCursor+1)
y2 = self.convertIndexToPositionY(self.jCursor+1)
return QtGui.QPolygonF([QtCore.QPoint(x1, y1),
QtCore.QPoint(x1, y2),
QtCore.QPoint(x2, y2),
QtCore.QPoint(x2, y1)])
def generateGridQPolyline(self):
self.points = []
self.polyline = QtGui.QPolygonF()
for i in range(0, self.numXGrid):
for j in range(0, self.numYGrid):
x1 = self.convertIndexToPositionX(i)
y1 = self.convertIndexToPositionY(j)
x2 = self.convertIndexToPositionX(i+1)
y2 = self.convertIndexToPositionY(j+1)
self.points.append([(x1, y1), (x1, y2), (x2, y2), (x2, y1)])
self.polyline << QtCore.QPoint(x1,y1) << \
QtCore.QPoint(x1,y2) << \
QtCore.QPoint(x2,y2) << \
QtCore.QPoint(x2,y1) << \
QtCore.QPoint(x1,y1)
# smoothly connect different rows
jLast = self.numYGrid-1
x1 = self.convertIndexToPositionX(i)
y1 = self.convertIndexToPositionY(jLast)
x2 = self.convertIndexToPositionX(i+1)
y2 = self.convertIndexToPositionY(jLast+1)
self.polyline << QtCore.QPoint(x2,y1)
def isPositionInside(self, xPos, yPos):
if (xPos >= self.x0 and xPos <= self.x0 + self.width and
yPos >= self.y0 and yPos <= self.y0 + self.height):
return True
else:
return False
def moveCursorToPosition(self, xPos, yPos):
self.iCursor = self.getCursorIndexX(xPos)
self.jCursor = self.getCursorIndexY(yPos)
self.moveCursorToIndex(self.iCursor, self.jCursor)
def moveCursorToIndex(self, iPos, jPos):
# check if bounds are breached, and if cursor's already there,
# and if not, move cursor
if iPos == self.iCursor and jPos == self.jCursor:
return
if iPos >= 0 and iPos < self.numXGrid:
if jPos >= 0 and jPos < self.numYGrid:
self.iCursor = iPos
self.jCursor = jPos
return
def moveCursorUp(self):
self.moveCursorToIndex(self.iCursor, self.jCursor-1)
def moveCursorDown(self):
self.moveCursorToIndex(self.iCursor, self.jCursor+1)
def moveCursorLeft(self):
self.moveCursorToIndex(self.iCursor-1, self.jCursor)
def moveCursorRight(self):
self.moveCursorToIndex(self.iCursor+1, self.jCursor)
# return pitch in midi integer notation
def convertNumberToPitch(self, jPos, pitchNum):
return pitchNum + self.stringTuning[(self.numStrings-1) - jPos]
def convertPitchToLetter(self, pitchNum):
p = pitchNum % 12
letters = ('C', 'Db', 'D', 'Eb', 'E', 'F', 'Gb', 'G', 'Ab', 'A', 'Bb', 'B')
return letters[p]
def setTuning(self, tuning):
self.stringTuning = tuning
class TabulatureData:
def __init__(self):
self.data = []
def addToTab(self, i, j, value):
# check if data is already there, and remove it first
if self.getValue(i, j) > -1:
self.removeFromTab(i, j)
self.data.append([i, j, value])
def getValue(self, i, j):
possibleTuples = [x for x in self.data if x[0] == i and x[1] == j]
if possibleTuples == []:
return -1
elif len(possibleTuples) > 1:
print('Warning: more than one number at a location!')
return possibleTuples[0][2] # return third number of tuple
def removeFromTab(self, i, j):
# first get value, if it exists
value = self.getValue(i,j)
if value == -1:
return
else:
# if it exists, then remove
self.data.remove([i, j, value])
1000*80000 is really huge.
So,maybe you should try QGLWidget or something like that?
Or according to Qt document, you should set which region you want to repaint.
some slow widgets need to optimize by painting only the requested region: QPaintEvent::region(). This speed optimization does not change the result, as painting is clipped to that region during event processing. QListView and QTableView do this, for example.
Related
I've been migrating from Pygame to Arcade and overall it's much better. That said, the method I was using to draw the lines of my track for my car game in Pygame is exorbitantly laggy in Arcade. I know it's lagging from drawing all the lines, I'm just wondering if there's a better way to do it that doesn't cause so much lag.
import arcade
import os
import math
import numpy as np
SPRITE_SCALING = 0.5
SCREEN_WIDTH = 800
SCREEN_HEIGHT = 600
SCREEN_TITLE = "Move Sprite by Angle Example"
MOVEMENT_SPEED = 5
ANGLE_SPEED = 5
class Player(arcade.Sprite):
""" Player class """
def __init__(self, image, scale):
""" Set up the player """
# Call the parent init
super().__init__(image, scale)
# Create a variable to hold our speed. 'angle' is created by the parent
self.speed = 0
def update(self):
# Convert angle in degrees to radians.
angle_rad = math.radians(self.angle)
# Rotate the ship
self.angle += self.change_angle
# Use math to find our change based on our speed and angle
self.center_x += -self.speed * math.sin(angle_rad)
self.center_y += self.speed * math.cos(angle_rad)
def upgraded_distance_check(player_sprite, point_arrays, distance_cap):
center_coord = player_sprite.center
intersect_array = []
distance_array = []
sensor_array = player_sprite.points
for sensor in sensor_array:
intersect_array.append([-10000, -10000])
for point_array in point_arrays:
for i in range(len(point_array[:-1])):
v = line_intersection(
[sensor, center_coord], [point_array[i], point_array[i + 1]]
)
if v == (None, None):
continue
if (
(point_array[i][0] <= v[0] and point_array[i + 1][0] >= v[0])
or (point_array[i][0] >= v[0] and point_array[i + 1][0] <= v[0])
) and (
(point_array[i][1] <= v[1] and point_array[i + 1][1] >= v[1])
or (point_array[i][1] >= v[1] and point_array[i + 1][1] <= v[1])
):
if intersect_array[-1] is None or math.sqrt(
(intersect_array[-1][0] - center_coord[0]) ** 2
+ (intersect_array[-1][1] - center_coord[1]) ** 2
) > math.sqrt(
(v[0] - center_coord[0]) ** 2
+ (v[1] - center_coord[1]) ** 2
):
if not is_between(sensor, center_coord, v):
intersect_array[-1] = v
for i in range(len(sensor_array)):
if distance(sensor_array[i], intersect_array[i]) > distance_cap:
intersect_array[i] = None
distance_array.append(None)
else:
distance_array.append(distance(sensor_array[i], intersect_array[i]))
return intersect_array
class MyGame(arcade.Window):
"""
Main application class.
"""
def __init__(self, width, height, title):
"""
Initializer
"""
# Call the parent class initializer
super().__init__(width, height, title)
# Set the working directory (where we expect to find files) to the same
# directory this .py file is in. You can leave this out of your own
# code, but it is needed to easily run the examples using "python -m"
# as mentioned at the top of this program.
file_path = os.path.dirname(os.path.abspath(__file__))
os.chdir(file_path)
# Variables that will hold sprite lists
self.player_list = None
# Set up the player info
self.player_sprite = None
# Set the background color
arcade.set_background_color(arcade.color.WHITE)
def setup(self):
""" Set up the game and initialize the variables. """
# Sprite lists
self.player_list = arcade.SpriteList()
# Set up the player
self.player_sprite = Player(":resources:images/space_shooter/playerShip1_orange.png", SPRITE_SCALING)
self.player_sprite.center_x = SCREEN_WIDTH / 2
self.player_sprite.center_y = SCREEN_HEIGHT / 2
self.player_list.append(self.player_sprite)
#Setup all the array BS
self.track_arrays = []
self.drawing = False
def on_draw(self):
"""
Render the screen.
"""
# This command has to happen before we start drawing
arcade.start_render()
# Draw all the sprites.
# for i, ele in enumerate(self.player_sprite.points):
# arcade.draw_circle_filled(ele[0], ele[1], 7, arcade.color.AO)
self.player_list.draw()
if len(self.track_arrays) > 0 and len(self.track_arrays[0]) > 2:
for track_array in self.track_arrays:
for i in range(len(track_array[:-1])):
arcade.draw_line(track_array[i][0], track_array[i][1], track_array[i+1][0], track_array[i+1][1], arcade.color.BLACK, 1)
def on_update(self, delta_time):
""" Movement and game logic """
# Call update on all sprites (The sprites don't do much in this
# example though.)
self.player_list.update()
# print(self.drawing)
# print(self.player_sprite.points)
def on_key_press(self, key, modifiers):
"""Called whenever a key is pressed. """
# Forward/back
if key == arcade.key.UP:
self.player_sprite.speed = MOVEMENT_SPEED
elif key == arcade.key.DOWN:
self.player_sprite.speed = -MOVEMENT_SPEED
# Rotate left/right
elif key == arcade.key.LEFT:
self.player_sprite.change_angle = ANGLE_SPEED
elif key == arcade.key.RIGHT:
self.player_sprite.change_angle = -ANGLE_SPEED
def on_key_release(self, key, modifiers):
"""Called when the user releases a key. """
if key == arcade.key.UP or key == arcade.key.DOWN:
self.player_sprite.speed = 0
elif key == arcade.key.LEFT or key == arcade.key.RIGHT:
self.player_sprite.change_angle = 0
def on_mouse_press(self, x, y, button, modifiers):
"""
Called when the user presses a mouse button.
"""
self.track_arrays.append([])
self.drawing = True
def on_mouse_release(self, x, y, button, modifiers):
"""
Called when a user releases a mouse button.
"""
self.drawing = False
def on_mouse_motion(self, x, y, dx, dy):
""" Called to update our objects. Happens approximately 60 times per second."""
if self.drawing:
self.track_arrays[-1].append([x,y])
def main():
""" Main method """
window = MyGame(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
window.setup()
arcade.run()
if __name__ == "__main__":
main()
When I draw a rectangle in the canvas I know its coordinates, absolute (canvasx(), canvasy()) and relative (the ones that I have passed).
Then, I may be able to move the canvas using the canvas scan_mark() and scan_dragto() methods.
How may I return to the original position (before one or more of these scan_mark()/scan_dragto() calls) in order to re-center the rectangle of which the user might even have lost the position?
Is there any reset view command/method? How may I keep track of the change that has occurred?
The Tkinter documentation I've seen doesn't seem to mention this, but the underlying Tk Canvas xview/yview methods can be called with no parameter to get the current scroll position (actually, as a tuple of two elements, the second not being of any use to you). So, the following should work (not tested):
Save position:
origX = yourcanvas.xview()[0]
origY = yourcanvas.yview()[0]
Restore position:
yourcanvas.xview_moveto(origX)
yourcanvas.yview_moveto(origY)
As in the previous comment #jasonharper, his suggestion worked. For others who might have the same problem I attach a working example even though it has not been cleaned so well to be proud of, it may give you way to see how zoom in and out, view drag and reset might work.
import tkinter as tk
import tkinter.ttk as ttk
class GriddedMazeCanvas(tk.Canvas):
def almost_centered(self, cols, rows):
width = int(self['width'])
height = int(self['height'])
cell_dim = self.settings['cell_dim']
rows = rows % height
cols = cols % width
w = cols * cell_dim
h = rows * cell_dim
if self.zoom < 0:
raise ValueError('zoom is negative:', self.zoom)
zoom = self.zoom // 2 + 1
if self.drawn() and 1 != zoom:
w *= zoom
h *= zoom
h_shift = (width - w) // 2
v_shift = (height - h) // 2
return [h_shift, v_shift,
h_shift + w, v_shift + h]
def __init__(self, *args, **kwargs):
if 'settings' not in kwargs:
raise ValueError("'settings' not passed.")
settings = kwargs['settings']
del kwargs['settings']
super().__init__(*args, **kwargs)
self.config(highlightthickness=0)
self.settings = settings
self.bind_events()
def draw_maze(self, cols, rows):
self.cols = cols
self.rows = rows
if self.not_drawn():
self.cells = {}
self.cell_dim = self.settings['cell_dim']
self.border_thickness = self.settings['border_thickness']
self.zoom = 0
self.delete(tk.ALL)
maze, coords = self._draw_maze(cols, rows, fix=False)
lines = self._draw_grid(coords)
return maze, lines
def _draw_maze(self, cols, rows, fix=True):
data = self.settings
to_max = data['to_max']
border_thickness = data['border_thickness']
poligon_color = data['poligon_color']
poligon_border_color = data['poligon_border_color']
coords = self.almost_centered(cols, rows)
if fix:
# Fix for the disappearing NW borders
if to_max == cols:
coords[0] += 1
if to_max == rows:
coords[1] += 1
maze = self.create_rectangle(*coords,
fill=poligon_color,
outline=poligon_border_color,
width=border_thickness,
tag='maze')
return maze, coords
def _draw_grid(self, coords):
data = self.settings
poligon_border_color = data['poligon_border_color']
cell_dim = data['cell_dim']
if coords is None:
if self.not_drawn():
raise ValueError('The maze is still uninitialized.')
x1, y1, x2, y2 = self.almost_centered(self.cols, self.rows)
else:
x1, y1, x2, y2 = coords
if self.drawn() and 0 != self.zoom:
if self.zoom < 0:
self.zoom = 0
print('no zooming at negative values.')
else:
zoom = self.zoom // 2 + 1
cell_dim *= zoom
lines = []
for i, x in enumerate(range(x1, x2, cell_dim)):
line = self.create_line(x, y1, x, y2,
fill=poligon_border_color,
tags=('grid', 'grid_hl_{}'.format(i)))
lines.append(line)
for i, y in enumerate(range(y1, y2, cell_dim)):
line = self.create_line(x1, y, x2, y,
fill=poligon_border_color,
tags=('grid', 'grid_vl_{}'.format(i)))
lines.append(line)
return lines
def drawn(self):
return hasattr(self, 'cells')
def not_drawn(self):
return not self.drawn()
def bind_events(self):
self.bind('<Button-4>', self.onZoomIn)
self.bind('<Button-5>', self.onZoomOut)
self.bind('<ButtonPress-1>', self.onScrollStart)
self.bind('<B1-Motion>', self.onScrollMove)
self.tag_bind('maze', '<ButtonPress-3>', self.onMouseRight)
def onScrollStart(self, event):
print(event.x, event.y, self.canvasx(event.x), self.canvasy(event.y))
self.scan_mark(event.x, event.y)
def onMouseRight(self, event):
col, row = self.get_pos(event)
print('zoom, col, row:', self.zoom, col, row)
def onScrollMove(self, event):
delta = event.x, event.y
self.scan_dragto(*delta, gain=1)
def onZoomIn(self, event):
if self.not_drawn():
return
max_zoom = 16
self.zoom += 2
if self.zoom > max_zoom:
print("Can't go beyond", max_zoom)
self.zoom = max_zoom
return
print('Zooming in.', event.num, event.x, event.y, self.zoom)
self.draw_maze(self.cols, self.rows)
def onZoomOut(self, event):
if self.not_drawn():
return
self.zoom -= 2
if self.zoom < 0:
print("Can't go below zero.")
self.zoom = 0
return
print('Zooming out.', event.num, event.x, event.y, self.zoom)
self.draw_maze(self.cols, self.rows)
def get_pos(self, event):
x, y = event.x, event.y
cols, rows = self.cols, self.rows
cell_dim, zoom = self.cell_dim, self.zoom
x1, y1, x2, y2 = self.almost_centered(cols, rows)
if not (x1 <= x <= x2 and y1 <= y <= y2):
print('Here we are out of bounds.')
return None, None
scale = (zoom // 2 + 1) * cell_dim
col = (x - x1) // scale
row = (y - y1) // scale
return col, row
class CanvasButton(ttk.Button):
def freeze_origin(self):
if not hasattr(self, 'origin'):
canvas = self.canvas
self.origin = canvas.xview()[0], canvas.yview()[0]
def reset(self):
canvas = self.canvas
x, y = self.origin
canvas.yview_moveto(x)
canvas.xview_moveto(y)
def __init__(self, *args, **kwargs):
if not 'canvas' in kwargs:
raise ValueError("'canvas' not passed.")
canvas = kwargs['canvas']
del kwargs['canvas']
super().__init__(*args, **kwargs)
self.config(command=self.reset)
self.canvas = canvas
root = tk.Tk()
settings = {'cell_dim': 3,
'to_max': 200,
'border_thickness': 1,
'poligon_color': '#F7F37E',
'poligon_border_color': '#AC5D33'}
frame = ttk.Frame(root)
canvas = GriddedMazeCanvas(frame,
settings=settings,
width=640,
height=480)
button = CanvasButton(frame, text='Reset', canvas=canvas)
button.freeze_origin()
canvas.draw_maze(20, 10)
canvas.grid(row=0, column=0, sticky=tk.NSEW)
button.grid(row=1, column=0, sticky=tk.EW)
frame.rowconfigure(0, weight=1)
frame.grid()
root.mainloop()
Tested with Python 3.4 on latest Ubuntu 16.10
(Events: MouseLeft, Mouseright, MouseWheel, ButtonPress)
HTH
So I'm spawning circles at random in Python and I decided I wanted to make each circle it's own object. So I created a class for them.
I wanted each circle to have their own tick function so that each one can do their own thing. (change colors, size, de-spawn etc.) However I'm having a lot of issues getting the tick method to work.
Here is my code:
from random import *
from tkinter import *
from time import *
size = 2000
window = Tk()
count = 0
class Shape(object):
def __init__(self,name, canv, size, col, x0, y0,d,outline):
self.name = name
self.canv = canv
self.size = size
self.col = col
self.x0 = x0
self.y0 = y0
self.d = d
self.outline = outline
self.age=0
def death(self):
pass
def spawn(self):
self.canv.create_oval(self.x0, self.y0, self.x0 + self.d, self.y0 + self.d, outline=self.outline, fill = self.col)
def tick(self):
self.age = self.age +time.time()
while True:
tick()
# var canv = A new Canvas Object (The Window Object to be put in, The Canvice width, The canvice Height)
canv = Canvas(window, width=size, height=size)
canv.pack()
d = 0
while True:
col = choice(['#EAEA00'])
x0 = randint(0, size)
y0 = randint(0, size)
#d = randint(0, size/5)
d = (d + 0.001)
count = count+1
outline = 'white'
shapes[count] = Shape("shape" + str(count), canv, size, col, x0, y0, d, outline)
shapes[count].spawn()
#canv.create_oval(x0, y0, x0 + d, y0 + d, outline='white', fill = col)
window.update()
So basically I get two different errors from this part of the code:
while True:
tick()
Ether it's a TypeError: tick() missing one required positional argument: 'self' or if I put self into the parameters I get self is undefined.
So what am I doing wrong?
I have been drawing some graphics with a Python / Tkinter program. The program has a main menu with menu items for drawing different figures. It works quite well but I came up against a problem. If the program is part way through drawing one figure and the user clicks to draw a second figure then the program draws the second figure, but when it has finished drawing the second figure it goes back and finishes drawing the first figure. What I want it to do is stop drawing the first figure and not go back to drawing the first figure even when the second figure has finished drawing. I created an simpler example program to demonstrate the scenario. To see the problem in this program click "Draw -> Red" and then click "Draw -> Blue" before the red has finished drawing. How do I get the program to abort any previous drawing? Here is the example program:
from tkinter import *
import random
import math
def line(canvas, w, h, p, i):
x0 = random.randrange(0, w)
y0 = random.randrange(0, h)
x1 = random.randrange(0, w)
y1 = random.randrange(0, h)
canvas.create_line(x0, y0, x1, y1, fill=p.col(i))
class Color:
def __init__(self, r, g, b):
self.red = r
self.gre = g
self.blu = b
def hexVal(self, v):
return (hex(v)[2:]).zfill(2)
def str(self):
return "#" + self.hexVal(self.red) + self.hexVal(self.gre) + self.hexVal(self.blu)
class Palette:
def __init__(self, n0, y):
self.colors = []
self.n = n0
self.m = 0
if y == "red":
self.red()
elif y == "blue":
self.blue()
def add(self, c):
self.colors.append(c)
self.m += 1
def red(self):
self.add(Color(127, 0, 0))
self.add(Color(255, 127, 0))
def blue(self):
self.add(Color(0, 0, 127))
self.add(Color(0, 127, 255))
def col(self, i):
k = i % (self.n*self.m)
z = k // self.n
j = k % self.n
c0 = self.colors[z]
c1 = self.colors[(z + 1) % self.m]
t0 = (self.n - j)/self.n
t1 = j/self.n
r = int(math.floor(c0.red*t0 + c1.red*t1))
g = int(math.floor(c0.gre*t0 + c1.gre*t1))
b = int(math.floor(c0.blu*t0 + c1.blu*t1))
c = Color(r, g, b)
return c.str()
def upd(canvas):
try:
canvas.update()
return True
except TclError:
return False
def tryLine(canvas, w, h, p, i, d):
try:
line(canvas, w, h, p, i)
if i % d == 0:
upd(canvas)
return True
except TclError:
return False
class MenuFrame(Frame):
def __init__(self, parent):
Frame.__init__(self, parent)
self.parent = parent
self.initUI()
def initUI(self):
self.WIDTH = 800
self.HEIGHT = 800
self.canvas = Canvas(self.parent, width=self.WIDTH, height=self.HEIGHT)
self.pack(side=BOTTOM)
self.canvas.pack(side=TOP, fill=BOTH, expand=1)
self.parent.title("Line Test")
menubar = Menu(self.parent)
self.parent.config(menu=menubar)
self.parent.protocol('WM_DELETE_WINDOW', self.onExit)
menu = Menu(menubar)
menu.add_command(label="Red", command=self.onRed)
menu.add_command(label="Blue", command=self.onBlue)
menu.add_command(label="Exit", command=self.onExit)
menubar.add_cascade(label="Draw", menu=menu)
self.pRed = Palette(256, "red")
self.pBlue = Palette(256, "blue")
def onRed(self):
# How to abort here any processes currently running?
self.canvas.delete("all")
for i in range(0, 7000):
tryLine(self.canvas, self.WIDTH, self.HEIGHT, self.pRed, i, 100)
upd(self.canvas)
def onBlue(self):
# How to abort here any processes currently running?
self.canvas.delete("all")
for i in range(0, 7000):
tryLine(self.canvas, self.WIDTH, self.HEIGHT, self.pBlue, i, 100)
upd(self.canvas)
def onExit(self):
self.canvas.delete("all")
self.parent.destroy()
def main():
root = Tk()
frame = MenuFrame(root)
root.mainloop()
if __name__ == '__main__':
main()
That's the simple example? ;)
You can add a variable that tracks the currently selected method, then check if that variable exists before completing the for loop. Here's an even simpler example:
class Example(Frame):
def __init__(self, parent):
Frame.__init__(self, parent)
Button(self, text='Task A', command=self._a).pack()
Button(self, text='Task B', command=self._b).pack()
self.current_task = None # this var will hold the current task (red, blue, etc)
def _a(self):
self.current_task = 'a' # set the current task
for i in range(1000):
if self.current_task == 'a': # only continue this loop if its the current task
print('a')
self.update()
def _b(self):
self.current_task = 'b'
for i in range(1000):
if self.current_task == 'b':
print('b')
self.update()
root = Tk()
Example(root).pack()
root.mainloop()
Let me know if that doesn't make sense or doesn't work out for you.
Right now our code creates a grid starting at the top left and filling in rows and columns from left to right, row by row. Currently, there are a bunch of images it can pick from. It is set using a handful of IF statements that picks between shapes and rareshapes. What I am trying to figure out how to do is change the code so instead of it picking a random rareshape, I can decide what rareshape spawns. Still new to Python and finding a lot of little things that make sense to me from other languages don't work in Python so its throwing me off a little.
EDIT:
Here is the full code. Credit for the base code written by cactusbin and revised by Gareth Rees.
import pygame, random, time, sys
from pygame.locals import *
import itertools
import os
WHITE = (255, 255, 255)
BLACK = (0, 0, 0)
SHAPE_WIDTH = 64 # Width of each shape (pixels).
SHAPE_HEIGHT = 64 # Height of each shape (pixels).
PUZZLE_COLUMNS = 10 # Number of columns on the board.
PUZZLE_ROWS = 11 # Number of rows on the board.
MARGIN = 118 # Margin around the board (pixels).
WINDOW_WIDTH = PUZZLE_COLUMNS * SHAPE_WIDTH + 2 * MARGIN + 485
WINDOW_HEIGHT = PUZZLE_ROWS * SHAPE_HEIGHT + 2 * MARGIN - 150
FONT_SIZE = 60
TEXT_OFFSET = MARGIN + 950
# Map from number of matches to points scored.
MINIMUM_MATCH = 10
EXTRA_LENGTH_POINTS = .1
RANDOM_POINTS = .3
DELAY_PENALTY_SECONDS = 1
DELAY_PENALTY_POINTS = 0
FPS = 30
EXPLOSION_SPEED = 15 # In frames per second.
SPIN_SPEED = 15
REFILL_SPEED = 10 # In cells per second.
VERTICAL = False
class Cell(object):
"""
A cell on the board, with properties:
`image` -- a `Surface` object containing the sprite to draw here.
`offset` -- vertical offset in pixels for drawing this cell.
"""
def __init__(self, image):
self.offset = 0.0
self.image = image
def tick(self, dt):
self.offset = max(0.0, self.offset - dt * REFILL_SPEED)
class Board(object):
"""
A rectangular board of cells, with properties:
`w` -- width in cells.
`h` -- height in cells.
`size` -- total number of cells.
`board` -- list of cells.
`matches` -- list of matches, each being a list of exploding cells.
`refill` -- list of cells that are moving up to refill the board.
`score` -- score due to chain reactions.
"""
def __init__(self, width, height):
self.explosion = [pygame.image.load('images/explosion{}.png'.format(i))
for i in range(1, 7)]
self.spin = [pygame.image.load('images/powerframe{}.png'.format(i))
for i in range (1, 12)]
self.image_color = {}
self.shapes = []
self.rareshapes = []
colors = 'red blue yellow'
letters = 'acgtu'
for c in colors.split():
im = pygame.image.load('images/{}.png'.format(c))
self.shapes.append(im)
self.image_color[im] = c
for l in letters:
im = pygame.image.load('rareimages/{}{}.png'.format(c, l))
self.rareshapes.append(im)
self.image_color[im] = l
self.background = pygame.image.load("images/bg.png")
self.blank = pygame.image.load("images/blank.png")
self.x = pygame.image.load("images/x.png")
self.w = width
self.h = height
self.size = width * height
self.board = [Cell(self.blank) for _ in range(self.size)]
self.matches = []
self.refill = []
self.score = 0.0
self.spin_time = 15
def randomize(self):
"""
Replace the entire board with fresh shapes.
"""
rare_shapes = [1, 9, 23, 27, 40, 42, 50, 56, 70, 81, 90]
for i in range(self.size):
if i in rare_shapes:
self.board[i] = Cell(random.choice(self.rareshapes))
else:
self.board[i] = Cell(random.choice(self.shapes))
def pos(self, i, j):
"""
Return the index of the cell at position (i, j).
"""
assert(0 <= i < self.w)
assert(0 <= j < self.h)
return j * self.w + i
def busy(self):
"""
Return `True` if the board is busy animating an explosion or a
refill and so no further swaps should be permitted.
"""
return self.refill or self.matches
def tick(self, dt):
"""
Advance the board by `dt` seconds: move rising blocks (if
any); otherwise animate explosions for the matches (if any);
otherwise check for matches.
"""
if self.refill:
for c in self.refill:
c.tick(dt)
self.refill = [c for c in self.refill if c.offset > 0]
if self.refill:
return
elif self.matches:
self.explosion_time += dt
f = int(self.explosion_time * EXPLOSION_SPEED)
if f < len(self.explosion):
self.update_matches(self.explosion[f])
return
self.update_matches(self.blank)
self.refill = list(self.refill_columns())
self.explosion_time = 0
self.matches = self.find_matches()
def draw(self, display):
"""
Draw the board on the pygame surface `display`.
"""
display.blit(self.background, (0, 0))
for i, c in enumerate(self.board):
display.blit(c.image,
(MARGIN + SHAPE_WIDTH * (i % self.w),
MARGIN + SHAPE_HEIGHT * (i // self.w - c.offset) - 68))
display.blit(self.x, (995, 735))
display.blit(self.x, (1112, 735))
display.blit(self.x, (1228, 735))
def swap(self, cursor):
"""
Swap the two board cells covered by `cursor` and update the
matches.
"""
i = self.pos(*cursor)
b = self.board
b[i], b[i+1] = b[i+1], b[i]
self.matches = self.find_matches()
def find_matches(self):
"""
Search for matches (lines of cells with identical images) and
return a list of them, each match being represented as a list
of board positions.
"""
def lines():
for j in range(self.h):
yield range(j * self.w, (j + 1) * self.w)
for i in range(self.w):
yield range(i, self.size, self.w)
def key(i):
return self.image_color.get(self.board[i].image)
def matches():
for line in lines():
for _, group in itertools.groupby(line, key):
match = list(group)
if len(match) >= MINIMUM_MATCH:
yield match
self.score = self.score + 1
return list(matches())
def update_matches(self, image):
"""
Replace all the cells in any of the matches with `image`.
"""
for match in self.matches:
for position in match:
self.board[position].image = image
def refill_columns(self):
"""
Move cells downwards in columns to fill blank cells, and
create new cells as necessary so that each column is full. Set
appropriate offsets for the cells to animate into place.
"""
for i in range(self.w):
target = self.size - i - 1
for pos in range(target, -1, -self.w):
if self.board[pos].image != self.blank:
c = self.board[target]
c.image = self.board[pos].image
c.offset = (target - pos) // self.w
target -= self.w
yield c
offset = 1 + (target - pos) // self.w
for pos in range(target, -1, -self.w):
c = self.board[pos]
c.image = random.choice(self.shapes)
c.offset = offset
yield c
class Game(object):
"""
The state of the game, with properties:
`clock` -- the pygame clock.
`display` -- the window to draw into.
`font` -- a font for drawing the score.
`board` -- the board of cells.
`cursor` -- the current position of the (left half of) the cursor.
`score` -- the player's score.
`last_swap_ticks` --
`swap_time` -- time since last swap (in seconds).
"""
def __init__(self):
pygame.init()
pygame.display.set_caption("Nucleotide")
self.clock = pygame.time.Clock()
self.display = pygame.display.set_mode((WINDOW_WIDTH, WINDOW_HEIGHT),
DOUBLEBUF)
self.board = Board(PUZZLE_COLUMNS, PUZZLE_ROWS)
self.font = pygame.font.Font(None, FONT_SIZE)
def start(self):
"""
Start a new game with a random board.
"""
self.board.randomize()
self.cursor = [0, 0]
self.score = 0.0
self.swap_time = 125
def quit(self):
"""
Quit the game and exit the program.
"""
pygame.quit()
sys.exit()
def play(self):
"""
Play a game: repeatedly tick, draw and respond to input until
the QUIT event is received.
"""
self.start()
while True:
self.draw()
dt = min(self.clock.tick(FPS) / 1000, 1 / FPS)
self.swap_time -= dt
for event in pygame.event.get():
if event.type == KEYUP:
self.input(event.key)
elif event.type == QUIT:
self.quit()
elif self.swap_time == 0:
self.quit()
self.board.tick(dt)
def input(self, key):
"""
Respond to the player pressing `key`.
"""
if key == K_q:
self.quit()
elif key == K_RIGHT and self.cursor[0] < self.board.w - 2:
self.cursor[0] += 1
elif key == K_LEFT and self.cursor[0] > 0:
self.cursor[0] -= 1
elif key == K_DOWN and self.cursor[1] < self.board.h - 1:
self.cursor[1] += 1
elif key == K_UP and self.cursor[1] > 0:
self.cursor[1] -= 1
elif key == K_SPACE and not self.board.busy():
self.swap()
def swap(self):
"""
Swap the two cells under the cursor and update the player's score.
"""
self.board.swap(self.cursor)
def draw(self):
self.board.draw(self.display)
self.draw_score()
self.draw_time()
if VERTICAL == False:
self.draw_cursor()
elif VERTICAL == True:
self.draw_cursor2()
pygame.display.update()
def draw_time(self):
s = int(self.swap_time)
text = self.font.render(str(int(s/60)) + ":" + str(s%60).zfill(2),
True, BLACK)
self.display.blit(text, (TEXT_OFFSET, WINDOW_HEIGHT - 170))
def draw_score(self):
total_score = self.score
def draw_cursor(self):
topLeft = (MARGIN + self.cursor[0] * SHAPE_WIDTH,
MARGIN + self.cursor[1] * SHAPE_HEIGHT - 68)
topRight = (topLeft[0] + SHAPE_WIDTH * 2, topLeft[1])
bottomLeft = (topLeft[0], topLeft[1] + SHAPE_HEIGHT)
bottomRight = (topRight[0], topRight[1] + SHAPE_HEIGHT)
pygame.draw.lines(self.display, WHITE, True,
[topLeft, topRight, bottomRight, bottomLeft], 3)
if __name__ == '__main__':
Game().play()
If what you are asking for is a way to more easily specify at which rareshapecount intervals you should place a rare shape instead of a normal shape, the following approach is more readable:
def randomize(self):
"""
Replace the entire board with fresh shapes.
"""
# locations we want to place a rare shape
rare_shapes = [9, 23, 27]
for i in range(self.size):
if i in rare_shapes:
self.board[i] = Cell(random.choice(self.rareshapes))
else:
self.board[i] = Cell (random.choice(self.shapes))
Optionally, you could randomly populate rare_shapes if you don't feel like hardcoding the intervals each time, making for a more varied experience (i.e., if you're designing a game or something similar).
What you mean by "I can decide what rareshape spawns instead of it picking a random rareshape" is unclear to me. Would you care to give more explanations ? Like how you would tell the program which rareshape to use ?
In the meantime, here's a somewhat more pythonic version of your code:
def randomize(self):
"""
Replace the entire board with fresh shapes.
"""
specials = dict((x, self.rareshapes) for x in (9, 23, 27))
get_shape_source = lambda x: specials.get(x, self.shapes)
for i in xrange(min(self.size, 41)):
self.board[i] = Cell(random.choice(get_shape_source(i)))
Note that this would break if len(self.board) < min(self.size, 41) but well, that's still basically what your current code do.
edit: given your comment, the obvious way to explicitly choose which rareshape goes where is to explicitly associate images with spots. Now what's the best way to do so / the best place ton configure this really depends on your whole code or at least on more than what you posted. As a very simple and minimal exemple, you could just have this:
from collections import ordereddict
def load_images(self)
self.image_color = {}
self.shapes = []
self.rareshapes = ordereddict()
colors = 'red', 'blue', 'yellow'
letters = 'acgtu'
for c in colors:
im = pygame.image.load('images/{}.png'.format(c))
self.shapes.append(im)
self.image_color[im] = c
for l in letters:
im = pygame.image.load('rareimages/{}{}.png'.format(c, l))
self.rareshapes.[(c, l)] = im
self.image_color[im] = l
def randomize(self):
"""
Replace the entire board with fresh shapes.
"""
raremap = {
# spot index : rareshape
9: ('red', 'a')],
23: ('blue', 'u'),
27: ('yellow', 'g')
}
for i in xrange(self.size):
if i in raremap:
im = self.rareshapes[raremap[i]]
else:
im = random.choice(self.shapes)
self.board[i] = Cell(im)
But it will be just unmaintainable in the long run - too much hardcoded stuff, and too much knowledge leaking from one method to another. I don't know what 'self' is an instance of, but you should considered splitting the responsabilities so you have the invariant parts in one class and the "configration" (images to load, spots / rareshapes mapping etc) in another. Some design patterns that come to mind are TemplateMethod (where you have an abstract base class with the invariant parts and concrete subclasses implementing the "configuration" part), Builder, and of course Strategy (in your case the "Strategy" class would take care of the configuration).