scipy integrate over array with variable bounds - python

I am trying to integrate a function over a list of point and pass the whole array to an integration function in order ot vectorize the thing. For starters, calling scipy.integrate.quad is way too slow since I have something like 10 000 000 points to integrate. Using scipy.integrate.romberg does the trick much faster, almost instantaneous while quad is slow since you must loop over it or vectorize it.
My function is quite complicated, but for demonstation purpose, let's say I want to integrate x^2 from a to b, but x is an array of scalar to evaluate x. For example
import numpy as np
from scipy.integrate import quad, romberg
def integrand(x, y):
return x**2 + y**2
quad(integrand, 0, 10, args=(10) # this fails since y is not a scalar
romberg(integrand, 0, 10) # y works here, giving the integral over
# the entire range
But this only work for fixed bounds. Is there a way to do something like
z = np.arange(20,30)
romberg(integrand, 0, z) # Fails since the function doesn't seem to
# support variable bounds
Only way I see it is to re-implement the algorithm itself in numpy and use that instead so I can have variable bounds. Any function that supports something like this? There is also romb, where you must supply the values of integrand directly and a dx interval, but that will be too imprecise for my complicated function (the marcum Q function, couldn't find any implementation, that could be another way to dot it).

The best approach when trying to evaluate a special function is to write a function that uses the properties of the function to quickly and accurately evaluate it in all parameter regimes. It is quite unlikely that a single approach will give accurate (or even stable) results for all ranges of parameters. Direct evaluation of an integral, as in this case, will almost certainly break down in many cases.
That being said, the general problem of evaluating an integral over many ranges can be solved by turning the integral into a differential equation and solving that. Roughly, the steps would be
Given an integral I(t) which I will assume is an integral of a function f(x) from 0 to t [this can be generalized to an arbitrary lower limit], write it as the differential equation dI/dt = f(x).
Solve this differential equation using scipy.integrate.odeint() for some initial conditions (here I(0)) over some range of times from 0 to t. This range should contain all limits of interest. How finely this is sampled depends on the function and how accurately it needs to be evaluated.
The result will be the value of the integral from 0 to t for the set of t we input. We can turn this into a "continuous" function using interpolation. For example, using a spline we can define i = scipy.interpolate.InterpolatedUnivariateSpline(t,I).
Given a set of upper and lower limits in arrays b and a, respectively, then we can evaluate them all at once as res=i(b)-i(a).
Whether this approach will work in your case will require you to carefully study it over your range of parameters. Also note that the Marcum Q function involves a semi-infinite integral. In principle this is not a problem, just transform the integral to one over a finite range. For example, consider the transformation x->1/x. There is no guarantee this approach will be numerically stable for your problem.

Related

Sympy function derivatives and sets of equations

I'm working with nonlinear systems of equations. These systems are generally a nonlinear vector differential equation.
I now want to use functions and derive them with respect to time and to their time-derivatives, and find equilibrium points by solving the nonlinear equations 0=rhs(eqs).
Similar things are needed to calculate the Euler-Lagrange equations, where you need the derivative of L wrt. diff(x,t).
Now my question is, how do I implement this in Sympy?
My main 2 problems are, that deriving a Symbol f wrt. t diff(f,t), I get 0. I can see, that with
x = Symbol('x',real=True);
diff(x.subs(x,x(t)),t) # because diff(x,t) => 0
and
diff(x**2, x)
does kind of work.
However, with
x = Fuction('x')(t);
diff(x,t);
I get this to work, but I cannot differentiate wrt. the funtion x itself, like
diff(x**2,x) -DOES NOT WORK.
Since I need these things, especially not only for scalars, but for vectors (using jacobian) all the time, I really want this to be a clean and functional workflow.
Which kind of type should I initiate my mathematical functions in Sympy in order to avoid strange substitutions?
It only gets worse for matricies, where I cannot get
eqns = Matrix([f1-5, f2+1]);
variabs = Matrix([f1,f2]);
nonlinsolve(eqns,variabs);
to work as expected, since it only allows symbols as input. Is there an easy conversion here? Like eqns.tolist() - which doesn't work either?
EDIT:
I just found this question, which was answered towards using expressions and matricies. I want to be able to solve sets of nonlinear equations, build the jacobian of a vector wrt. another vector and derive wrt. functions as stated above. Can anyone point me into a direction to start a concise workflow for this purpose? I guess the most complex task is calculating the Lie-derivative wrt. a vector or list of functions, the rest should be straight forward.
Edit 2:
def substi(expr,variables):
return expr.subs( {w:w(t)} )
would automate the subsitution, such that substi(vector_expr,varlist_vector).diff(t) is not all 0.
Yes, one has to insert an argument in a function before taking its derivative. But after that, differentiation with respect to x(t) works for me in SymPy 1.1.1, and I can also differentiate with respect to its derivative. Example of Euler-Lagrange equation derivation:
t = Symbol("t")
x = Function("x")(t)
L = x**2 + diff(x, t)**2 # Lagrangian
EL = -diff(diff(L, diff(x, t)), t) + diff(L, x)
Now EL is 2*x(t) - 2*Derivative(x(t), t, t) as expected.
That said, there is a build-in method for Euler-Lagrange:
EL = euler_equations(L)
would yield the same result, except presented as a differential equation with right-hand side 0: [Eq(2*x(t) - 2*Derivative(x(t), t, t), 0)]
The following defines x to be a function of t
import sympy as s
t = s.Symbol('t')
x = s.Function('x')(t)
This should solve your problem of diff(x,t) being evaluated as 0. But I think you will still run into problems later on in your calculations.
I also work with calculus of variations and Euler-Lagrange equations. In these calculations, x' needs to be treated as independent of x. So, it is generally better to use two entirely different variables for x and x' so as not to confuse Sympy with the relationship between those two variables. After we are done with the calculations in Sympy and we go back to our pen and paper we can substitute x' for the second variable.

Find global minimum using scipy.optimize.minimize

Given a 2D point p, I'm trying to calculate the smallest distance between that point and a functional curve, i.e., find the point on the curve which gives me the smallest distance to p, and then calculate that distance. The example function that I'm using is
f(x) = 2*sin(x)
My distance function for the distance between some point p and a provided function is
def dist(p, x, func):
x = np.append(x, func(x))
return sum([[i - j]**2 for i,j in zip(x,p)])
It takes as input, the point p, a position x on the function, and the function handle func. Note this is a squared Euclidean distance (since minimizing in Euclidean space is the same as minimizing in squared Euclidean space).
The crucial part of this is that I want to be able to provide bounds for my function so really I'm finding the closest distance to a function segment. For this example my bounds are
bounds = [0, 2*np.pi]
I'm using the scipy.optimize.minimize function to minimize my distance function, using the bounds. A result of the above process is shown in the graph below.
This is a contour plot showing distance from the sin function. Notice how there appears to be a discontinuity in the contours. For convenience, I've plotted a few points around that discontinuity and the "closet" points on the curve that they map to.
What's actually happening here is that the scipy function is finding a local minimum (given some initial guess), but not a global one and that is causing the discontinuity. I know finding the global minimum of any function is impossible, but I'm looking for a more reliable way to find the global minimum.
Possible methods for finding a global minimum would be
Choose a smart initial guess, but this amounts to knowing approximately where the global minimum is to begin with, which is using the solution of the problem to solve it.
Use a multiple initial guesses and choose the answer which gets to the best minimum. This however seems like a poor choice, especially when my functions get more complicated (and higher dimensional).
Find the minimum, then perturb the solution and find the minimum again, hoping that I may have knocked it into a better minimum. I'm hoping that maybe there is some way to do this simply without evoking some complicated MCMC algorithm or something like that. Speed counts for this process.
Any suggestions about the best way to go about this, or possibly directions to useful functions that may tackle this problem would be great!
As suggest in a comment, you could try a global optimization algorithm such as scipy.optimize.differential_evolution. However, in this case, where you have a well-defined and analytically tractable objective function, you could employ a semi-analytical approach, taking advantage of the first-order necessary conditions for a minimum.
In the following, the first function is the distance metric and the second function is (the numerator of) its derivative w.r.t. x, that should be zero if a minimum occurs at some 0<x<2*np.pi.
import numpy as np
def d(x, p):
return np.sum((p-np.array([x,2*np.sin(x)]))**2)
def diff_d(x, p):
return -2 * p[0] + 2 * x - 4 * p[1] * np.cos(x) + 4 * np.sin(2*x)
Now, given a point p, the only potential minimizers of d(x,p) are the roots of diff_d(x,p) (if any), as well as the boundary points x=0 and x=2*np.pi. It turns out that diff_d may have more than one root. Noting that the derivative is a continuous function, the pychebfun library offers a very efficient method for finding all the roots, avoiding cumbersome approaches based on the scipy root-finding algorithms.
The following function provides the minimum of d(x, p) for a given point p:
import pychebfun
def min_dist(p):
f_cheb = pychebfun.Chebfun.from_function(lambda x: diff_d(x, p), domain = (0,2*np.pi))
potential_minimizers = np.r_[0, f_cheb.roots(), 2*np.pi]
return np.min([d(x, p) for x in potential_minimizers])
Here is the result:

Solving improper integral without approximating

I'm having trouble solving this integral in python. The function being integrated is not defined on the boundaries of integration.
I've found a few more questions similar to this, but all were very specific replies to the issue in particular.
I don't want to approximate the integral too much, if possible not at all, as the reason I'm doing this integral in the first place is to avoid an approximation.
Is there any way to solve this integral?
import numpy as np
from pylab import *
import scipy
from math import *
from scipy import integrate
m_Earth_air = (28.0134*0.78084)+(31.9988*0.209476)+(39.948*0.00934)+(44.00995*0.000314)+(20.183*0.00001818)+(4.0026*0.00000524)+(83.80*0.00000114)+(131.30*0.000000087)+(16.04303*0.000002)+(2.01594*0.0000005)
Tb0 = 288.15
Lb0 = -6.5
Hb0 = 0.0
def Tm_0(z):
return Tb0+Lb0*(z-Hb0)
k = 1.38*10**-19 #cm^2.kg/s^2.K #Boltzmann cst
mp = 1.67262177*10**-27 #kg
Rad= 637100000.0 #radius planet #cm
g0 = 980.665 #cm/s^2
def g(z):
return (g0*((Rad/(Rad+z))**2.0))
def scale_height0(z):
return k*Tm_0(z*10**-5)/(m_Earth_air*mp*g(z))
def functionz(z,zvar):
return np.exp(-zvar/scale_height0(z))*((Rad+zvar)/(Rad+z))/((np.sqrt(((Rad+zvar)/(Rad+z))**2.0-1.0)))
def chapman0(z):
return (1.0/(scale_height0(z)))*((integrate.quad(lambda zvar: functionz(z,zvar), z, np.inf))[0])
print chapman0(1000000)
print chapman0(5000000)
The first block of variables and definitions are fine. The issue is in the "functionz(z,zvar)" and its integration.
Any help very much appreciated !
Unless you can solve the integral analytically there is no way to solve it without an approximation over its bounds. This isn't a Python problem, but a calculus problem in general, thus why math classes take such great pains to show you the numeric approximations.
If you don't want it to differ too much, choose a small epsilon with a method that converges fast.
Edit- Clarity on last statement:
Epsilon - ɛ - refers to the step size through the bounds of integration- the delta x- remember that the numeric approximation methods all slice the integral into slivers and add them back up, think of it as the width of each sliver, the smaller the sliver the better the approximation. You can specify these in numerical packages.
A method that converges fast implies the method approaches the true value of the integral quickly and the error of approximation is small for each sliver. For example, the Riemann sum is a naive method which assumes each sliver is a rectangle, while a trapezoid connects the beginning and the end of the sliver with a line to make a trapezoid. Of these 2, trapezoid typically converges faster as it tries to account for the change within the shape. (Neither is typically used as there are better guesses for most functions)
Both of these variables change the computational expense of the calculation. Typically epsilon is the most expensive to change, thus why it is important you choose a good method of approximation (some can differ by an order of magnitude in error for the same epsilon).
All of this will depend on how much error your calculation can tolerate.
It often helps to eliminate possible numerical instabilities by rescaling variables. In your case zvar starts from 1e6, which is probably causing problems due to some implementation details in quad(). If you scale it as y = zvar / z, so that the integration starts from 1 it seems to converge pretty well for z = 1e6:
def functiony(z, y):
return np.exp(-y*z/scale_height0(z))*(Rad+y*z)/(Rad+z) / np.sqrt(((Rad+y*z)/(Rad+z))**2.0-1.0)
def chapman0y(z):
return (1.0/(scale_height0(z)))*((integrate.quad(lambda y: functiony(z,y), 1, np.inf))[0])
>>> print(chapman0y(1000000))
1.6217257661844094e-06
(I set m_Earth_air = 28.8e-3 — this constant is missing in your code, I assumed it is the molar mass of air in (edit) kg/mole).
As for z = 5e6, scale_height0(z) is negative, which gives a huge positive value under the exponent, making the integral divergent on the infinity.
I had a similar issue and found that SciPy quad needs you to specify another parameter, epsabs=1e-1000, limit=1000 (stepsize limit), epsrel=1e1 works for everything I've tried. I.e. in this case:
def chapman0(z):
return (1.0/(scale_height0(z)))*((integrate.quad(lambda zvar: functionz(z,zvar), z, np.inf, limit=1000, epsabs=1e-1000, epsrel=1e1))[0])[0])
#results:
0.48529410529321887
-1.276589093231806e+21
Seems to be a high absolute error tolerance but for integrals that don't rapidly converge it seems to fix the issue. Just posting for others with similar problems as this post is quite dated. There are algorithms in other packages that converge faster but none that I've found in SciPy. The results are based on the posted code (not the selected answer).

polyfit refining: setting polynomial to be always possitive

I am trying to fit a polynomial to my data, e.g.
import scipy as sp
x = [1,6,9,17,23,28]
y = [6.1, 7.52324, 5.71, 5.86105, 6.3, 5.2]
and say I know the degree of polynomial (e.g.: 3), then I just use scipy.polyfit method to get the polynomial of a given degree:
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
fittedModelFunction = sp.polyfit(x, y, 3)
func = sp.poly1d(fittedModelFunction)
++++++++++++++++++++++++++++++
QUESTIONS: ++++++++++++++++++++++++++++++
1) How can I tell in addition that the resulting function func must be always positive (i.e. f(x) >= 0 for any x)?
2) How can I further define a constraint (e.g. number of (local) min and max points, etc.) in order to get a better fitting?
Is there smth like this:
http://mail.scipy.org/pipermail/scipy-user/2007-July/013138.html
but more accurate?
Always Positve
I haven't been able to find a scipy reference that determines if a function is positive-definite, but an indirect way would be to find the all the roots - Scipy Roots - of the function and inspect the limits near those roots. There are a few cases to consider:
No roots at all
Pick any x and evaluate the function. Since the function does not cross the x-axis because of a lack of roots, any positive result will indicate the function is positive!
Finite number of roots
This is probably the most likely case. You would have to inspect the limits before and after each root - Scipy Limits. You would have to specify your own minimum acceptable delta for the limit however. I haven't seen a 2-sided limit method provided by Scipy, but it looks simple enough to make your own.
from sympy import limit
// f: function, v: variable to limit, p: point, d: delta
// returns two limit values
def twoSidedLimit(f, v, p, d):
return limit(f, v, p-d), limit(f, v, p+d)
Infinite roots
I don't think that polyfit would generate an oscillating function, but this is something to consider. I don't know how to handle this with the method I have already offered... Um, hope it does not happen?
Constraints
The only built-in form of constraints seems to be limited to the optimize library of SciPy. A crude way to enforce constraints for polyfit would be to get the function from polyfit, generate a vector of values for various x, and try to select values from the vector that violate the constraint. If you try to use filter, map, or lambda it may be slow with large vectors since python's filter makes a copy of the list/vector being filtered. I can't really help in this regard.

Derivative of an array in python?

Currently I have two numpy arrays: x and y of the same size.
I would like to write a function (possibly calling numpy/scipy... functions if they exist):
def derivative(x, y, n = 1):
# something
return result
where result is a numpy array of the same size of x and containing the value of the n-th derivative of y regarding to x (I would like the derivative to be evaluated using several values of y in order to avoid non-smooth results).
This is not a simple problem, but there are a lot of methods that have been devised to handle it. One simple solution is to use finite difference methods. The command numpy.diff() uses finite differencing where you can specify the order of the derivative.
Wikipedia also has a page that lists the needed finite differencing coefficients for different derivatives of different accuracies. If the numpy function doesn't do what you want.
Depending on your application you can also use scipy.fftpack.diff which uses a completely different technique to do the same thing. Though your function needs a well defined Fourier transform.
There are lots and lots and lots of variants (e.g. summation by parts, finite differencing operators, or operators designed to preserve known evolution constants in your system of equations) on both of the two ideas above. What you should do will depend a great deal on what the problem is that you are trying to solve.
The good thing is that there is a lot of work has been done in this field. The Wikipedia page for Numerical Differentiation has some resources (though it is focused on finite differencing techniques).
The findiff project is a Python package that can do derivatives of arrays of any dimension with any desired accuracy order (of course depending on your hardware restrictions). It can handle arrays on uniform as well as non-uniform grids and also create generalizations of derivatives, i.e. general linear combinations of partial derivatives with constant and variable coefficients.
Would something like this solve your problem?
def get_inflection_points(arr, n=1):
"""
returns inflextion points from array
arr: array
n: n-th discrete difference
"""
inflections = []
dx = 0
for i, x in enumerate(np.diff(arr, n)):
if x >= dx and i > 0:
inflections.append(i*n)
dx = x
return inflections

Categories