Flattening list in python - python

I have seen many posts regarding how to flatten a list in Python. But I was never able to understand how this is working: reduce(lambda x,y:x+y,*myList)
Could someone please explain, how this is working:
>>> myList = [[[1,2,3],[4,5],[6,7,8,9]]]
>>> reduce(lambda x,y:x+y,*myList)
[1, 2, 3, 4, 5, 6, 7, 8, 9]
>>>
Linked already posted :
How to print list of list into one single list in python without using any for or while loop?
Flattening a shallow list in Python
Flatten (an irregular) list of lists
If anybody thinks this is duplicate to other post, I'll remove it once I understood how it works.
Thanks.

What reduce does, in plain English, is that it takes two things:
A function f that:
Accepts exactly 2 arguments
Returns a value computed using those two values
An iterable iter (e.g. a list or str)
reduce computes the result of f(iter[0],iter[1]) (the first two items of the iterable), and keeps track of this value that was just computed (call it temp). reduce then computes f(temp,iter[2]) and now keeps track of this new value. This process continues until every item in iter has been passed into f, and returns the final value computed.
The use of * in passing *myList into the reduce function is that it takes an iterable and turns it into multiple arguments. These two lines do the same thing:
myFunc(10,12)
myFunc(*[10,12])
In the case of myList, you're using a list that contains only exactly one list in it. For that reason, putting the * in front replaces myList with myList[0].
Regarding compatibility, note that the reduce function works totally fine in Python 2, but in Python 3 you'll have to do this:
import functools
functools.reduce(some_iterable)

It is equivalent to :
def my_reduce(func, seq, default=None):
it = iter(seq)
# assign either the first item from the iterable to x or the default value
# passed to my_reduce
x = next(it) if default is None else default
#For each item in iterable, update x by appying the function on x and y
for y in it:
x = func(x, y)
return x
...
>>> my_reduce(lambda a, b: a+b, *myList, default=[])
[1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> my_reduce(lambda a, b: a+b, *myList)
[1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> from operator import add
>>> my_reduce(add, *myList)
[1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> my_reduce(lambda a, b: a+b, ['a', 'b', 'c', 'd'])
'abcd'
Docstring of reduce has a very good explanation:
reduce(...)
reduce(function, sequence[, initial]) -> value
Apply a function of two arguments cumulatively to the items of a sequence,
from left to right, so as to reduce the sequence to a single value.
For example, reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates
((((1+2)+3)+4)+5). If initial is present, it is placed before the items
of the sequence in the calculation, and serves as a default when the
sequence is empty.

First of all, this is a very bad method. Just so you know.
reduce(f, [a, b, c, d]) runs
f(f(f(f(a, b), c), d)
Since f is lambda x,y:x+y, this is equivalent to
((a + b) + c) + d
For lists, a + b is the concatenation of the lists, so this joins each list.
This is slow because each step has to make a new list from scratch.

First, I don't know why it's wrapped in an array and then splatted (*). This will work the same way:
>>> myList = [[1,2,3],[4,5],[6,7,8,9]]
>>> reduce(lambda x,y:x+y,myList)
[1, 2, 3, 4, 5, 6, 7, 8, 9]
Explanation: reduce takes a method with two parameters - the accumulator and the element. It calls the method with each element and then sets the accumulator to the result of the lambda. Therefore, you're basically concatenating all the inner lists together.
Here's a step-by-step explanation:
accumulator is initialized to myList[0] which is [1,2,3]
lambda is called with [1,2,3] and [4,5], it returns [1,2,3,4,5], which is assigned to the accumulator
lambda is called with [1,2,3,4,5] and [6,7,8,9], it returns [1,2,3,4,5,6,7,8,9]
no more elements left, so reduce returns that

Related

return highest value of lists

Hello I have a few lists and im trying to create a new list of the highest values repsectively. for an example, these are the lists:
list1 = 5, 1, 4, 3
list2 = 3, 4, 2, 1
list3 = 10, 2, 5, 4
this is what I would like it to return:
[10, 4, 5, 4]
I thought that I could do a something like this:
largest = list(map(max(list1, list2, list3)))
but I get an error that map requires more than 1 argument.
I also thought I could write if, elif statements for greater than but it seems like it only does the first values and returns that list as the "greater value"
thanks for any help
This is the "zip splat" trick:
>>> lists = [list1, list2, list3]
>>> [max(col) for col in zip(*lists)]
[10, 4, 5, 4]
You could also use numpy arrays:
>>> import numpy as np
>>> np.array(lists).max(axis=0)
array([10, 4, 5, 4])
You have used map incorrectly. Replace that last line with this:
largest = list(map(max, zip(list1, list2, list3)))
In map, the first argument is the function to be applied, and the second argument is an iterable which will yield elements to apply the function on. The zip function lets you iterate over multiple iterables at once, returning tuples of corresponding elements. So that's how this code works!
Using map's iterableS argument has an implicit zip-like effects on the iterables.
map(max, *(list1, list2, list3))

I have a problem on python list comprehension code [duplicate]

Is it possible to define a recursive list comprehension in Python?
Possibly a simplistic example, but something along the lines of:
nums = [1, 1, 2, 2, 3, 3, 4, 4]
willThisWork = [x for x in nums if x not in self] # self being the current comprehension
Is anything like this possible?
No, there's no (documented, solid, stable, ...;-) way to refer to "the current comprehension". You could just use a loop:
res = []
for x in nums:
if x not in res:
res.append(x)
of course this is very costly (O(N squared)), so you can optimize it with an auxiliary set (I'm assuming that keeping the order of items in res congruent to that of the items in nums, otherwise set(nums) would do you;-)...:
res = []
aux = set()
for x in nums:
if x not in aux:
res.append(x)
aux.add(x)
this is enormously faster for very long lists (O(N) instead of N squared).
Edit: in Python 2.5 or 2.6, vars()['_[1]'] might actually work in the role you want for self (for a non-nested listcomp)... which is why I qualified my statement by clarifying there's no documented, solid, stable way to access "the list being built up" -- that peculiar, undocumented "name" '_[1]' (deliberately chosen not to be a valid identifier;-) is the apex of "implementation artifacts" and any code relying on it deserves to be put out of its misery;-).
Starting Python 3.8, and the introduction of assignment expressions (PEP 572) (:= operator), which gives the possibility to name the result of an expression, we could reference items already seen by updating a variable within the list comprehension:
# items = [1, 1, 2, 2, 3, 3, 4, 4]
acc = []; [acc := acc + [x] for x in items if x not in acc]
# acc = [1, 2, 3, 4]
This:
Initializes a list acc which symbolizes the running list of elements already seen
For each item, this checks if it's already part of the acc list; and if not:
appends the item to acc (acc := acc + [x]) via an assignment expression
and at the same time uses the new value of acc as the mapped value for this item
Actually you can! This example with an explanation hopefully will illustrate how.
define recursive example to get a number only when it is 5 or more and if it isn't, increment it and call the 'check' function again. Repeat this process until it reaches 5 at which point return 5.
print [ (lambda f,v: v >= 5 and v or f(f,v+1))(lambda g,i: i >= 5 and i or g(g,i+1),i) for i in [1,2,3,4,5,6] ]
result:
[5, 5, 5, 5, 5, 6]
>>>
essentially the two anonymous functions interact in this way:
let f(g,x) = {
expression, terminal condition
g(g,x), non-terminal condition
}
let g(f,x) = {
expression, terminal condition
f(f,x), non-terminal condition
}
make g,f the 'same' function except that in one or both add a clause where the parameter is modified so as to cause the terminal condition to be reached and then go
f(g,x) in this way g becomes a copy of f making it like:
f(g,x) = {
expression, terminal condition
{
expression, terminal condition,
g(g,x), non-terminal codition
}, non-terminal condition
}
You need to do this because you can't access the the anonymous function itself upon being executed.
i.e
(lambda f,v: somehow call the function again inside itself )(_,_)
so in this example let A = the first function and B the second. We call A passing B as f and i as v. Now as B is essentially a copy of A and it's a parameter that has been passed you can now call B which is like calling A.
This generates the factorials in a list
print [ (lambda f,v: v == 0 and 1 or v*f(f,v-1))(lambda g,i: i == 0 and 1 or i*g(g,i-1),i) for i in [1,2,3,5,6,7] ]
[1, 2, 6, 120, 720, 5040]
>>>
Not sure if this is what you want, but you can write nested list comprehensions:
xs = [[i for i in range(1,10) if i % j == 0] for j in range(2,5)]
assert xs == [[2, 4, 6, 8], [3, 6, 9], [4, 8]]
From your code example, you seem to want to simply eliminate duplicates, which you can do with sets:
xs = sorted(set([1, 1, 2, 2, 3, 3, 4, 4]))
assert xs == [1, 2, 3, 4]
no. it won't work, there is no self to refer to while list comprehension is being executed.
And the main reason of course is that list comprehensions where not designed for this use.
No.
But it looks like you are trying to make a list of the unique elements in nums.
You could use a set:
unique_items = set(nums)
Note that items in nums need to be hashable.
You can also do the following. Which is a close as I can get to your original idea. But this is not as efficient as creating a set.
unique_items = []
for i in nums:
if i not in unique_items:
unique_items.append(i)
Do this:
nums = [1, 1, 2, 2, 3, 3, 4, 4]
set_of_nums = set(nums)
unique_num_list = list(set_of_nums)
or even this:
unique_num_list = sorted(set_of_nums)

Using Regex in Python 3 [duplicate]

How can I check if a list has any duplicates and return a new list without duplicates?
The common approach to get a unique collection of items is to use a set. Sets are unordered collections of distinct objects. To create a set from any iterable, you can simply pass it to the built-in set() function. If you later need a real list again, you can similarly pass the set to the list() function.
The following example should cover whatever you are trying to do:
>>> t = [1, 2, 3, 1, 2, 3, 5, 6, 7, 8]
>>> list(set(t))
[1, 2, 3, 5, 6, 7, 8]
>>> s = [1, 2, 3]
>>> list(set(t) - set(s))
[8, 5, 6, 7]
As you can see from the example result, the original order is not maintained. As mentioned above, sets themselves are unordered collections, so the order is lost. When converting a set back to a list, an arbitrary order is created.
Maintaining order
If order is important to you, then you will have to use a different mechanism. A very common solution for this is to rely on OrderedDict to keep the order of keys during insertion:
>>> from collections import OrderedDict
>>> list(OrderedDict.fromkeys(t))
[1, 2, 3, 5, 6, 7, 8]
Starting with Python 3.7, the built-in dictionary is guaranteed to maintain the insertion order as well, so you can also use that directly if you are on Python 3.7 or later (or CPython 3.6):
>>> list(dict.fromkeys(t))
[1, 2, 3, 5, 6, 7, 8]
Note that this may have some overhead of creating a dictionary first, and then creating a list from it. If you don’t actually need to preserve the order, you’re often better off using a set, especially because it gives you a lot more operations to work with. Check out this question for more details and alternative ways to preserve the order when removing duplicates.
Finally note that both the set as well as the OrderedDict/dict solutions require your items to be hashable. This usually means that they have to be immutable. If you have to deal with items that are not hashable (e.g. list objects), then you will have to use a slow approach in which you will basically have to compare every item with every other item in a nested loop.
In Python 2.7, the new way of removing duplicates from an iterable while keeping it in the original order is:
>>> from collections import OrderedDict
>>> list(OrderedDict.fromkeys('abracadabra'))
['a', 'b', 'r', 'c', 'd']
In Python 3.5, the OrderedDict has a C implementation. My timings show that this is now both the fastest and shortest of the various approaches for Python 3.5.
In Python 3.6, the regular dict became both ordered and compact. (This feature is holds for CPython and PyPy but may not present in other implementations). That gives us a new fastest way of deduping while retaining order:
>>> list(dict.fromkeys('abracadabra'))
['a', 'b', 'r', 'c', 'd']
In Python 3.7, the regular dict is guaranteed to both ordered across all implementations. So, the shortest and fastest solution is:
>>> list(dict.fromkeys('abracadabra'))
['a', 'b', 'r', 'c', 'd']
It's a one-liner: list(set(source_list)) will do the trick.
A set is something that can't possibly have duplicates.
Update: an order-preserving approach is two lines:
from collections import OrderedDict
OrderedDict((x, True) for x in source_list).keys()
Here we use the fact that OrderedDict remembers the insertion order of keys, and does not change it when a value at a particular key is updated. We insert True as values, but we could insert anything, values are just not used. (set works a lot like a dict with ignored values, too.)
>>> t = [1, 2, 3, 1, 2, 5, 6, 7, 8]
>>> t
[1, 2, 3, 1, 2, 5, 6, 7, 8]
>>> s = []
>>> for i in t:
if i not in s:
s.append(i)
>>> s
[1, 2, 3, 5, 6, 7, 8]
If you don't care about the order, just do this:
def remove_duplicates(l):
return list(set(l))
A set is guaranteed to not have duplicates.
To make a new list retaining the order of first elements of duplicates in L:
newlist = [ii for n,ii in enumerate(L) if ii not in L[:n]]
For example: if L = [1, 2, 2, 3, 4, 2, 4, 3, 5], then newlist will be [1, 2, 3, 4, 5]
This checks each new element has not appeared previously in the list before adding it.
Also it does not need imports.
There are also solutions using Pandas and Numpy. They both return numpy array so you have to use the function .tolist() if you want a list.
t=['a','a','b','b','b','c','c','c']
t2= ['c','c','b','b','b','a','a','a']
Pandas solution
Using Pandas function unique():
import pandas as pd
pd.unique(t).tolist()
>>>['a','b','c']
pd.unique(t2).tolist()
>>>['c','b','a']
Numpy solution
Using numpy function unique().
import numpy as np
np.unique(t).tolist()
>>>['a','b','c']
np.unique(t2).tolist()
>>>['a','b','c']
Note that numpy.unique() also sort the values. So the list t2 is returned sorted. If you want to have the order preserved use as in this answer:
_, idx = np.unique(t2, return_index=True)
t2[np.sort(idx)].tolist()
>>>['c','b','a']
The solution is not so elegant compared to the others, however, compared to pandas.unique(), numpy.unique() allows you also to check if nested arrays are unique along one selected axis.
In this answer, there will be two sections: Two unique solutions, and a graph of speed for specific solutions.
Removing Duplicate Items
Most of these answers only remove duplicate items which are hashable, but this question doesn't imply it doesn't just need hashable items, meaning I'll offer some solutions which don't require hashable items.
collections.Counter is a powerful tool in the standard library which could be perfect for this. There's only one other solution which even has Counter in it. However, that solution is also limited to hashable keys.
To allow unhashable keys in Counter, I made a Container class, which will try to get the object's default hash function, but if it fails, it will try its identity function. It also defines an eq and a hash method. This should be enough to allow unhashable items in our solution. Unhashable objects will be treated as if they are hashable. However, this hash function uses identity for unhashable objects, meaning two equal objects that are both unhashable won't work. I suggest you override this, and changing it to use the hash of an equivalent mutable type (like using hash(tuple(my_list)) if my_list is a list).
I also made two solutions. Another solution which keeps the order of the items, using a subclass of both OrderedDict and Counter which is named 'OrderedCounter'. Now, here are the functions:
from collections import OrderedDict, Counter
class Container:
def __init__(self, obj):
self.obj = obj
def __eq__(self, obj):
return self.obj == obj
def __hash__(self):
try:
return hash(self.obj)
except:
return id(self.obj)
class OrderedCounter(Counter, OrderedDict):
'Counter that remembers the order elements are first encountered'
def __repr__(self):
return '%s(%r)' % (self.__class__.__name__, OrderedDict(self))
def __reduce__(self):
return self.__class__, (OrderedDict(self),)
def remd(sequence):
cnt = Counter()
for x in sequence:
cnt[Container(x)] += 1
return [item.obj for item in cnt]
def oremd(sequence):
cnt = OrderedCounter()
for x in sequence:
cnt[Container(x)] += 1
return [item.obj for item in cnt]
remd is non-ordered sorting, while oremd is ordered sorting. You can clearly tell which one is faster, but I'll explain anyways. The non-ordered sorting is slightly faster, since it doesn't store the order of the items.
Now, I also wanted to show the speed comparisons of each answer. So, I'll do that now.
Which Function is the Fastest?
For removing duplicates, I gathered 10 functions from a few answers. I calculated the speed of each function and put it into a graph using matplotlib.pyplot.
I divided this into three rounds of graphing. A hashable is any object which can be hashed, an unhashable is any object which cannot be hashed. An ordered sequence is a sequence which preserves order, an unordered sequence does not preserve order. Now, here are a few more terms:
Unordered Hashable was for any method which removed duplicates, which didn't necessarily have to keep the order. It didn't have to work for unhashables, but it could.
Ordered Hashable was for any method which kept the order of the items in the list, but it didn't have to work for unhashables, but it could.
Ordered Unhashable was any method which kept the order of the items in the list, and worked for unhashables.
On the y-axis is the amount of seconds it took.
On the x-axis is the number the function was applied to.
I generated sequences for unordered hashables and ordered hashables with the following comprehension: [list(range(x)) + list(range(x)) for x in range(0, 1000, 10)]
For ordered unhashables: [[list(range(y)) + list(range(y)) for y in range(x)] for x in range(0, 1000, 10)]
Note there is a step in the range because without it, this would've taken 10x as long. Also because in my personal opinion, I thought it might've looked a little easier to read.
Also note the keys on the legend are what I tried to guess as the most vital parts of the implementation of the function. As for what function does the worst or best? The graph speaks for itself.
With that settled, here are the graphs.
Unordered Hashables
(Zoomed in)
Ordered Hashables
(Zoomed in)
Ordered Unhashables
(Zoomed in)
Very late answer.
If you don't care about the list order, you can use *arg expansion with set uniqueness to remove dupes, i.e.:
l = [*{*l}]
Python3 Demo
A colleague have sent the accepted answer as part of his code to me for a codereview today.
While I certainly admire the elegance of the answer in question, I am not happy with the performance.
I have tried this solution (I use set to reduce lookup time)
def ordered_set(in_list):
out_list = []
added = set()
for val in in_list:
if not val in added:
out_list.append(val)
added.add(val)
return out_list
To compare efficiency, I used a random sample of 100 integers - 62 were unique
from random import randint
x = [randint(0,100) for _ in xrange(100)]
In [131]: len(set(x))
Out[131]: 62
Here are the results of the measurements
In [129]: %timeit list(OrderedDict.fromkeys(x))
10000 loops, best of 3: 86.4 us per loop
In [130]: %timeit ordered_set(x)
100000 loops, best of 3: 15.1 us per loop
Well, what happens if set is removed from the solution?
def ordered_set(inlist):
out_list = []
for val in inlist:
if not val in out_list:
out_list.append(val)
return out_list
The result is not as bad as with the OrderedDict, but still more than 3 times of the original solution
In [136]: %timeit ordered_set(x)
10000 loops, best of 3: 52.6 us per loop
Another way of doing:
>>> seq = [1,2,3,'a', 'a', 1,2]
>> dict.fromkeys(seq).keys()
['a', 1, 2, 3]
Simple and easy:
myList = [1, 2, 3, 1, 2, 5, 6, 7, 8]
cleanlist = []
[cleanlist.append(x) for x in myList if x not in cleanlist]
Output:
>>> cleanlist
[1, 2, 3, 5, 6, 7, 8]
I had a dict in my list, so I could not use the above approach. I got the error:
TypeError: unhashable type:
So if you care about order and/or some items are unhashable. Then you might find this useful:
def make_unique(original_list):
unique_list = []
[unique_list.append(obj) for obj in original_list if obj not in unique_list]
return unique_list
Some may consider list comprehension with a side effect to not be a good solution. Here's an alternative:
def make_unique(original_list):
unique_list = []
map(lambda x: unique_list.append(x) if (x not in unique_list) else False, original_list)
return unique_list
All the order-preserving approaches I've seen here so far either use naive comparison (with O(n^2) time-complexity at best) or heavy-weight OrderedDicts/set+list combinations that are limited to hashable inputs. Here is a hash-independent O(nlogn) solution:
Update added the key argument, documentation and Python 3 compatibility.
# from functools import reduce <-- add this import on Python 3
def uniq(iterable, key=lambda x: x):
"""
Remove duplicates from an iterable. Preserves order.
:type iterable: Iterable[Ord => A]
:param iterable: an iterable of objects of any orderable type
:type key: Callable[A] -> (Ord => B)
:param key: optional argument; by default an item (A) is discarded
if another item (B), such that A == B, has already been encountered and taken.
If you provide a key, this condition changes to key(A) == key(B); the callable
must return orderable objects.
"""
# Enumerate the list to restore order lately; reduce the sorted list; restore order
def append_unique(acc, item):
return acc if key(acc[-1][1]) == key(item[1]) else acc.append(item) or acc
srt_enum = sorted(enumerate(iterable), key=lambda item: key(item[1]))
return [item[1] for item in sorted(reduce(append_unique, srt_enum, [srt_enum[0]]))]
If you want to preserve the order, and not use any external modules here is an easy way to do this:
>>> t = [1, 9, 2, 3, 4, 5, 3, 6, 7, 5, 8, 9]
>>> list(dict.fromkeys(t))
[1, 9, 2, 3, 4, 5, 6, 7, 8]
Note: This method preserves the order of appearance, so, as seen above, nine will come after one because it was the first time it appeared. This however, is the same result as you would get with doing
from collections import OrderedDict
ulist=list(OrderedDict.fromkeys(l))
but it is much shorter, and runs faster.
This works because each time the fromkeys function tries to create a new key, if the value already exists it will simply overwrite it. This wont affect the dictionary at all however, as fromkeys creates a dictionary where all keys have the value None, so effectively it eliminates all duplicates this way.
I've compared the various suggestions with perfplot. It turns out that, if the input array doesn't have duplicate elements, all methods are more or less equally fast, independently of whether the input data is a Python list or a NumPy array.
If the input array is large, but contains just one unique element, then the set, dict and np.unique methods are costant-time if the input data is a list. If it's a NumPy array, np.unique is about 10 times faster than the other alternatives.
It's somewhat surprising to me that those are not constant-time operations, too.
Code to reproduce the plots:
import perfplot
import numpy as np
import matplotlib.pyplot as plt
def setup_list(n):
# return list(np.random.permutation(np.arange(n)))
return [0] * n
def setup_np_array(n):
# return np.random.permutation(np.arange(n))
return np.zeros(n, dtype=int)
def list_set(data):
return list(set(data))
def numpy_unique(data):
return np.unique(data)
def list_dict(data):
return list(dict.fromkeys(data))
b = perfplot.bench(
setup=[
setup_list,
setup_list,
setup_list,
setup_np_array,
setup_np_array,
setup_np_array,
],
kernels=[list_set, numpy_unique, list_dict, list_set, numpy_unique, list_dict],
labels=[
"list(set(lst))",
"np.unique(lst)",
"list(dict(lst))",
"list(set(arr))",
"np.unique(arr)",
"list(dict(arr))",
],
n_range=[2 ** k for k in range(23)],
xlabel="len(array)",
equality_check=None,
)
# plt.title("input array = [0, 1, 2,..., n]")
plt.title("input array = [0, 0,..., 0]")
b.save("out.png")
b.show()
You could also do this:
>>> t = [1, 2, 3, 3, 2, 4, 5, 6]
>>> s = [x for i, x in enumerate(t) if i == t.index(x)]
>>> s
[1, 2, 3, 4, 5, 6]
The reason that above works is that index method returns only the first index of an element. Duplicate elements have higher indices. Refer to here:
list.index(x[, start[, end]])
Return zero-based index in the list of
the first item whose value is x. Raises a ValueError if there is no
such item.
Best approach of removing duplicates from a list is using set() function, available in python, again converting that set into list
In [2]: some_list = ['a','a','v','v','v','c','c','d']
In [3]: list(set(some_list))
Out[3]: ['a', 'c', 'd', 'v']
You can use set to remove duplicates:
mylist = list(set(mylist))
But note the results will be unordered. If that's an issue:
mylist.sort()
Try using sets:
import sets
t = sets.Set(['a', 'b', 'c', 'd'])
t1 = sets.Set(['a', 'b', 'c'])
print t | t1
print t - t1
One more better approach could be,
import pandas as pd
myList = [1, 2, 3, 1, 2, 5, 6, 7, 8]
cleanList = pd.Series(myList).drop_duplicates().tolist()
print(cleanList)
#> [1, 2, 3, 5, 6, 7, 8]
and the order remains preserved.
This one cares about the order without too much hassle (OrderdDict & others). Probably not the most Pythonic way, nor shortest way, but does the trick:
def remove_duplicates(item_list):
''' Removes duplicate items from a list '''
singles_list = []
for element in item_list:
if element not in singles_list:
singles_list.append(element)
return singles_list
Reduce variant with ordering preserve:
Assume that we have list:
l = [5, 6, 6, 1, 1, 2, 2, 3, 4]
Reduce variant (unefficient):
>>> reduce(lambda r, v: v in r and r or r + [v], l, [])
[5, 6, 1, 2, 3, 4]
5 x faster but more sophisticated
>>> reduce(lambda r, v: v in r[1] and r or (r[0].append(v) or r[1].add(v)) or r, l, ([], set()))[0]
[5, 6, 1, 2, 3, 4]
Explanation:
default = (list(), set())
# user list to keep order
# use set to make lookup faster
def reducer(result, item):
if item not in result[1]:
result[0].append(item)
result[1].add(item)
return result
reduce(reducer, l, default)[0]
There are many other answers suggesting different ways to do this, but they're all batch operations, and some of them throw away the original order. That might be okay depending on what you need, but if you want to iterate over the values in the order of the first instance of each value, and you want to remove the duplicates on-the-fly versus all at once, you could use this generator:
def uniqify(iterable):
seen = set()
for item in iterable:
if item not in seen:
seen.add(item)
yield item
This returns a generator/iterator, so you can use it anywhere that you can use an iterator.
for unique_item in uniqify([1, 2, 3, 4, 3, 2, 4, 5, 6, 7, 6, 8, 8]):
print(unique_item, end=' ')
print()
Output:
1 2 3 4 5 6 7 8
If you do want a list, you can do this:
unique_list = list(uniqify([1, 2, 3, 4, 3, 2, 4, 5, 6, 7, 6, 8, 8]))
print(unique_list)
Output:
[1, 2, 3, 4, 5, 6, 7, 8]
You can use the following function:
def rem_dupes(dup_list):
yooneeks = []
for elem in dup_list:
if elem not in yooneeks:
yooneeks.append(elem)
return yooneeks
Example:
my_list = ['this','is','a','list','with','dupicates','in', 'the', 'list']
Usage:
rem_dupes(my_list)
['this', 'is', 'a', 'list', 'with', 'dupicates', 'in', 'the']
Using set :
a = [0,1,2,3,4,3,3,4]
a = list(set(a))
print a
Using unique :
import numpy as np
a = [0,1,2,3,4,3,3,4]
a = np.unique(a).tolist()
print a
Without using set
data=[1, 2, 3, 1, 2, 5, 6, 7, 8]
uni_data=[]
for dat in data:
if dat not in uni_data:
uni_data.append(dat)
print(uni_data)
The Magic of Python Built-in type
In python, it is very easy to process the complicated cases like this and only by python's built-in type.
Let me show you how to do !
Method 1: General Case
The way (1 line code) to remove duplicated element in list and still keep sorting order
line = [1, 2, 3, 1, 2, 5, 6, 7, 8]
new_line = sorted(set(line), key=line.index) # remove duplicated element
print(new_line)
You will get the result
[1, 2, 3, 5, 6, 7, 8]
Method 2: Special Case
TypeError: unhashable type: 'list'
The special case to process unhashable (3 line codes)
line=[['16.4966155686595', '-27.59776154691', '52.3786295521147']
,['16.4966155686595', '-27.59776154691', '52.3786295521147']
,['17.6508629295574', '-27.143305738671', '47.534955022564']
,['17.6508629295574', '-27.143305738671', '47.534955022564']
,['18.8051102904552', '-26.688849930432', '42.6912804930134']
,['18.8051102904552', '-26.688849930432', '42.6912804930134']
,['19.5504702331098', '-26.205884452727', '37.7709192714727']
,['19.5504702331098', '-26.205884452727', '37.7709192714727']
,['20.2929416861422', '-25.722717575124', '32.8500163147157']
,['20.2929416861422', '-25.722717575124', '32.8500163147157']]
tuple_line = [tuple(pt) for pt in line] # convert list of list into list of tuple
tuple_new_line = sorted(set(tuple_line),key=tuple_line.index) # remove duplicated element
new_line = [list(t) for t in tuple_new_line] # convert list of tuple into list of list
print (new_line)
You will get the result :
[
['16.4966155686595', '-27.59776154691', '52.3786295521147'],
['17.6508629295574', '-27.143305738671', '47.534955022564'],
['18.8051102904552', '-26.688849930432', '42.6912804930134'],
['19.5504702331098', '-26.205884452727', '37.7709192714727'],
['20.2929416861422', '-25.722717575124', '32.8500163147157']
]
Because tuple is hashable and you can convert data between list and tuple easily
below code is simple for removing duplicate in list
def remove_duplicates(x):
a = []
for i in x:
if i not in a:
a.append(i)
return a
print remove_duplicates([1,2,2,3,3,4])
it returns [1,2,3,4]
Here's the fastest pythonic solution comaring to others listed in replies.
Using implementation details of short-circuit evaluation allows to use list comprehension, which is fast enough. visited.add(item) always returns None as a result, which is evaluated as False, so the right-side of or would always be the result of such an expression.
Time it yourself
def deduplicate(sequence):
visited = set()
adder = visited.add # get rid of qualification overhead
out = [adder(item) or item for item in sequence if item not in visited]
return out

Calling functions on lists

I have a spectra of wavelengths as a list and some number of other lists I use in a formula (using tmm.tmm_core). Is there something more efficient than iterating through the wavelength if I'm just basically doing the same thing for all wavelengths?
Example
def go(n, thk, theta):
#do stuff
return(something)
wv = [1, 2, 3, 4]
a_vec = [3, 7, 3, 9]
b_vec = [6, 5, 9, 3]
c_vec = [0, 1, 8, 9]
theta = 0
th = [10, 1, 10]
final = []
for i in range(len(wv)):
n = [a[i], b[i], c[i]]
answer = go(n, th, theta)
final.append(answer)
in reality there are maybe 5000-10000 rows. It just seems to lag a bit when I press go and I assume it's because of the iteration. Pretty new to optimizing so I haven't used any benchmarking tools or anything.
I think you're looking for the map function in Python!
>>> list1 = [1,2,3,4]
>>> list2 = [5,6,7,8]
>>> map(lambda x,y: x+y, list1, list2)
[6, 8, 10, 12]
it takes in a function (in the above case, an anonymous lambda function), one or more lists and returns another list. At each iteration within the function, both lists are iterated and the result is added to the new list. You don't need to limit yourself to the expressive power of a lambda statement; you can also use globally defined functions as in the case below:
>>> def go(a,b,c):
... return a+b+c
...
>>> map(go, list1,list2, range(9,13))
[15, 18, 21, 24]
You can put all of your lists within a custom list like C_list and use map to create a new list all_len contain the length of all lists then use a list comprehension to create the list final :
all_len=map(len,C_list)
final =[[go([a[i], b[i], c[i]], th, theta) for i in range(li)] for li in all_len]
Also if the length of a and b and c are equal you can use zip function to zip then and refuse of multiple indexing :
all_len=map(len,C_list)
z=zip(a,b,c)
final =[[go(z[i], th, theta) for i in range(li)] for li in all_len]
If you have to perform an operation on every item in the list, then you're gonna have to go through every item in the list. However, you could gain speed through the use of list comprehensions: List Comprehensions

How to find elements existing in two lists but with different indexes

I have two lists of the same length which contains a variety of different elements. I'm trying to compare them to find the number of elements which exist in both lists, but have different indexes.
Here are some example inputs/outputs to demonstrate what I mean:
>>> compare([1, 2, 3, 4], [4, 3, 2, 1])
4
>>> compare([1, 2, 3], [1, 2, 3])
0
# Each item in the first list has the same index in the other
>>> compare([1, 2, 4, 4], [1, 4, 4, 2])
2
# The 3rd '4' in both lists don't count, since they have the same indexes
>>> compare([1, 2, 3, 3], [5, 3, 5, 5])
1
# Duplicates don't count
The lists are always the same size.
This is the algorithm I have so far:
def compare(list1, list2):
# Eliminate any direct matches
list1 = [a for (a, b) in zip(list1, list2) if a != b]
list2 = [b for (a, b) in zip(list1, list2) if a != b]
out = 0
for possible in list1:
if possible in list2:
index = list2.index(possible)
del list2[index]
out += 1
return out
Is there a more concise and eloquent way to do the same thing?
This python function does hold for the examples you provided:
def compare(list1, list2):
D = {e:i for i, e in enumerate(list1)}
return len(set(e for i, e in enumerate(list2) if D.get(e) not in (None, i)))
since duplicates don't count, you can use sets to find only the elements in each list. A set only holds unique elements. Then select only the elements shared between both using list.index
def compare(l1, l2):
s1, s2 = set(l1), set(l2)
shared = s1 & s2 # intersection, only the elements in both
return len([e for e in shared if l1.index(e) != l2.index(e)])
You can actually bring this down to a one-liner if you want
def compare(l1, l2):
return len([e for e in set(l1) & set(l2) if l1.index(e) != l2.index(e)])
Alternative:
Functionally you can use the reduce builtin (in python3, you have to do from functools import reduce first). This avoids construction of the list which saves excess memory usage. It uses a lambda function to do the work.
def compare(l1, l2):
return reduce(lambda acc, e: acc + int(l1.index(e) != l2.index(e)),
set(l1) & set(l2), 0)
A brief explanation:
reduce is a functional programming contruct that reduces an iterable to a single item traditionally. Here we use reduce to reduce the set intersection to a single value.
lambda functions are anonymous functions. Saying lambda x, y: x + 1 is like saying def func(x, y): return x + y except that the function has no name. reduce takes a function as its first argument. The first argument a the lambda receives when used with reduce is the result of the previous function, the accumulator.
set(l1) & set(l2) is a set consisting of unique elements that are in both l1 and l2. It is iterated over, and each element is taken out one at a time and used as the second argument to the lambda function.
0 is the initial value for the accumulator. We use this since we assume there are 0 shared elements with different indices to start.
I dont claim it is the simplest answer, but it is a one-liner.
import numpy as np
import itertools
l1 = [1, 2, 3, 4]
l2 = [1, 3, 2, 4]
print len(np.unique(list(itertools.chain.from_iterable([[a,b] for a,b in zip(l1,l2) if a!= b]))))
I explain:
[[a,b] for a,b in zip(l1,l2) if a!= b]
is the list of couples from zip(l1,l2) with different items. Number of elements in this list is number of positions where items at same position differ between the two lists.
Then, list(itertools.chain.from_iterable() is for merging component lists of a list. For instance :
>>> list(itertools.chain.from_iterable([[3,2,5],[5,6],[7,5,3,1]]))
[3, 2, 5, 5, 6, 7, 5, 3, 1]
Then, discard duplicates with np.unique(), and take len().

Categories