Creating dataframe from a dictionary where entries have different lengths - python

Say I have a dictionary with 10 key-value pairs. Each entry holds a numpy array. However, the length of the array is not the same for all of them.
How can I create a dataframe where each column holds a different entry?
When I try:
pd.DataFrame(my_dict)
I get:
ValueError: arrays must all be the same length
Any way to overcome this? I am happy to have Pandas use NaN to pad those columns for the shorter entries.

In Python 3.x:
import pandas as pd
import numpy as np
d = dict( A = np.array([1,2]), B = np.array([1,2,3,4]) )
pd.DataFrame(dict([ (k,pd.Series(v)) for k,v in d.items() ]))
Out[7]:
A B
0 1 1
1 2 2
2 NaN 3
3 NaN 4
In Python 2.x:
replace d.items() with d.iteritems().

Here's a simple way to do that:
In[20]: my_dict = dict( A = np.array([1,2]), B = np.array([1,2,3,4]) )
In[21]: df = pd.DataFrame.from_dict(my_dict, orient='index')
In[22]: df
Out[22]:
0 1 2 3
A 1 2 NaN NaN
B 1 2 3 4
In[23]: df.transpose()
Out[23]:
A B
0 1 1
1 2 2
2 NaN 3
3 NaN 4

A way of tidying up your syntax, but still do essentially the same thing as these other answers, is below:
>>> mydict = {'one': [1,2,3], 2: [4,5,6,7], 3: 8}
>>> dict_df = pd.DataFrame({ key:pd.Series(value) for key, value in mydict.items() })
>>> dict_df
one 2 3
0 1.0 4 8.0
1 2.0 5 NaN
2 3.0 6 NaN
3 NaN 7 NaN
A similar syntax exists for lists, too:
>>> mylist = [ [1,2,3], [4,5], 6 ]
>>> list_df = pd.DataFrame([ pd.Series(value) for value in mylist ])
>>> list_df
0 1 2
0 1.0 2.0 3.0
1 4.0 5.0 NaN
2 6.0 NaN NaN
Another syntax for lists is:
>>> mylist = [ [1,2,3], [4,5], 6 ]
>>> list_df = pd.DataFrame({ i:pd.Series(value) for i, value in enumerate(mylist) })
>>> list_df
0 1 2
0 1 4.0 6.0
1 2 5.0 NaN
2 3 NaN NaN
You may additionally have to transpose the result and/or change the column data types (float, integer, etc).

Use pandas.DataFrame and pandas.concat
The following code will create a list of DataFrames with pandas.DataFrame, from a dict of uneven arrays, and then concat the arrays together in a list-comprehension.
This is a way to create a DataFrame of arrays, that are not equal in length.
For equal length arrays, use df = pd.DataFrame({'x1': x1, 'x2': x2, 'x3': x3})
import pandas as pd
import numpy as np
# create the uneven arrays
mu, sigma = 200, 25
np.random.seed(365)
x1 = mu + sigma * np.random.randn(10, 1)
x2 = mu + sigma * np.random.randn(15, 1)
x3 = mu + sigma * np.random.randn(20, 1)
data = {'x1': x1, 'x2': x2, 'x3': x3}
# create the dataframe
df = pd.concat([pd.DataFrame(v, columns=[k]) for k, v in data.items()], axis=1)
Use pandas.DataFrame and itertools.zip_longest
For iterables of uneven length, zip_longest fills missing values with the fillvalue.
The zip generator needs to be unpacked, because the DataFrame constructor won't unpack it.
from itertools import zip_longest
# zip all the values together
zl = list(zip_longest(*data.values()))
# create dataframe
df = pd.DataFrame(zl, columns=data.keys())
plot
df.plot(marker='o', figsize=[10, 5])
dataframe
x1 x2 x3
0 232.06900 235.92577 173.19476
1 176.94349 209.26802 186.09590
2 194.18474 168.36006 194.36712
3 196.55705 238.79899 218.33316
4 249.25695 167.91326 191.62559
5 215.25377 214.85430 230.95119
6 232.68784 240.30358 196.72593
7 212.43409 201.15896 187.96484
8 188.97014 187.59007 164.78436
9 196.82937 252.67682 196.47132
10 NaN 223.32571 208.43823
11 NaN 209.50658 209.83761
12 NaN 215.27461 249.06087
13 NaN 210.52486 158.65781
14 NaN 193.53504 199.10456
15 NaN NaN 186.19700
16 NaN NaN 223.02479
17 NaN NaN 185.68525
18 NaN NaN 213.41414
19 NaN NaN 271.75376

While this does not directly answer the OP's question. I found this to be an excellent solution for my case when I had unequal arrays and I'd like to share:
from pandas documentation
In [31]: d = {'one' : Series([1., 2., 3.], index=['a', 'b', 'c']),
....: 'two' : Series([1., 2., 3., 4.], index=['a', 'b', 'c', 'd'])}
....:
In [32]: df = DataFrame(d)
In [33]: df
Out[33]:
one two
a 1 1
b 2 2
c 3 3
d NaN 4

You can also use pd.concat along axis=1 with a list of pd.Series objects:
import pandas as pd, numpy as np
d = {'A': np.array([1,2]), 'B': np.array([1,2,3,4])}
res = pd.concat([pd.Series(v, name=k) for k, v in d.items()], axis=1)
print(res)
A B
0 1.0 1
1 2.0 2
2 NaN 3
3 NaN 4

Both the following lines work perfectly :
pd.DataFrame.from_dict(df, orient='index').transpose() #A
pd.DataFrame(dict([ (k,pd.Series(v)) for k,v in df.items() ])) #B (Better)
But with %timeit on Jupyter, I've got a ratio of 4x speed for B vs A, which is quite impressive especially when working with a huge data set (mainly with a big number of columns/features).

If you don't want it to show NaN and you have two particular lengths, adding a 'space' in each remaining cell would also work.
import pandas
long = [6, 4, 7, 3]
short = [5, 6]
for n in range(len(long) - len(short)):
short.append(' ')
df = pd.DataFrame({'A':long, 'B':short}]
# Make sure Excel file exists in the working directory
datatoexcel = pd.ExcelWriter('example1.xlsx',engine = 'xlsxwriter')
df.to_excel(datatoexcel,sheet_name = 'Sheet1')
datatoexcel.save()
A B
0 6 5
1 4 6
2 7
3 3
If you have more than 2 lengths of entries, it is advisable to make a function which uses a similar method.

Related

How to create data fame from random lists length using python?

I want to create pandas data frame with multiple lists with different length. Below is my python code.
import pandas as pd
A=[1,2]
B=[1,2,3]
C=[1,2,3,4,5,6]
lenA = len(A)
lenB = len(B)
lenC = len(C)
df = pd.DataFrame(columns=['A', 'B','C'])
for i,v1 in enumerate(A):
for j,v2 in enumerate(B):
for k, v3 in enumerate(C):
if(i<random.randint(0, lenA)):
if(j<random.randint(0, lenB)):
if (k < random.randint(0, lenC)):
df = df.append({'A': v1, 'B': v2,'C':v3}, ignore_index=True)
print(df)
My lists are as below:
A=[1,2]
B=[1,2,3]
C=[1,2,3,4,5,6,7]
In each run I got different output and which is correct. But not covers all list items in each run. In one run I got below output as:
A B C
0 1 1 3
1 1 2 1
2 1 2 2
3 2 2 5
In the above output 'A' list's all items (1,2) are there. But 'B' list has only (1,2) items, the item 3 is missing. Also list 'C' has (1,2,3,5) items only. (4,6,7) items are missing in 'C' list. My expectation is: in each list each item should be in the data frame at least once and 'C' list items should be in data frame only once. My expected sample output is as below:
A B C
0 1 1 3
1 1 2 1
2 1 2 2
3 2 2 5
4 2 3 4
5 1 1 7
6 2 3 6
Guide me to get my expected output. Thanks in advance.
You can add random values of each list to total length and then use DataFrame.sample:
A=[1,2]
B=[1,2,3]
C=[1,2,3,4,5,6]
L = [A,B,C]
m = max(len(x) for x in L)
print (m)
6
a = [np.hstack((np.random.choice(x, m - len(x)), x)) for x in L]
df = pd.DataFrame(a, index=['A', 'B', 'C']).T.sample(frac=1)
print (df)
A B C
2 2 2 3
0 2 1 1
3 1 1 4
4 1 2 5
5 2 3 6
1 2 2 2
You can use transpose to achieve the same.
EDIT: Used random to randomize the output as requested.
import pandas as pd
from random import shuffle, choice
A=[1,2]
B=[1,2,3]
C=[1,2,3,4,5,6]
shuffle(A)
shuffle(B)
shuffle(C)
data = [A,B,C]
df = pd.DataFrame(data)
df = df.transpose()
df.columns = ['A', 'B', 'C']
df.loc[:,'A'].fillna(choice(A), inplace=True)
df.loc[:,'B'].fillna(choice(B), inplace=True)
This should give the below output
A B C
0 1.0 1.0 1.0
1 2.0 2.0 2.0
2 NaN 3.0 3.0
3 NaN 4.0 4.0
4 NaN NaN 5.0
5 NaN NaN 6.0

Python: How to replace missing values column wise by median

I have a dataframe as follows
df = pd.DataFrame({'A': [1, 2, 3], 'B': [1.45, 2.33, np.nan], 'C': [4, 5, 6], 'D': [4.55, 7.36, np.nan]})
I want to replace the missing values i.e. np.nan in generic way. For this I have created a function as follows
def treat_mis_value_nu(df):
df_nu = df.select_dtypes(include=['number'])
lst_null_col = df_nu.columns[df_nu.isnull().any()].tolist()
if len(lst_null_col)>0:
for i in lst_null_col:
if df_nu[i].isnull().sum()/len(df_nu[i])>0.10:
df_final_nu = df_nu.drop([i],axis=1)
else:
df_final_nu = df_nu[i].fillna(df_nu[i].median(),inplace=True)
return df_final_nu
When I apply this function as follows
df_final = treat_mis_value_nu(df)
I am getting a dataframe as follows
A B C
0 1 1.0 4
1 2 2.0 5
2 3 NaN 6
So it has actually removed column D correctly, but failed to remove column B.
I know in past there have been discussion on this topic (here). Still I might be missing something?
Use:
df = pd.DataFrame({'A': [1, 2, 3,5,7], 'B': [1.45, 2.33, np.nan, np.nan, np.nan],
'C': [4, 5, 6,8,7], 'D': [4.55, 7.36, np.nan,9,10],
'E':list('abcde')})
print (df)
A B C D E
0 1 1.45 4 4.55 a
1 2 2.33 5 7.36 b
2 3 NaN 6 NaN c
3 5 NaN 8 9.00 d
4 7 NaN 7 10.00 e
def treat_mis_value_nu(df):
#get only numeric columns to dataframe
df_nu = df.select_dtypes(include=['number'])
#get only columns with NaNs
df_nu = df_nu.loc[:, df_nu.isnull().any()]
#get columns for remove with mean instead sum/len, it is same
cols_to_drop = df_nu.columns[df_nu.isnull().mean() <= 0.30]
#replace missing values of original columns and remove above thresh
return df.fillna(df_nu.median()).drop(cols_to_drop, axis=1)
print (treat_mis_value_nu(df))
A C D E
0 1 4 4.55 a
1 2 5 7.36 b
2 3 6 8.18 c
3 5 8 9.00 d
4 7 7 10.00 e
I would recommend looking at the sklearn Imputer transformer. I don't think it it can drop columns but it can definetly fill them in a 'generic way' - for example, filling in missing values with the median of the relevant column.
You could use it as such:
from sklearn.preprocessing import Imputer
imputer = Imputer(strategy='median')
num_df = df.values
names = df.columns.values
df_final = pd.DataFrame(imputer.transform(num_df), columns=names)
If you have additional transformations you would like to make you could consider making a transformation Pipeline or could even make your own transformers to do bespoke tasks.

Pandas dataframe: merge files by common columns

I have a collection of files that have some common columns that I want to join. In my real problem, there are several dissimilar and common columns. In this toy example, I have a set of a files and a set of b files that have unique columns and share identical c columns.
$ for ii in $(ls *.dat) ; do echo " "; echo $ii ; cat $ii ; done
a1.dat
a,c
4,8
1,10
2,3
a2.dat
a,c
1,2
3,4
b1.dat
b,c
2,8
2,10
1,3
b2.dat
b,c
.2,2
.8,4
I want to sweep through these files and merge them into a single dataframe. Here's what I've tried so far. I concat the first files to make sure I have all of the column names collected then merge the remaining files. When I merge by "inner", an empty dataframe is returned.
$ cat s.py
import pandas as pd
dat = pd.DataFrame()
for ii in [1, 2]:
for jj in ['a', 'b']:
d = pd.read_csv('%s%i.dat' % (jj, ii))
if ii == 1: dat = pd.concat([dat, d])
else: dat = pd.merge(dat, d, how='outer')
print(dat)
$ Python s.py
a b c
0 4.0 NaN 8
1 1.0 NaN 10
2 2.0 NaN 3
3 NaN 2.0 8
4 NaN 2.0 10
5 NaN 1.0 3
6 1.0 NaN 2
7 3.0 NaN 4
8 NaN 0.2 2
9 NaN 0.8 4
This is not my desired output. I don't understand how I can make this work better. The desired output was
a b c
0 4.0 2.0 8
1 1.0 2.0 10
2 2.0 1.0 3
3 1.0 0.2 2
4 3.0 0.8 4
There are two steps:
First, concatenate all files of the same type into one DataFrame each:
df = {}
for k in ['a', 'b']:
df[k] = pd.concat([
pd.read_csv('%s%d.dat' % (k, i)) for i in [1, 2]
], axis=0)
Then merge join on the shared column 'c',
result = df['a'].merge(df['b'], on='c')[['a', 'b', 'c']]
First concat all a and b files and then merge them on the column c like:
import numpy as np
import pandas as pd
a1 = pd.DataFrame({
'a': [4,1,2],
'c': [8,10,3],
})
a2 = pd.DataFrame({
'a': [1,3],
'c': [2,4],
})
b1 = pd.DataFrame({
'b': [2,2,1],
'c': [8,10,3],
})
b2 = pd.DataFrame({
'b': [0.2,0.8],
'c': [2,4],
})
concat_df_a = pd.concat([a1,a2])
concat_df_b = pd.concat([b1,b2])
print(concat_df_b.merge(concat_df_a,on='c')[['a','b','c']])
a b c
0 4 2.0 8
1 1 2.0 10
2 2 1.0 3
3 1 0.2 2
4 3 0.8 4

Pandas - combine two columns

I have 2 columns, which we'll call x and y. I want to create a new column called xy:
x y xy
1 1
2 2
4 4
8 8
There shouldn't be any conflicting values, but if there are, y takes precedence. If it makes the solution easier, you can assume that x will always be NaN where y has a value.
it could be quite simple if your example is accurate
df.fillna(0) #if the blanks are nan will need this line first
df['xy']=df['x']+df['y']
Notice your column type right now is string not numeric anymore
df = df.apply(lambda x : pd.to_numeric(x, errors='coerce'))
df['xy'] = df.sum(1)
More
df['xy'] =df[['x','y']].astype(str).apply(''.join,1)
#df[['x','y']].astype(str).apply(''.join,1)
Out[655]:
0 1.0
1 2.0
2
3 4.0
4 8.0
dtype: object
You can also use NumPy:
import pandas as pd, numpy as np
df = pd.DataFrame({'x': [1, 2, np.nan, np.nan],
'y': [np.nan, np.nan, 4, 8]})
arr = df.values
df['xy'] = arr[~np.isnan(arr)].astype(int)
print(df)
x y xy
0 1.0 NaN 1
1 2.0 NaN 2
2 NaN 4.0 4
3 NaN 8.0 8

Getting Pandas.groupby.shift() results with groupbyvars as cols / index?

Given this trivial dataset
df = pd.DataFrame({'one': ['a', 'a', 'a', 'b', 'b', 'b'],
'two': ['c', 'c', 'c', 'c', 'd', 'd'],
'three': [1, 2, 3, 4, 5, 6]})
grouping on one / two and applying .max() returns me a Series indexed on the groupby vars, as expected...
df.groupby(['one', 'two'])['three'].max()
output:
one two
a c 3
b c 4
d 6
Name: three, dtype: int64
...in my case I want to shift() my records, by group. But for some reason, when I apply .shift() to the groupby object, my results don't include the groupby variables:
output:
df.groupby(['one', 'two'])['three'].shift()
0 NaN
1 1.0
2 2.0
3 NaN
4 NaN
5 5.0
Name: three, dtype: float64
Is there a way to preserve those groupby variables in the results, as either columns or a multi-indexed Series (as in .max())? Thanks!
It is difference between max and diff - max aggregate values (return aggregate Series) and diff not - return same size Series.
So is possible append output to new column:
df['shifted'] = df.groupby(['one', 'two'])['three'].shift()
Theoretically is possible use agg, but it return error in pandas 0.20.3:
df1 = df.groupby(['one', 'two'])['three'].agg(['max', lambda x: x.shift()])
print (df1)
ValueError: Function does not reduce
One possible solution is transform if need max with diff:
g = df.groupby(['one', 'two'])['three']
df['max'] = g.transform('max')
df['shifted'] = g.shift()
print (df)
one three two max shifted
0 a 1 c 3 NaN
1 a 2 c 3 1.0
2 a 3 c 3 2.0
3 b 4 c 4 NaN
4 b 5 d 6 NaN
5 b 6 d 6 5.0
As what Jez explained, shift return the Serise keep the same len of dataframe, if you assign it like max(), will getting the error
Function does not reduce
df.assign(shifted=df.groupby(['one', 'two'])['three'].shift()).set_index(['one','two'])
Out[57]:
three shifted
one two
a c 1 NaN
c 2 1.0
c 3 2.0
b c 4 NaN
d 5 NaN
d 6 5.0
Using max as the key , and shift value slice the value max row
df.groupby(['one', 'two'])['three'].apply(lambda x : x.shift()[x==x.max()])
Out[58]:
one two
a c 2 2.0
b c 3 NaN
d 5 5.0
Name: three, dtype: float64

Categories