Python: How to create a composed list? - python

I'm quite new in Python. I suppose my question is simple, but I don't find any answer. I would like to create, delete a composed list (as a C struct) and access items inside:
for i in list1
create item in list2[list3[StringVar1, StringVar2], bool1, Frame1]
item.list3[StringVar1] = i
item.list3[StringVar2] = value
item.bool1 = True
item.Frame1 = tk.Frame(self)
How can I write that in Python?
Edit: Martijn Pieters is right, I've just corrected.

I don't exactly understand by what you mean when you say composed list, but indeed you can have a struct in Python.
Ideally, you mean that you want an immutable C-Struct like object then, you can create it quite easily. In Python its called a namedtuple, or atleast this is the closest that I have come across. You can of course create your own generic object in Python, and add arguments, but that would be a dynamic struct instead.
Ideally, in C, you would have a struct like this ->
struct tag_name
{
type attribute;
type attribute2;
/* ... */
};
And you could access the attributes of the struct like so tag_name.attribute. So, this is how a namedtuple works:
>>> from collections import namedtuple
>>> NetworkAddress = namedtuple('NetworkAddress',['hostname','port'])
>>> a = NetworkAddress('www.python.org',80)
>>> a.hostname
'www.python.org'
>>> a.port
80
>>> host, port = a
>>> len(a)
2
>>> type(a)
<class '_ _main_ _.NetworkAddress'>
>>> isinstance(a, tuple)
True
>>>
If there is anything that you would like in specific, then please update your question to explain composed list so that I can update this answer.
However, this is typical of a statically typed language like C, since we're using Python, we can use some cool dynamic properties, so you an essentially create an object that you can add properties to as you see fit:
class DynamicObject(object):
def __init__(self, **kwargs):
self.__dict__.update(kwargs)
Console session
>>> class DynamicObject(object):
def __init__(self, **kwargs):
self.__dict__.update(kwargs)
>>> happy_obj = DynamicObject(name="Happy Gilmore")
>>> happy_obj.name
'Happy Gilmore'
Credits ->
https://stackoverflow.com/users/320726/6502 for the dynamic object code. Thanks man :)

You can always use a Python dictionary
item = {}
item["list2"] = {}
item["list2"]["list3"] = {}
item["list2"]["list3"][Var1] = Value1
item["list2"]["list3"][Var2] = Value2
...
You can assign another dictionary or a list as a value as well.
As far as delete is concerned you can use the "del" keyword to delete. For ex
dictionary = {}
dictionary["name"] = {}
dictionary["name1"] = {}
del dictionary["name1"]
dictionary
{'name': {}}

You should know that new style objects (anything derived from object) have a __dict__ member, which is a dict. So you can do:
class X(object):
pass
x = X()
x.__dict__["a"] = 1
x.a #1
another way to do this is to user setattr and getattr:
setattr(x, "b", 2) # same as x.__dict__["b"] = 2
You can use this to build named access to some input structure, however you will need names and values in your compound input structure (essentially, something like nested dicts for all nodes that are to have named children)

However, I think your data struct is wrong. For the use method is like array like in c. That means we can find elem by the number index, so you can't use list like list3[StringVar1,StringVar2].
Maybe the dictionary in python can meet your need. If you want to use item.list3 you must define a class in python.

Related

what is meaning of string inside array python

What does "CmdBtn['menu'] = CmdBtn.menu" in second last line mean.
def makeCommandMenu():
CmdBtn = Menubutton(mBar, text='Button Commands', underline=0)
CmdBtn.pack(side=LEFT, padx="2m")
CmdBtn.menu = Menu(CmdBtn)
...
...
CmdBtn['menu'] = CmdBtn.menu
return CmdBtn
When you use x[y] = z, it calls the __setitem__ method.
i.e.
x.__setitem__(y, z)
In your case, CmdBtn['menu'] = CmdBtn.menu means
CmdBtn.__setitem__('menu', CmdBtn.menu)
The Menubutton class does indeed provide a __setitem__ method. It looks like this is used to set a "resource value" (in this case CmdBtn.menu) for the given key ('menu').
This is not a "string inside an array".
The brackets operator is used for item access in some kind of sequence (usually a list, or a tuple), mapping (usually a dict, or dictionary), or some other kind of special object (such as this MenuButton object, which is not a sequence or a mapping). Unlike in some other languages, in python, ANY object is allowed to make use of this operator.
A list is similar to an "array" in other languages. It can contain a mixture of objects of any kind, and it maintains the order of the objects. A list object is very useful for when you want to maintain an ordered sequence of objects. You can access an object in a list using its index, like this (indexes start at zero):
x = [1,2,3] # this is a list
assert x[0] == 1 # access the first item in the list
x = list(range(1,4)) # another way to make the same list
A dict (dictionary) is useful for when you want to associate values with keys so you can look up the values later using the keys. Like this:
d = dict(a=1, b=2, c=3) # this is a dict
assert x['a'] == 1 # access the dict
d = {'a':1, 'b':2, 'c':3} # another way to make the same dict
Finally, you may also encounter custom made objects that also use the same item-access interface. In the Menubutton case, ['menu'] simply accesses some item (defined by the tkinter API) that responds to the key, 'menu'. You can make your own object type with item-access, too (python 3 code below):
class MyObject:
def __getitem__(self, x):
return "Here I am!"
This object doesn't do much except return the same string for key or index value you give it:
obj = MyObject()
print(obj [100]) # Here I am!
print(obj [101]) # Here I am!
print(obj ['Anything']) # Here I am!
print(obj ['foo bar baz']) # Here I am!
First of all, in Python everything is an object and square brackets means that this object is subscriptable (for e.g. tuple, list, dict, string and many more). Subscriptable means that this object at least implements the __getitem__() method (and __setitem__() in your case).
With those methods it's easy to interact with class members, so don't afraid to build your own example, to understand someone else's code.
Try this snippet:
class FooBar:
def __init__(self):
# just two simple members
self.foo = 'foo'
self.bar = 'bar'
def __getitem__(self, item):
# example getitem function
return self.__dict__[item]
def __setitem__(self, key, value):
# example setitem function
self.__dict__[key] = value
# create an instance of FooBar
fb = FooBar()
# lets print members of instance
# also try to comment out get and set functions to see the difference
print(fb['foo'], fb['bar'])
# lets try to change member via __setitem__
fb['foo'] = 'baz'
# lets print members of instance again to see the difference
print(fb['foo'], fb['bar'])
It is shorthand for CmdBtn.configure(menu=CmdBtn.menu)
The way to set widget options is typically at creation time (eg: Menubutton(..., menu=...)) or using the configure method (eg: CmdBtn.configure(menu=...). Tkinter provides a third method, which is to treat the widget like a dictionary where the configuration values are keys to the dictionary (eg: CMdBtn['menu']=...)
This is covered in the Setting Options section of the official python tkinter documentation

How to create a new unknown or dynamic/expando object in Python

In python how can we create a new object without having a predefined Class and later dynamically add properties to it ?
example:
dynamic_object = Dynamic()
dynamic_object.dynamic_property_a = "abc"
dynamic_object.dynamic_property_b = "abcdefg"
What is the best way to do it?
EDIT Because many people advised in comments that I might not need this.
The thing is that I have a function that serializes an object's properties. For that reason, I don't want to create an object of the expected class due to some constructor restrictions, but instead create a similar one, let's say like a mock, add any "custom" properties I need, then feed it back to the function.
Just define your own class to do it:
class Expando(object):
pass
ex = Expando()
ex.foo = 17
ex.bar = "Hello"
If you take metaclassing approach from #Martijn's answer, #Ned's answer can be rewritten shorter (though it's obviously less readable, but does the same thing).
obj = type('Expando', (object,), {})()
obj.foo = 71
obj.bar = 'World'
Or just, which does the same as above using dict argument:
obj = type('Expando', (object,), {'foo': 71, 'bar': 'World'})()
For Python 3, passing object to bases argument is not necessary (see type documentation).
But for simple cases instantiation doesn't have any benefit, so is okay to do:
ns = type('Expando', (object,), {'foo': 71, 'bar': 'World'})
At the same time, personally I prefer a plain class (i.e. without instantiation) for ad-hoc test configuration cases as simplest and readable:
class ns:
foo = 71
bar = 'World'
Update
In Python 3.3+ there is exactly what OP asks for, types.SimpleNamespace. It's just:
A simple object subclass that provides attribute access to its namespace, as well as a meaningful repr.
Unlike object, with SimpleNamespace you can add and remove attributes. If a SimpleNamespace object is initialized with keyword arguments, those are directly added to the underlying namespace.
import types
obj = types.SimpleNamespace()
obj.a = 123
print(obj.a) # 123
print(repr(obj)) # namespace(a=123)
However, in stdlib of both Python 2 and Python 3 there's argparse.Namespace, which has the same purpose:
Simple object for storing attributes.
Implements equality by attribute names and values, and provides a simple string representation.
import argparse
obj = argparse.Namespace()
obj.a = 123
print(obj.a) # 123
print(repr(obj)) # Namespace(a=123)
Note that both can be initialised with keyword arguments:
types.SimpleNamespace(a = 'foo',b = 123)
argparse.Namespace(a = 'foo',b = 123)
Using an object just to hold values isn't the most Pythonic style of programming. It's common in programming languages that don't have good associative containers, but in Python, you can use use a dictionary:
my_dict = {} # empty dict instance
my_dict["foo"] = "bar"
my_dict["num"] = 42
You can also use a "dictionary literal" to define the dictionary's contents all at once:
my_dict = {"foo":"bar", "num":42}
Or, if your keys are all legal identifiers (and they will be, if you were planning on them being attribute names), you can use the dict constructor with keyword arguments as key-value pairs:
my_dict = dict(foo="bar", num=42) # note, no quotation marks needed around keys
Filling out a dictionary is in fact what Python is doing behind the scenes when you do use an object, such as in Ned Batchelder's answer. The attributes of his ex object get stored in a dictionary, ex.__dict__, which should end up being equal to an equivalent dict created directly.
Unless attribute syntax (e.g. ex.foo) is absolutely necessary, you may as well skip the object entirely and use a dictionary directly.
Use the collections.namedtuple() class factory to create a custom class for your return value:
from collections import namedtuple
return namedtuple('Expando', ('dynamic_property_a', 'dynamic_property_b'))('abc', 'abcdefg')
The returned value can be used both as a tuple and by attribute access:
print retval[0] # prints 'abc'
print retval.dynamic_property_b # prints 'abcdefg'
One way that I found is also by creating a lambda. It can have sideeffects and comes with some properties that are not wanted. Just posting for the interest.
dynamic_object = lambda:expando
dynamic_object.dynamic_property_a = "abc"
dynamic_object.dynamic_property_b = "abcdefg"
I define a dictionary first because it's easy to define. Then I use namedtuple to convert it to an object:
from collections import namedtuple
def dict_to_obj(dict):
return namedtuple("ObjectName", dict.keys())(*dict.values())
my_dict = {
'name': 'The mighty object',
'description': 'Yep! Thats me',
'prop3': 1234
}
my_obj = dict_to_obj(my_dict)
Ned Batchelder's answer is the best. I just wanted to record a slightly different answer here, which avoids the use of the class keyword (in case that's useful for instructive reasons, demonstration of closure, etc.)
Just define your own class to do it:
def Expando():
def inst():
None
return inst
ex = Expando()
ex.foo = 17
ex.bar = "Hello"

Python simple naked objects

What's the easiest way to create a naked object that I can assign attributes to?
The specific use case is: I'm doing various operations on a Django object instance, but sometimes the instance is None (there is on instance). In this case I'd like to create the simplest possible fake object such that I can assign values to its attributes (eg. myobject.foo = 'bar').
Basically I'm looking for the Python equivalent of this piece of Javascript:
myobject = {}
myobject.foo = 'bar'
I know I can use a mock object/library for this, but I'm hoping for a very simple solution (as simple as the Javascript above). Is there a way to create a naked object instance? Something like:
myobject = object()
myobject.foo = 'bar'
You need to create a simple class first:
class Foo(object):
pass
myobject = Foo()
myobject.foo = 'bar'
You can make it a one-liner like this:
myobject = type("Foo", (object,), {})()
myobject.foo = 'bar'
The call to type functions identically to the previous class statement.
If you want to be really minimal...
myobject = type("", (), {})()
The key is that the built-in types (such as list and object) don't support user-defined attributes, so you need to create a type using either a class statement or a call to the 3-parameter version of type.
If you're using Python >= 3.3 you could always use SimpleNamespace; which is included in the Python types module.
SimpleNamespace is great because you also get a repr and equivalency testing for free; both of which might come in handy even for a minimalist object.
Translating the JavaScript in the OP’s question would look like:
from types import SimpleNamespace
myobject = SimpleNamespace() # myobject = {}
myobject.foo = 'bar'
You can also use keyword arguments when instantiating SimpleNamespace. These arguments will become attributes on the instantiated SimpleNamespace:
p = SimpleNamespace(name='gary')
p.age = 32
p # => namespace(age=32, name='gary')
So a quick and easy way to turn a dictionary into a SimpleNamespace object —provided the dictionary keys are proper identifiers— is as simple as:
d = {
'name': 'gary',
'age': 33 # had a birthday.
}
p = SimpleNamespace(**d)
Python >= 3.7 has dataclasses which are basically “mutable named tuples”. This could be something you may want to use if you have a lot of data objects.
Use the Bunch module:
sudo pip install bunch
A bunch is a dictionary that allows to access its content via the dict.key syntax.
And then like that:
from bunch import Bunch
b = Bunch()
b.foo = "Bar"
b["foo2"] = "Bar2"
print b
>> Bunch(foo='Bar', foo2='Bar2')
b["foo"] = "Baz"
print b
>> Bunch(foo='Baz', foo2='Bar2')
I'm coming here very late, but I'm surprised nobody has mentioned namedtuples, which accomplish this kind of thing:
Foo = namedtuple('Foo', ['x'])
f = Foo(x='myattribute')
f.x
For Python 3,
class Obj: pass
o = Obj()
o.name = 'gary'
o.age = 32
o
# <__main__.Obj at 0x17235ca65c0>
o.__dict__
# {'name': 'gary', 'age': 32}
class NakedObject(object):
pass
myobject = NakedObject()
myobject.foo = 'bar'
Functions can have attributes in Python 3. Compared to a naked class, you can save one whole line of code.
naked = lambda: None
naked.foo = 'bar'
You would need to subclass object first like this...
class Myobject(object):
pass
myobject1 = Myobject()
myobject1.foo = 'bar'
Perhaps you are looking for something like this:
myobject={}
myobject['foo']='bar'
then it can be called like:
print myobject['foo']
or you could use a class object for this:
class holder(object):
pass
then you can use something like this:
hold=holder()
hold.myobject='bar'
print hold.myobject
You should probably just use a dict, as per #PsychicOak's answer.
However, if you really want an object you can manipulate, try:
class FooClass(object): pass
You can then assign attributes on FooClass itself, or on instances, as you wish.
I usually prefer to create a null object for my class:
class User(Model):
username = CharField()
password = CharField()
NONE_USER = User(username='', password='')
Then I use it where I would use your naked object.
In some cases extending a dict can help you
like:
class SpecificModelData(dict):
pass
...
class Payload(dict):
... enter code here
why a dict? it works nicely together with serializers.
Why new class? - it gives you a name and a new type

Python - Call an object from a list of objects

I have a class, and I would like to be able to create multiple objects of that class and place them in an array. I did it like so:
rooms = []
rooms.append(Object1())
...
rooms.append(Object4())
I then have a dict of functions, and I would like to pass the object to the function. However, I'm encountering some problems..For example, I have a dict:
dict = {'look': CallLook(rooms[i])}
I'm able to pass it into the function, however; in the function if I try to call an objects method it gives me problems
def CallLook(current_room)
current_room.examine()
I'm sure that there has to be a better way to do what I'm trying to do, but I'm new to Python and I haven't seen a clean example on how to do this. Anyone have a good way to implement a list of objects to be passed into functions? All of the objects contain the examine method, but they are objects of different classes. (I'm sorry I didn't say so earlier)
The specific error states: TypeError: 'NoneType' object is not callable
Anyone have a good way to implement a list of objects to be passed into functions? All of the objects contain the examine method, but they are objects of different classes. (I'm sorry I didn't say so earlier)
This is Python's plain duck-typing.
class Room:
def __init__(self, name):
self.name = name
def examine(self):
return "This %s looks clean!" % self.name
class Furniture:
def __init__(self, name):
self.name = name
def examine(self):
return "This %s looks comfortable..." % self.name
def examination(l):
for item in l:
print item.examine()
list_of_objects = [ Room("Living Room"), Furniture("Couch"),
Room("Restrooms"), Furniture("Bed") ]
examination(list_of_objects)
Prints:
This Living Room looks clean!
This Couch looks comfortable...
This Restrooms looks clean!
This Bed looks comfortable...
As for your specific problem: probably you have forgotten to return a value from examine()? (Please post the full error message (including full backtrace).)
I then have a dict of functions, and I would like to pass the object to the function. However, I'm encountering some problems..For example, I have a dict:
my_dict = {'look': CallLook(rooms[i])} # this is no dict of functions
The dict you have created may evaluate to {'look': None} (assuming your examine() doesn't return a value.) Which could explain the error you've observed.
If you wanted a dict of functions you needed to put in a callable, not an actual function call, e.g. like this:
my_dict = {'look': CallLook} # this is a dict of functions
if you want to bind the 'look' to a specific room you could redefine CallLook:
def CallLook(current_room)
return current_room.examine # return the bound examine
my_dict = {'look': CallLook(room[i])} # this is also a dict of functions
Another issue with your code is that you are shadowing the built-in dict() method by naming your local dictionary dict. You shouldn't do this. This yields nasty errors.
Assuming you don't have basic problems (like syntax errors because the code you have pasted is not valid Python), this example shows you how to do what you want:
>>> class Foo():
... def hello(self):
... return 'hello'
...
>>> r = [Foo(),Foo(),Foo()]
>>> def call_method(obj):
... return obj.hello()
...
>>> call_method(r[1])
'hello'
Assuming you have a class Room the usual way to create a list of instances would be using a list comprehension like this
rooms = [Room() for i in range(num_rooms)]
I think there are some things you may not be getting about this:
dict = {'look': CallLook(rooms[i])}
This creates a dict with just one entry: a key 'look', and a value which is the result of evaluating CallLook(rooms[i]) right at the point of that statement. It also then uses the name dict to store this object, so you can no longer use dict as a constructor in that context.
Now, the error you are getting tells us that rooms[i] is None at that point in the programme.
You don't need CallLook (which is also named non-standardly) - you can just use the expression rooms[i].examine(), or if you want to evaluate the call later rooms[i].examine.
You probably don't need the dict at all.
That is not a must, but in some cases, using hasattr() is good... getattr() is another way to get an attribute off an object...
So:
rooms = [Obj1(),Obj2(),Obj3()]
if hasattr(rooms[i], 'examine'):#First check if our object has selected function or attribute...
getattr(rooms[i], 'examine') #that will just evaluate the function do not call it, and equals to Obj1().examine
getattr(rooms[i], 'examine')() # By adding () to the end of getattr function, we evalute and then call the function...
You may also pass parameters to examine function like:
getattr(rooms[i], 'examine')(param1, param2)
I'm not sure of your requirement, but you can use dict to store multiple object of a class.
May be this will help,
>>> class c1():
... print "hi"
...
hi
>>> c = c1()
>>> c
<__main__.c1 instance at 0x032165F8>
>>> d ={}
>>> for i in range (10):
... d[i] = c1()
...
>>> d[0]
<__main__.c1 instance at 0x032166E8>
>>> d[1]
<__main__.c1 instance at 0x032164B8>
>>>
It will create a object of c1 class and store it in dict. Obviously, in this case you can use list instead of dict.

Accessing dict keys like an attribute?

I find it more convenient to access dict keys as obj.foo instead of obj['foo'], so I wrote this snippet:
class AttributeDict(dict):
def __getattr__(self, attr):
return self[attr]
def __setattr__(self, attr, value):
self[attr] = value
However, I assume that there must be some reason that Python doesn't provide this functionality out of the box. What would be the caveats and pitfalls of accessing dict keys in this manner?
Update - 2020
Since this question was asked almost ten years ago, quite a bit has changed in Python itself since then.
While the approach in my original answer is still valid for some cases, (e.g. legacy projects stuck to older versions of Python and cases where you really need to handle dictionaries with very dynamic string keys), I think that in general the dataclasses introduced in Python 3.7 are the obvious/correct solution to vast majority of the use cases of AttrDict.
Original answer
The best way to do this is:
class AttrDict(dict):
def __init__(self, *args, **kwargs):
super(AttrDict, self).__init__(*args, **kwargs)
self.__dict__ = self
Some pros:
It actually works!
No dictionary class methods are shadowed (e.g. .keys() work just fine. Unless - of course - you assign some value to them, see below)
Attributes and items are always in sync
Trying to access non-existent key as an attribute correctly raises AttributeError instead of KeyError
Supports [Tab] autocompletion (e.g. in jupyter & ipython)
Cons:
Methods like .keys() will not work just fine if they get overwritten by incoming data
Causes a memory leak in Python < 2.7.4 / Python3 < 3.2.3
Pylint goes bananas with E1123(unexpected-keyword-arg) and E1103(maybe-no-member)
For the uninitiated it seems like pure magic.
A short explanation on how this works
All python objects internally store their attributes in a dictionary that is named __dict__.
There is no requirement that the internal dictionary __dict__ would need to be "just a plain dict", so we can assign any subclass of dict() to the internal dictionary.
In our case we simply assign the AttrDict() instance we are instantiating (as we are in __init__).
By calling super()'s __init__() method we made sure that it (already) behaves exactly like a dictionary, since that function calls all the dictionary instantiation code.
One reason why Python doesn't provide this functionality out of the box
As noted in the "cons" list, this combines the namespace of stored keys (which may come from arbitrary and/or untrusted data!) with the namespace of builtin dict method attributes. For example:
d = AttrDict()
d.update({'items':["jacket", "necktie", "trousers"]})
for k, v in d.items(): # TypeError: 'list' object is not callable
print "Never reached!"
You can have all legal string characters as part of the key if you use array notation.
For example, obj['!#$%^&*()_']
Wherein I Answer the Question That Was Asked
Why doesn't Python offer it out of the box?
I suspect that it has to do with the Zen of Python: "There should be one -- and preferably only one -- obvious way to do it." This would create two obvious ways to access values from dictionaries: obj['key'] and obj.key.
Caveats and Pitfalls
These include possible lack of clarity and confusion in the code. i.e., the following could be confusing to someone else who is going in to maintain your code at a later date, or even to you, if you're not going back into it for awhile. Again, from Zen: "Readability counts!"
>>> KEY = 'spam'
>>> d[KEY] = 1
>>> # Several lines of miscellaneous code here...
... assert d.spam == 1
If d is instantiated or KEY is defined or d[KEY] is assigned far away from where d.spam is being used, it can easily lead to confusion about what's being done, since this isn't a commonly-used idiom. I know it would have the potential to confuse me.
Additonally, if you change the value of KEY as follows (but miss changing d.spam), you now get:
>>> KEY = 'foo'
>>> d[KEY] = 1
>>> # Several lines of miscellaneous code here...
... assert d.spam == 1
Traceback (most recent call last):
File "<stdin>", line 2, in <module>
AttributeError: 'C' object has no attribute 'spam'
IMO, not worth the effort.
Other Items
As others have noted, you can use any hashable object (not just a string) as a dict key. For example,
>>> d = {(2, 3): True,}
>>> assert d[(2, 3)] is True
>>>
is legal, but
>>> C = type('C', (object,), {(2, 3): True})
>>> d = C()
>>> assert d.(2, 3) is True
File "<stdin>", line 1
d.(2, 3)
^
SyntaxError: invalid syntax
>>> getattr(d, (2, 3))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: getattr(): attribute name must be string
>>>
is not. This gives you access to the entire range of printable characters or other hashable objects for your dictionary keys, which you do not have when accessing an object attribute. This makes possible such magic as a cached object metaclass, like the recipe from the Python Cookbook (Ch. 9).
Wherein I Editorialize
I prefer the aesthetics of spam.eggs over spam['eggs'] (I think it looks cleaner), and I really started craving this functionality when I met the namedtuple. But the convenience of being able to do the following trumps it.
>>> KEYS = 'spam eggs ham'
>>> VALS = [1, 2, 3]
>>> d = {k: v for k, v in zip(KEYS.split(' '), VALS)}
>>> assert d == {'spam': 1, 'eggs': 2, 'ham': 3}
>>>
This is a simple example, but I frequently find myself using dicts in different situations than I'd use obj.key notation (i.e., when I need to read prefs in from an XML file). In other cases, where I'm tempted to instantiate a dynamic class and slap some attributes on it for aesthetic reasons, I continue to use a dict for consistency in order to enhance readability.
I'm sure the OP has long-since resolved this to his satisfaction, but if he still wants this functionality, then I suggest he download one of the packages from pypi that provides it:
Bunch is the one I'm more familiar with. Subclass of dict, so you have all that functionality.
AttrDict also looks like it's also pretty good, but I'm not as familiar with it and haven't looked through the source in as much detail as I have Bunch.
Addict Is actively maintained and provides attr-like access and more.
As noted in the comments by Rotareti, Bunch has been deprecated, but there is an active fork called Munch.
However, in order to improve readability of his code I strongly recommend that he not mix his notation styles. If he prefers this notation then he should simply instantiate a dynamic object, add his desired attributes to it, and call it a day:
>>> C = type('C', (object,), {})
>>> d = C()
>>> d.spam = 1
>>> d.eggs = 2
>>> d.ham = 3
>>> assert d.__dict__ == {'spam': 1, 'eggs': 2, 'ham': 3}
Wherein I Update, to Answer a Follow-Up Question in the Comments
In the comments (below), Elmo asks:
What if you want to go one deeper? ( referring to type(...) )
While I've never used this use case (again, I tend to use nested dict, for
consistency), the following code works:
>>> C = type('C', (object,), {})
>>> d = C()
>>> for x in 'spam eggs ham'.split():
... setattr(d, x, C())
... i = 1
... for y in 'one two three'.split():
... setattr(getattr(d, x), y, i)
... i += 1
...
>>> assert d.spam.__dict__ == {'one': 1, 'two': 2, 'three': 3}
From This other SO question there's a great implementation example that simplifies your existing code. How about:
class AttributeDict(dict):
__slots__ = ()
__getattr__ = dict.__getitem__
__setattr__ = dict.__setitem__
Much more concise and doesn't leave any room for extra cruft getting into your __getattr__ and __setattr__ functions in the future.
You can pull a convenient container class from the standard library:
from argparse import Namespace
to avoid having to copy around code bits. No standard dictionary access, but easy to get one back if you really want it. The code in argparse is simple,
class Namespace(_AttributeHolder):
"""Simple object for storing attributes.
Implements equality by attribute names and values, and provides a simple
string representation.
"""
def __init__(self, **kwargs):
for name in kwargs:
setattr(self, name, kwargs[name])
__hash__ = None
def __eq__(self, other):
return vars(self) == vars(other)
def __ne__(self, other):
return not (self == other)
def __contains__(self, key):
return key in self.__dict__
Caveat emptor: For some reasons classes like this seem to break the multiprocessing package. I just struggled with this bug for awhile before finding this SO:
Finding exception in python multiprocessing
I found myself wondering what the current state of "dict keys as attr" in the python ecosystem. As several commenters have pointed out, this is probably not something you want to roll your own from scratch, as there are several pitfalls and footguns, some of them very subtle. Also, I would not recommend using Namespace as a base class, I've been down that road, it isn't pretty.
Fortunately, there are several open source packages providing this functionality, ready to pip install! Unfortunately, there are several packages. Here is a synopsis, as of Dec 2019.
Contenders (most recent commit to master|#commits|#contribs|coverage%):
addict (2021-01-05 | 229 | 22 | 100%)
munch (2021-01-22 | 166 | 17 | ?%)
easydict (2021-02-28 | 54 | 7 | ?%)
attrdict (2019-02-01 | 108 | 5 | 100%)
prodict (2021-03-06 | 100 | 2 | ?%)
No longer maintained or under-maintained:
treedict (2014-03-28 | 95 | 2 | ?%)
bunch (2012-03-12 | 20 | 2 | ?%)
NeoBunch
I currently recommend munch or addict. They have the most commits, contributors, and releases, suggesting a healthy open-source codebase for each. They have the cleanest-looking readme.md, 100% coverage, and good looking set of tests.
I do not have a dog in this race (for now!), besides having rolled my own dict/attr code and wasted a ton of time because I was not aware of all these options :). I may contribute to addict/munch in the future as I would rather see one solid package than a bunch of fragmented ones. If you like them, contribute! In particular, looks like munch could use a codecov badge and addict could use a python version badge.
addict pros:
recursive initialization (foo.a.b.c = 'bar'), dict-like arguments become addict.Dict
addict cons:
shadows typing.Dict if you from addict import Dict
No key checking. Due to allowing recursive init, if you misspell a key, you just create a new attribute, rather than KeyError (thanks AljoSt)
munch pros:
unique naming
built-in ser/de functions for JSON and YAML
munch cons:
no recursive init (you cannot construct foo.a.b.c = 'bar', you must set foo.a, then foo.a.b, etc.
Wherein I Editorialize
Many moons ago, when I used text editors to write python, on projects with only myself or one other dev, I liked the style of dict-attrs, the ability to insert keys by just declaring foo.bar.spam = eggs. Now I work on teams, and use an IDE for everything, and I have drifted away from these sorts of data structures and dynamic typing in general, in favor of static analysis, functional techniques and type hints. I've started experimenting with this technique, subclassing Pstruct with objects of my own design:
class BasePstruct(dict):
def __getattr__(self, name):
if name in self.__slots__:
return self[name]
return self.__getattribute__(name)
def __setattr__(self, key, value):
if key in self.__slots__:
self[key] = value
return
if key in type(self).__dict__:
self[key] = value
return
raise AttributeError(
"type object '{}' has no attribute '{}'".format(type(self).__name__, key))
class FooPstruct(BasePstruct):
__slots__ = ['foo', 'bar']
This gives you an object which still behaves like a dict, but also lets you access keys like attributes, in a much more rigid fashion. The advantage here is I (or the hapless consumers of your code) know exactly what fields can and can't exist, and the IDE can autocomplete fields. Also subclassing vanilla dict means json serialization is easy. I think the next evolution in this idea would be a custom protobuf generator which emits these interfaces, and a nice knock-on is you get cross-language data structures and IPC via gRPC for nearly free.
If you do decide to go with attr-dicts, it's essential to document what fields are expected, for your own (and your teammates') sanity.
Feel free to edit/update this post to keep it recent!
What if you wanted a key which was a method, such as __eq__ or __getattr__?
And you wouldn't be able to have an entry that didn't start with a letter, so using 0343853 as a key is out.
And what if you didn't want to use a string?
tuples can be used dict keys. How would you access tuple in your construct?
Also, namedtuple is a convenient structure which can provide values via the attribute access.
How about Prodict, the little Python class that I wrote to rule them all:)
Plus, you get auto code completion, recursive object instantiations and auto type conversion!
You can do exactly what you asked for:
p = Prodict()
p.foo = 1
p.bar = "baz"
Example 1: Type hinting
class Country(Prodict):
name: str
population: int
turkey = Country()
turkey.name = 'Turkey'
turkey.population = 79814871
Example 2: Auto type conversion
germany = Country(name='Germany', population='82175700', flag_colors=['black', 'red', 'yellow'])
print(germany.population) # 82175700
print(type(germany.population)) # <class 'int'>
print(germany.flag_colors) # ['black', 'red', 'yellow']
print(type(germany.flag_colors)) # <class 'list'>
It doesn't work in generality. Not all valid dict keys make addressable attributes ("the key"). So, you'll need to be careful.
Python objects are all basically dictionaries. So I doubt there is much performance or other penalty.
This doesn't address the original question, but should be useful for people that, like me, end up here when looking for a lib that provides this functionality.
Addict it's a great lib for this: https://github.com/mewwts/addict it takes care of many concerns mentioned in previous answers.
An example from the docs:
body = {
'query': {
'filtered': {
'query': {
'match': {'description': 'addictive'}
},
'filter': {
'term': {'created_by': 'Mats'}
}
}
}
}
With addict:
from addict import Dict
body = Dict()
body.query.filtered.query.match.description = 'addictive'
body.query.filtered.filter.term.created_by = 'Mats'
Just to add some variety to the answer, sci-kit learn has this implemented as a Bunch:
class Bunch(dict):
""" Scikit Learn's container object
Dictionary-like object that exposes its keys as attributes.
>>> b = Bunch(a=1, b=2)
>>> b['b']
2
>>> b.b
2
>>> b.c = 6
>>> b['c']
6
"""
def __init__(self, **kwargs):
super(Bunch, self).__init__(kwargs)
def __setattr__(self, key, value):
self[key] = value
def __dir__(self):
return self.keys()
def __getattr__(self, key):
try:
return self[key]
except KeyError:
raise AttributeError(key)
def __setstate__(self, state):
pass
All you need is to get the setattr and getattr methods - the getattr checks for dict keys and the moves on to checking for actual attributes. The setstaet is a fix for fix for pickling/unpickling "bunches" - if inerested check https://github.com/scikit-learn/scikit-learn/issues/6196
Here's a short example of immutable records using built-in collections.namedtuple:
def record(name, d):
return namedtuple(name, d.keys())(**d)
and a usage example:
rec = record('Model', {
'train_op': train_op,
'loss': loss,
})
print rec.loss(..)
After not being satisfied with the existing options for the reasons below I developed MetaDict. It behaves exactly like dict but enables dot notation and IDE autocompletion without the shortcomings and potential namespace conflicts of other solutions. All features and usage examples can be found on GitHub (see link above).
Full disclosure: I am the author of MetaDict.
Shortcomings/limitations I encountered when trying out other solutions:
Addict
No key autocompletion in IDE
Nested key assignment cannot be turned off
Newly assigned dict objects are not converted to support attribute-style key access
Shadows inbuilt type Dict
Prodict
No key autocompletion in IDE without defining a static schema (similar to dataclass)
No recursive conversion of dict objects when embedded in list or other inbuilt iterables
AttrDict
No key autocompletion in IDE
Converts list objects to tuple behind the scenes
Munch
Inbuilt methods like items(), update(), etc. can be overwritten with obj.items = [1, 2, 3]
No recursive conversion of dict objects when embedded in list or other inbuilt iterables
EasyDict
Only strings are valid keys, but dict accepts all hashable objects as keys
Inbuilt methods like items(), update(), etc. can be overwritten with obj.items = [1, 2, 3]
Inbuilt methods don't behave as expected: obj.pop('unknown_key', None) raises an AttributeError
Apparently there is now a library for this - https://pypi.python.org/pypi/attrdict - which implements this exact functionality plus recursive merging and json loading. Might be worth a look.
You can do it using this class I just made. With this class you can use the Map object like another dictionary(including json serialization) or with the dot notation. I hope help you:
class Map(dict):
"""
Example:
m = Map({'first_name': 'Eduardo'}, last_name='Pool', age=24, sports=['Soccer'])
"""
def __init__(self, *args, **kwargs):
super(Map, self).__init__(*args, **kwargs)
for arg in args:
if isinstance(arg, dict):
for k, v in arg.iteritems():
self[k] = v
if kwargs:
for k, v in kwargs.iteritems():
self[k] = v
def __getattr__(self, attr):
return self.get(attr)
def __setattr__(self, key, value):
self.__setitem__(key, value)
def __setitem__(self, key, value):
super(Map, self).__setitem__(key, value)
self.__dict__.update({key: value})
def __delattr__(self, item):
self.__delitem__(item)
def __delitem__(self, key):
super(Map, self).__delitem__(key)
del self.__dict__[key]
Usage examples:
m = Map({'first_name': 'Eduardo'}, last_name='Pool', age=24, sports=['Soccer'])
# Add new key
m.new_key = 'Hello world!'
print m.new_key
print m['new_key']
# Update values
m.new_key = 'Yay!'
# Or
m['new_key'] = 'Yay!'
# Delete key
del m.new_key
# Or
del m['new_key']
Let me post another implementation, which builds upon the answer of Kinvais, but integrates ideas from the AttributeDict proposed in http://databio.org/posts/python_AttributeDict.html.
The advantage of this version is that it also works for nested dictionaries:
class AttrDict(dict):
"""
A class to convert a nested Dictionary into an object with key-values
that are accessible using attribute notation (AttrDict.attribute) instead of
key notation (Dict["key"]). This class recursively sets Dicts to objects,
allowing you to recurse down nested dicts (like: AttrDict.attr.attr)
"""
# Inspired by:
# http://stackoverflow.com/a/14620633/1551810
# http://databio.org/posts/python_AttributeDict.html
def __init__(self, iterable, **kwargs):
super(AttrDict, self).__init__(iterable, **kwargs)
for key, value in iterable.items():
if isinstance(value, dict):
self.__dict__[key] = AttrDict(value)
else:
self.__dict__[key] = value
This is what I use
args = {
'batch_size': 32,
'workers': 4,
'train_dir': 'train',
'val_dir': 'val',
'lr': 1e-3,
'momentum': 0.9,
'weight_decay': 1e-4
}
args = namedtuple('Args', ' '.join(list(args.keys())))(**args)
print (args.lr)
The easiest way is to define a class let's call it Namespace. which uses the object dict.update() on the dict. Then, the dict will be treated as an object.
class Namespace(object):
'''
helps referencing object in a dictionary as dict.key instead of dict['key']
'''
def __init__(self, adict):
self.__dict__.update(adict)
Person = Namespace({'name': 'ahmed',
'age': 30}) #--> added for edge_cls
print(Person.name)
No need to write your own as
setattr() and getattr() already exist.
The advantage of class objects probably comes into play in class definition and inheritance.
I created this based on the input from this thread. I need to use odict though, so I had to override get and set attr. I think this should work for the majority of special uses.
Usage looks like this:
# Create an ordered dict normally...
>>> od = OrderedAttrDict()
>>> od["a"] = 1
>>> od["b"] = 2
>>> od
OrderedAttrDict([('a', 1), ('b', 2)])
# Get and set data using attribute access...
>>> od.a
1
>>> od.b = 20
>>> od
OrderedAttrDict([('a', 1), ('b', 20)])
# Setting a NEW attribute only creates it on the instance, not the dict...
>>> od.c = 8
>>> od
OrderedAttrDict([('a', 1), ('b', 20)])
>>> od.c
8
The class:
class OrderedAttrDict(odict.OrderedDict):
"""
Constructs an odict.OrderedDict with attribute access to data.
Setting a NEW attribute only creates it on the instance, not the dict.
Setting an attribute that is a key in the data will set the dict data but
will not create a new instance attribute
"""
def __getattr__(self, attr):
"""
Try to get the data. If attr is not a key, fall-back and get the attr
"""
if self.has_key(attr):
return super(OrderedAttrDict, self).__getitem__(attr)
else:
return super(OrderedAttrDict, self).__getattr__(attr)
def __setattr__(self, attr, value):
"""
Try to set the data. If attr is not a key, fall-back and set the attr
"""
if self.has_key(attr):
super(OrderedAttrDict, self).__setitem__(attr, value)
else:
super(OrderedAttrDict, self).__setattr__(attr, value)
This is a pretty cool pattern already mentioned in the thread, but if you just want to take a dict and convert it to an object that works with auto-complete in an IDE, etc:
class ObjectFromDict(object):
def __init__(self, d):
self.__dict__ = d
Use SimpleNamespace:
from types import SimpleNamespace
obj = SimpleNamespace(color="blue", year=2050)
print(obj.color) #> "blue"
print(obj.year) #> 2050
EDIT / UPDATE: a closer answer to the OP's question, starting from a dictionary:
from types import SimpleNamespace
params = {"color":"blue", "year":2020}
obj = SimpleNamespace(**params)
print(obj.color) #> "blue"
print(obj.year) #> 2050
What would be the caveats and pitfalls of accessing dict keys in this manner?
As #Henry suggests, one reason dotted-access may not be used in dicts is that it limits dict key names to python-valid variables, thereby restricting all possible names.
The following are examples on why dotted-access would not be helpful in general, given a dict, d:
Validity
The following attributes would be invalid in Python:
d.1_foo # enumerated names
d./bar # path names
d.21.7, d.12:30 # decimals, time
d."" # empty strings
d.john doe, d.denny's # spaces, misc punctuation
d.3 * x # expressions
Style
PEP8 conventions would impose a soft constraint on attribute naming:
A. Reserved keyword (or builtin function) names:
d.in
d.False, d.True
d.max, d.min
d.sum
d.id
If a function argument's name clashes with a reserved keyword, it is generally better to append a single trailing underscore ...
B. The case rule on methods and variable names:
Variable names follow the same convention as function names.
d.Firstname
d.Country
Use the function naming rules: lowercase with words separated by underscores as necessary to improve readability.
Sometimes these concerns are raised in libraries like pandas, which permits dotted-access of DataFrame columns by name. The default mechanism to resolve naming restrictions is also array-notation - a string within brackets.
If these constraints do not apply to your use case, there are several options on dotted-access data structures.
this answer is taken from the book Fluent Python by Luciano Ramalho. so credits to that guy.
class AttrDict:
"""A read-only façade for navigating a JSON-like object
using attribute notation
"""
def __init__(self, mapping):
self._data = dict(mapping)
def __getattr__(self, name):
if hasattr(self._data, name):
return getattr(self._data, name)
else:
return AttrDict.build(self._data[name])
#classmethod
def build(cls, obj):
if isinstance(obj, Mapping):
return cls(obj)
elif isinstance(obj, MutableSequence):
return [cls.build(item) for item in obj]
else:
return obj
in the init we are taking the dict and making it a dictionary. when getattr is used we try to get the attribute from the dict if the dict already has that attribute. or else we are passing the argument to a class method called build. now build does the intresting thing. if the object is dict or a mapping like that, the that object is made an attr dict itself. if it's a sequence like list, it's passed to the build function we r on right now. if it's anythin else, like str or int. return the object itself.
class AttrDict(dict):
def __init__(self):
self.__dict__ = self
if __name__ == '____main__':
d = AttrDict()
d['ray'] = 'hope'
d.sun = 'shine' >>> Now we can use this . notation
print d['ray']
print d.sun
Solution is:
DICT_RESERVED_KEYS = vars(dict).keys()
class SmartDict(dict):
"""
A Dict which is accessible via attribute dot notation
"""
def __init__(self, *args, **kwargs):
"""
:param args: multiple dicts ({}, {}, ..)
:param kwargs: arbitrary keys='value'
If ``keyerror=False`` is passed then not found attributes will
always return None.
"""
super(SmartDict, self).__init__()
self['__keyerror'] = kwargs.pop('keyerror', True)
[self.update(arg) for arg in args if isinstance(arg, dict)]
self.update(kwargs)
def __getattr__(self, attr):
if attr not in DICT_RESERVED_KEYS:
if self['__keyerror']:
return self[attr]
else:
return self.get(attr)
return getattr(self, attr)
def __setattr__(self, key, value):
if key in DICT_RESERVED_KEYS:
raise AttributeError("You cannot set a reserved name as attribute")
self.__setitem__(key, value)
def __copy__(self):
return self.__class__(self)
def copy(self):
return self.__copy__()
You can use dict_to_obj
https://pypi.org/project/dict-to-obj/
It does exactly what you asked for
From dict_to_obj import DictToObj
a = {
'foo': True
}
b = DictToObj(a)
b.foo
True
This isn't a 'good' answer, but I thought this was nifty (it doesn't handle nested dicts in current form). Simply wrap your dict in a function:
def make_funcdict(d=None, **kwargs)
def funcdict(d=None, **kwargs):
if d is not None:
funcdict.__dict__.update(d)
funcdict.__dict__.update(kwargs)
return funcdict.__dict__
funcdict(d, **kwargs)
return funcdict
Now you have slightly different syntax. To acces the dict items as attributes do f.key. To access the dict items (and other dict methods) in the usual manner do f()['key'] and we can conveniently update the dict by calling f with keyword arguments and/or a dictionary
Example
d = {'name':'Henry', 'age':31}
d = make_funcdict(d)
>>> for key in d():
... print key
...
age
name
>>> print d.name
... Henry
>>> print d.age
... 31
>>> d({'Height':'5-11'}, Job='Carpenter')
... {'age': 31, 'name': 'Henry', 'Job': 'Carpenter', 'Height': '5-11'}
And there it is. I'll be happy if anyone suggests benefits and drawbacks of this method.
EDIT: NeoBunch is depricated, Munch (mentioned above) can be used as a drop-in replacement. I leave that solution here though, it can be useful for someone.
As noted by Doug there's a Bunch package which you can use to achieve the obj.key functionality. Actually there's a newer version called
NeoBunch Munch
It has though a great feature converting your dict to a NeoBunch object through its neobunchify function. I use Mako templates a lot and passing data as NeoBunch objects makes them far more readable, so if you happen to end up using a normal dict in your Python program but want the dot notation in a Mako template you can use it that way:
from mako.template import Template
from neobunch import neobunchify
mako_template = Template(filename='mako.tmpl', strict_undefined=True)
data = {'tmpl_data': [{'key1': 'value1', 'key2': 'value2'}]}
with open('out.txt', 'w') as out_file:
out_file.write(mako_template.render(**neobunchify(data)))
And the Mako template could look like:
% for d in tmpl_data:
Column1 Column2
${d.key1} ${d.key2}
% endfor

Categories