solving colebrook (nonlinear) equation in python - python

I want to do in python what this guy did in MATLAB.
I have installed anaconda, so i have numpy and sympy libraries. So far I have tried with numpy nsolve, but that doesn't work. I should say I'm new with python, and also that I konw how to do it in MATLAB :P.
The equation:
-2*log(( 2.51/(331428*sqrt(x)) ) + ( 0.0002 /(3.71*0.26)) ) = 1/sqrt(x)
Normally, I would solve this iteratively, simply guessing x on the left and than solving for the x on the right. Put solution on the left, solve again. Repeat until left x is close to right. I have an idea what solution should be.
So I could do that, but that's not very cool. I want to do it numerically.
My 15€ Casio calculator can solve it as is, so I think it shouldn't be to complicated?
Thank you for your help,
edit: so I have tried the following:
from scipy.optimize import brentq
w=10;
d=0.22;
rho=1.18;
ni=18.2e-6;
Re=(w*d*rho)/ni
k=0.2e-3;
d=0.26;
def f(x,Re,k,d):
return (
-2*log((2.51/(Re*sqrt(x)))+(k/(3.71*d)),10)*sqrt(x)+1
);
print(
scipy.optimize.brentq
(
f,0.0,1.0,xtol=4.44e-12,maxiter=100,args=(),full_output=True,disp=True
)
);
And i get this result:
r = _zeros._brentq(f,a,b,xtol,maxiter,args,full_output,disp)
TypeError: f() takes exactly 4 arguments (1 given)
Is it because I'm solving also solving for constants?
edit2:
so I think I have to assign constants via args=() keyword, so I changed:
f,0.0,1.0,xtol=4.44e-12,maxiter=100,args=(Re,k,d),full_output=True,disp=True
but now I get this:
-2*log((2.51/(Re*sqrt(x)))+(k/(3.71*d)),10)*sqrt(x)+1
TypeError: return arrays must be of ArrayType
Anyway, when I put in a different equation; lets say 2*x*Re+(k*d)/(x+5) it works, so I guess I have to transform the equation.
so it dies here: log(x,10)..
edit4: correct syntax is log10(x)... Now it works but I get zero as a result

This works fine. I've done a few things here. First, I've used a simpler definition of the function using the global variables you've defined anyway. I find this a little nicer than passing the args= to the solvers, it also enables easier use of your own custom solvers if you ever need something like that. I've used the generic root function as an entry point rather than using a particular algorithm - this is nice because you can simply pass a different method later. I've also fixed up your spacing to be as recommended by PEP 8 and fixed your erronious rewriting of the equation. I find it more intuitive simply to write LHS - RHS rather than manipulate as you did. Also, notice that I've replaced all the integer literals with 1.0 or whatever to avoid problems with integer division. 0.02 is regarded as a pretty standard starting point for the friction factor.
import numpy
from scipy.optimize import root
w = 10.0
d = 0.22
rho = 1.18
ni = 18.2e-6
Re = w*d*rho/ni
k = 0.2e-3
def f(x):
return (-2*numpy.log10((2.51/(Re*numpy.sqrt(x))) + (k/(3.71*d))) - 1.0/numpy.sqrt(x))
print root(f, 0.02)
I must also mention that fixed point iteration is actually faster than even Newton's method for this problem. You can use the built-in fixed point iteration routine by defining f2 as follows:
def f2(x):
LHS = -2*numpy.log10((2.51/(Re*numpy.sqrt(x))) + (k/(3.71*d)))
return 1/LHS**2
Timings (starting further from the root to show speed of convergence):
%timeit root(f, 0.2)
1000 loops, best of 3: 428 µs per loop
%timeit fixed_point(f2, 0.2)
10000 loops, best of 3: 148 µs per loop

Your tags are a little off: you're tagging it as sympy which is a library for symbolic computations, but say that you want to solve it numerically. In case the latter is your actual intention, here are relevant scipy docs:
http://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html#root-finding

Scipy with fixed_point is to be preferred also because the root does not converge for guess values far away, like the 0.2 in the #chthonicdaemon %timeit exempla.

Related

sympy solveset returns FiniteSet in one case but a Complement in another case

So I am starting with an equality of an equation and a fraction that I use to solve for both x and y:
mrs = y/x
ratio = 2/5
x = sympy.solveset(sympy.Eq(mrs, ratio), x)
y = sympy.solveset(sympy.Eq(mrs, ratio), y)
In the end, solving for y returns:
{2*x/5}
Which is a FiniteSet
But solving for x returns:
{5*y/2} \ {0}
Which is a Complement
I don't get why solving for one variable gives me a FiniteSet when solving for the other doesn't do the same? Also, would there be a way to solve for the other variable so as to get a FiniteSet instead of a Complement?
What do you expect as a result? Could you solve this problem by hand and write the expected solution? And why would you want a FiniteSet as solution?
I myself can not come up with a better notation than sympy, since x=0 needs to be excluded.
When you continue working with the solutions sympy can easily work with both, FiniteSet and Complement. Mathematically those are not completely different structures. The difference is that sympy somehow needs to represent these solutions internally and can not use the same construction for everything, but rather uses small building blocks to create the solution. The result you get with type(x) is symply the last building block used.
EDIT: Some math here: x=0 does not solve the equation y/x=2/5 for any y. So this must be excluded from the solutionset.
If you solve for y, then x=0 is already excluded since y/0 is not well defined.
If you solve for y, then y=0 is a priori possible, since 0/x=0 for x!=0. Thus sympy needs to exclude x=0 manually, which it does by removing 0 from the set of solutions.
Now, since we know that x=0 can never be a solution of the equation we can exclude it before even trying to solve the equation. Therefore we do
x = sympy.symbols('x', real=True, nonzero=True)
right at the beginning of the example (before the definition of mrs). The rest can remain unchanged.

Integer optimization/maximization in numpy

I need to estimate the size of a population, by finding the value of n which maximises scipy.misc.comb(n, a)/n**b where a and b are constants. n, a and b are all integers.
Obviously, I could just have a loop in range(SOME_HUGE_NUMBER), calculate the value for each n and break out of the loop once I reach an inflexion in the curve. But I wondered if there was an elegant way of doing this with (say) numpy/scipy, or is there some other elegant way of doing this just in pure Python (e.g. like an integer equivalent of Newton's method?)
As long as your number n is reasonably small (smaller than approx. 1500), my guess for the fastest way to do this is to actually try all possible values. You can do this quickly by using numpy:
import numpy as np
import scipy.misc as misc
nMax = 1000
a = 77
b = 100
n = np.arange(1, nMax+1, dtype=np.float64)
val = misc.comb(n, a)/n**b
print("Maximized for n={:d}".format(int(n[val.argmax()]+0.5)))
# Maximized for n=181
This is not especially elegant but rather fast for that range of n. Problem is that for n>1484 the numerator can already get too large to be stored in a float. This method will then fail, as you will run into overflows. But this is not only a problem of numpy.ndarray not working with python integers. Even with them, you would not be able to compute:
misc.comb(10000, 1000, exact=True)/10000**1001
as you want to have a float result in your division of two numbers larger than the maximum a float in python can hold (max_10_exp = 1024 on my system. See sys.float_info().). You couldn't use your range in that case, as well. If you really want to do something like that, you will have to take more care numerically.
You essentially have a nicely smooth function of n that you want to maximise. n is required to be integral but we can consider the function instead to be a function of the reals. In this case, the maximising integral value of n must be close to (next to) the maximising real value.
We could convert comb to a real function by using the gamma function and use numerical optimisation techniques to find the maximum. Another approach is to replace the factorials with Stirling's approximation. This gives a moderately complicated but tractable algebraic expression. This expression is not hard to differentiate and set to zero to find the extrema.
I did this and obtained
n * (b + (n-a) * log((n-a)/n) ) = a * b - a/2
This is not straightforward to solve algebraically but easy enough numerically (e.g. using Newton's method, as you suggest).
I may have made a mistake in the algebra, but I typed the a = 77, b = 100 example into Wolfram Alpha and got 180.58 so the approach seems to work.

Avoiding hard coding a lot of coupled ODEs in python

First of, I'm sorry if the title is not entirely fitting, I had a hard time finding an appropriate one (which might have also effect my searching efficiency for already asked questions like this :/ ).
The problem is the following. While it is comparably easy to solve coupled ODE's in python with Scipy, I still have to write down my ODE in the form explicitly. For example for a coupled ODE of the form
d/dt(c_0)=a(c_0)+b(c_1) and d/dt(c_1)=c(c_0)
I would set up sth like:
import numpy as np
from scipy.integrate import ode
a=1
b=2
c=3
val=[]
def dC_dt(t, C):
return [a*C[0]+b*C[1],
c*C[0]]
c0, t0 = [1.0,0.0], 0
r = ode(dC_dt).set_integrator('zvode', method='bdf',with_jacobian=False)
r.set_initial_value(c0, t0)
t1 = 0.001
dt = 0.000005
while r.successful() and r.t < t1:
r.integrate(r.t+dt)
val.append(r.y)
However, now I have coupled ODE's of the rough form
d/dt(c_{m,n})=a(c_{m,n})+b(c_{m+1,n-1})+k(c_{m-1,n+1})
with c_{0,0}=1 and I have to include orders with m^2+n^2-mn smaller than a max value.
For a small max, what I did, is using a dictionary to use a notation with two indices and map it on a 1D list
dict_in={'0,0':0,'-1,0':2,...}
and then I entered the ODE for each order
def dC_dt(t,C):
return[a*C[dict_in['0,0']]+b*C[dict_in['1,-1']]...
Now I basically have to do that for some 100 coupled equations, which I ofc do not want to hard code, so I was trying to figure out a way, to realize the ODE's with a loop or sth. However I couldn't yet find a way around the fact of having two indices in my coefficients together with the condition of only including orders with m^2+n^2-mn smaller than a max value.
As I am running in some deadlines, I figured it is time to ask smarter people for help.
Thanks for reading my question!
I had a similar problem. If you fill you dictionary you can just redeclare the function more times inside the loop. This is a silly example of how it works:
dict_in={'0,0':0,'-1,0':2}
for elem in dict_in:
def dC_dt(t,C):
#return[a*C[dict_in['0,0']]+b*C[dict_in['1,-1']]
return dict_in[elem]
t, C = 0, 0
print(dC_dt(t,C))
#r = ode(dC_dt).set_integrator('zvode', method='bdf',with_jacobian=False)
If you need to use more functions together you can use anonymous functions and store them in memory. Another example:
functions_list = list()
for i in range(4):
f = lambda n = i: n
functions_list.append(f)
for j in range(4):
print(functions_list[j]())
You can use a list or a generator too. For example you can write down the value on a txt file and read that with the readline function each time.
As pointed in the comments below, if you use lamda functions you should pay attention to references. See also https://docs.python.org/3/faq/programming.html#why-do-lambdas-defined-in-a-loop-with-different-values-all-return-the-same-result

scipy: minimize vs. minimize.scalar; return F versus return F**2; shouldnt make a difference?

I just found a behavior which I cannot explain. Do I miss something ?
I have an implicit function:
def my_cost_fun(x,a,b,c):
# x is a scalar; all variables are provided as numpy arrays
F = some_fun(x,a,b,c) - x
return F
I do minimize the function using:
optimize.fsolve(my_cost_fun,0.2,args = (a,b,c))
optimize.brentq(my_cost_fun,-0.2,0.2,args = (a,b,c))
Or by the mimimize function:
optimize.minimize(my_cost_fun,0.2,args = (a,b,c),method = 'L-BFGS-B',bounds=((0,a),)
The strange thing is:
If I use return F
brent_q method and fsolve do give the same result and %timeit measures the fastest loop with ~ 250 µs
L-BFGS-B (and SLSQP and TNC) does not change x0 at all and provides a wrong result
If I use return F**2:
fsolve returns the right solution but converges slowly; 1.2 ms for the fastest loop
L-BFGS-B returns the right solution but converges slowly: 1.5 ms for the fastest loop
Can someone explain why ?
As I mentioned in the comments:
Here is one possible explaination of why L-BFGS-B is not working when you use return F: If the value of F can be negative, then optmize.minimize will try to find the most negative value it can. minimize isn't necessarily finding a root, it's finding the minimum. If you return F**2 instead, since for real-valued functions F**2 will always be positive, minima of F**2 will happen at F=0, i.e. the minima will be the roots.
This doesn't explain your timing issue, but that may be of secondary concern. I would still be curious to study the timing with your particular some_fun(x,a,b,c) if you get a chance to post a definition.

Sum of Square Differences (SSD) in numpy/scipy

I'm trying to use Python and Numpy/Scipy to implement an image processing algorithm. The profiler tells me a lot of time is being spent in the following function (called often), which tells me the sum of square differences between two images
def ssd(A,B):
s = 0
for i in range(3):
s += sum(pow(A[:,:,i] - B[:,:,i],2))
return s
How can I speed this up? Thanks.
Just
s = numpy.sum((A[:,:,0:3]-B[:,:,0:3])**2)
(which I expect is likely just sum((A-B)**2) if the shape is always (,,3))
You can also use the sum method: ((A-B)**2).sum()
Right?
Just to mention that one can also use np.dot:
def ssd(A,B):
dif = A.ravel() - B.ravel()
return np.dot( dif, dif )
This might be a bit faster and possibly more accurate than alternatives using np.sum and **2, but doesn't work if you want to compute ssd along a specified axis. In that case, there might be a magical subscript formula using np.einsum.
I am confused why you are taking i in range(3). Is that supposed to be the whole array, or just part?
Overall, you can replace most of this with operations defined in numpy:
def ssd(A,B):
squares = (A[:,:,:3] - B[:,:,:3]) ** 2
return numpy.sum(squares)
This way you can do one operation instead of three and using numpy.sum may be able to optimize the addition better than the builtin sum.
Further to Ritsaert Hornstra's answer that got 2 negative marks (admittedly I didn't see it in it's original form...)
This is actually true.
For a large number of iterations it can often take twice as long to use the '**' operator or the pow(x,y) method as to just manually multiply the pairs together. If necessary use the math.fabs() method if it's throwing out NaN's (which it sometimes does especially when using int16s etc.), and it still only takes approximately half the time of the two functions given.
Not that important to the original question I know, but definitely worth knowing.
I do not know if the pow() function with power 2 will be fast. Try:
def ssd(A,B):
s = 0
for i in range(3):
s += sum((A[:,:,i] - B[:,:,i])*(A[:,:,i] - B[:,:,I]))
return s
You can try this one:
dist_sq = np.sum((A[:, np.newaxis, :] - B[np.newaxis, :, :]) ** 2, axis=-1)
More details can be found here (the 'k-Nearest Neighbors' example):
https://jakevdp.github.io/PythonDataScienceHandbook/02.08-sorting.html
In Ruby language you can achieve this in this way
def diff_btw_sum_of_squars_and_squar_of_sum(from=1,to=100) # use default values from 1..100.
((1..100).inject(:+)**2) -(1..100).map {|num| num ** 2}.inject(:+)
end
diff_btw_sum_of_squars_and_squar_of_sum #call for above method

Categories