Python, square root function? - python

I have compiled multiple attempts at this and have failed miserably, some assistance would be greatly appreciated.
The function should have one parameter without using the print statement. Using Newton's method it must return the estimated square root as its value. Adding a for loop to update the estimate 20 times, and using the return statement to come up with the final estimate.
so far I have...
from math import *
def newton_sqrt(x):
for i in range(1, 21)
srx = 0.5 * (1 + x / 1)
return srx
This is not an assignment just practice. I have looked around on this site and found helpful ways but nothing that is descriptive enough.

This is an implementation of the Newton's method,
def newton_sqrt(val):
def f(x):
return x**2-val
def derf(x):
return 2*x
guess =val
for i in range(1, 21):
guess = guess-f(guess)/derf(guess)
#print guess
return guess
newton_sqrt(2)
See here for how it works. derf is the derivative of f.

I urge you to look at the section on Wikipedia regarding applying Newton's method to finding the square root of a number.
The process generally works like this, our function is
f(x) = x2 - a
f'(x) = 2x
where a is the number we want to find the square root of.
Therefore, our estimates will be
xn+1 = xn - (xn2 - a) / (2xn)
So, if your initial guess is x<sub>0</sub>, then our estimates are
x1 = x0 - (x02 - x) / (2x0)
x2 = x1 - (x12 - x) / (2x1)
x3 = x2 - (x22 - x) / (2x2)
...
Converting this to code, taking our initial guess to be the function argument itself, we would have something like
def newton_sqrt(a):
x = a # initial guess
for i in range(20):
x -= (x*x - a) / (2.0*x) # apply the iterative process once
return x # return 20th estimate
Here's a small demo:
>>> def newton_sqrt(a):
... x = a
... for i in range(20):
... x -= (x*x - a) / (2.0*x)
... return x
...
>>> newton_sqrt(2)
1.414213562373095
>>> 2**0.5
1.4142135623730951
>>>
>>> newton_sqrt(3)
1.7320508075688774
>>> 3**0.5
1.7320508075688772

In your code you are not updating x (and consequently srx) as you loop.

One problem is that x/1 is not going to do much and another is that since x never changes all the iterations of the loop will do the same.

Expanding on your code a bit, you could add a guess as a parameter
from math import *
def newton_sqrt(x, guess):
val = x
for i in range(1, 21):
guess = (0.5 * (guess + val / guess));
return guess
print newton_sqrt(4, 3) # Returns 2.0

You probably want something more like:
def newton_sqrt(x):
srx = 1
for i in range(1, 21):
srx = 0.5 * (srx + x/srx)
return srx
newton_sqrt(2.)
# 1.4142135623730949
This both: 1) updates the answer at each iteration, and 2) uses something much closer to the correct formula (ie, no useless division by 1).

Related

Newton's method of succesive approximations

I was trying to build a program to based on the inputs use Newton's method of successive approximations and calculate the answer, using while and if statements, but after running the program, it only collects the input from the user and do not follow up with anything.
I would really appreciate some help.
x = float(input("Number you want to know, the square root of: "))
y = float(input("What is your guess ? "))
z = float
a = float
while (True):
if (abs(y - x) < 0.001):
print (y)
break
else:
z = (x / y)
a = ((z + y)/2)
y = a
Consider the case where you want to know the square root of 2. So x will be 2 and y will approach the correct answer. x never changes here, so when will abs(√2 - 2) even be less than 0.001? Then answer is never, which is why your code never exists the loop.
You should be comparing the previous estimate to the new estimate and stopping when the updated value is lower than you tolerance. For example:
x = 2
y = 1
while (True):
print (y)
a = ((x / y + y)/2)
if abs(y - a) < .000001: # has the estimate changed enough?
break
y = a
Will quickly converge, printing:
1
1.5
1.4166666666666665
1.4142156862745097
1.4142135623746899
you can try :
while(True):
if (abs(y*y - x) < 0.001)

Taylor series for log(x)

I'm trying to evaluate a Taylor polynomial for the natural logarithm, ln(x), centred at a=1 in Python. I'm using the series given on Wikipedia however when I try a simple calculation like ln(2.7) instead of giving me something close to 1 it gives me a gigantic number. Is there something obvious that I'm doing wrong?
def log(x):
n=1000
s=0
for i in range(1,n):
s += ((-1)**(i+1))*((x-1)**i)/i
return s
Using the Taylor series:
Gives the result:
EDIT: If anyone stumbles across this an alternative way to evaluate the natural logarithm of some real number is to use numerical integration (e.g. Riemann sum, midpoint rule, trapezoid rule, Simpson's rule etc) to evaluate the integral that is often used to define the natural logarithm;
That series is only valid when x is <= 1. For x>1 you will need a different series.
For example this one (found here):
def ln(x): return 2*sum(((x-1)/(x+1))**i/i for i in range(1,100,2))
output:
ln(2.7) # 0.9932517730102833
math.log(2.7) # 0.9932517730102834
Note that it takes a lot more than 100 terms to converge as x gets bigger (up to a point where it'll become impractical)
You can compensate for that by adding the logarithms of smaller factors of x:
def ln(x):
if x > 2: return ln(x/2) + ln(2) # ln(x) = ln(x/2 * 2) = ln(x/2) + ln(2)
return 2*sum(((x-1)/(x+1))**i/i for i in range(1,1000,2))
which is something you can also do in your Taylor based function to support x>1:
def log(x):
if x > 1: return log(x/2) - log(0.5) # ln(2) = -ln(1/2)
n=1000
s=0
for i in range(1,n):
s += ((-1)**(i+1))*((x-1)**i)/i
return s
These series also take more terms to converge when x gets closer to zero so you may want to work them in the other direction as well to keep the actual value to compute between 0.5 and 1:
def log(x):
if x > 1: return log(x/2) - log(0.5) # ln(x/2 * 2) = ln(x/2) + ln(2)
if x < 0.5: return log(2*x) + log(0.5) # ln(x*2 / 2) = ln(x*2) - ln(2)
...
If performance is an issue, you'll want to store ln(2) or log(0.5) somewhere and reuse it instead of computing it on every call
for example:
ln2 = None
def ln(x):
if x <= 2:
return 2*sum(((x-1)/(x+1))**i/i for i in range(1,10000,2))
global ln2
if ln2 is None: ln2 = ln(2)
n2 = 0
while x>2: x,n2 = x/2,n2+1
return ln2*n2 + ln(x)
The program is correct, but the Mercator series has the following caveat:
The series converges to the natural logarithm (shifted by 1) whenever −1 < x ≤ 1.
The series diverges when x > 1, so you shouldn't expect a result close to 1.
The python function math.frexp(x) can be used to advantage here to modify the problem so that the taylor series is working with a value close to one. math.frexp(x) is described as:
Return the mantissa and exponent of x as the pair (m, e). m is a float
and e is an integer such that x == m * 2**e exactly. If x is zero,
returns (0.0, 0), otherwise 0.5 <= abs(m) < 1. This is used to “pick
apart” the internal representation of a float in a portable way.
Using math.frexp(x) should not be regarded as "cheating" because it is presumably implemented just by accessing the bit fields in the underlying binary floating point representation. It isn't absolutely guaranteed that the representation of floats will be IEEE 754 binary64, but as far as I know every platform uses this. sys.float_info can be examined to find out the actual representation details.
Much like the other answer does you can use the standard logarithmic identities as follows: Let m, e = math.frexp(x). Then log(x) = log(m * 2e) = log(m) + e * log(2). log(2) can be precomputed to full precision ahead of time and is just a constant in the program. Here is some code illustrating this to compute the two similar taylor series approximations to log(x). The number of terms in each series was determined by trial and error rather than rigorous analysis.
taylor1 implements log(1 + x) = x1 - (1/2) * x2 + (1/3) * x3 ...
taylor2 implements log(x) = 2 * [t + (1/3) * t3 + (1/5) * t5 ...], where t = (x - 1) / (x + 1).
import math
import struct
_LOG_OF_2 = 0.69314718055994530941723212145817656807550013436025
def taylor1(x):
m, e = math.frexp(x)
log_of_m = 0
num_terms = 36
sign = 1
m_minus1_power = m - 1
for k in range(1, num_terms + 1):
log_of_m += sign * m_minus1_power / k
sign = -sign
m_minus1_power *= m - 1
return log_of_m + e * _LOG_OF_2
def taylor2(x):
m, e = math.frexp(x)
num_terms = 12
half_log_of_m = 0
t = (m - 1) / (m + 1)
t_squared = t * t
t_power = t
denominator = 1
for k in range(num_terms):
half_log_of_m += t_power / denominator
denominator += 2
t_power *= t_squared
return 2 * half_log_of_m + e * _LOG_OF_2
This seems to work well over most of the domain of log(x), but as x approaches 1 (and log(x) approaches 0) the transformation provided by x = m * 2e actually produces a less accurate result. So a better algorithm would first check if x is close to 1, say abs(x-1) < .5, and if so the just compute the taylor series approximation directly on x.
My answer is just using the Taylor series for In(x). I really hope this helps. It is simple and straight to the point.
enter image description here

Babylonian algorithm function using while loop

I am struggling on a Babylonian algorithm to find a square root of 'a':
Take a guess: pick some number x.
Check how good is our guess, by computing abs(x2 - a). If it’s close enough (for example, less than 10^-6), we’re done.
Otherwise, calculate an improved guess (x + a/x) / 2; this replaces the previous value of x and we repeat from the test.
I have no idea where the while loop should come to, and what to do if the improved guess is still not correct.
I have tried to every code under the 'while True' loop, but that made it even more confusing. This is the draft code below:
def babylonian(a,x):
difference = abs(x ** 2 - a)
improved_guess = 0.5 * (a / x + x)
if difference < 10 ** -6:
print("Guess is right")
while difference > 10 ** -6:
if (improved_guess ** 2 - a) < 10 ** -6:
break
If I enter (4, 1) for instance, the terminal does not give any value.
According to you algorithm first find the difference using initial guess if it is ok then while loop wont execute if not the find the appropriate guess inside while loop an you have to return the final guess from the function:
def babylonian(a,x):
difference = abs(x ** 2 - a)
if difference < 10 ** -6:
print("Guess is right")
while difference > 10 ** -6:
x = 0.5 * (a / x + x)
difference = abs(x ** 2 - a)
return x
Follow your recipe:
TOLERANCE = 1e-6
def babylonian(target, guess): # Take a guess
# Check how good is our guess, by computing abs(x2 - a).
# If it’s close enough (for example, less than 10^-6), we’re done.
while abs(guess*guess - target) > TOLERANCE:
print(guess)
# Otherwise, calculate an improved guess (x + a/x) / 2;
new_guess = (guess + target/guess) / 2
# this replaces the previous value of x
guess = new_guess
# and we repeat from the test.
return guess
Make following changes to your code:
def Babylonian(a, x):
difference = abs(x ** 2 - a)
if difference < 0.000001:
print("Correct", x)
else:
while difference > 0.000001:
x = 0.5 * (x + a/x)
difference = abs(x ** 2 - a)
print("Correct ", x)
You need to update the value of x in the while loop, otherwise it will go into an infinite loop.

Square Root using Babylonian Method returns wrong value

Trying to use a loop function to find the square root of a number.
I'm trying to use the Babylonian method but it will not return the correct answer. If someone could point out where I have an error that would be much appreciated.
def sqrt(number, guess, threshold):
x = number / 2
prev_x = x + 2 * threshold
while abs(prev_x - x) > threshold:
prev_x = x
x = (x + guess / x) / 2
square_root = x
return square_root
test = sqrt(81, 7, 0.01)
print (test)
Change
x = (x+guess/x)/2
as this would progress to square root of guess. Change it to
x = (x+number/x)/2
Move return statement out of the while loop
initialize x to guess instead of number/2
There's no need for a guess variable at all. Your x = number/2 is your initial guess already, and by using an arbitrarily assigned guess in your computation without updating it you certainly would not get the right number.
Replace guess with number instead, and return only when the while loop is finished, and your code would work:
def sqrt(number,guess,threshold):
x = number/2
prev_x = x+2*threshold
while abs(prev_x-x)>threshold:
prev_x = x
x = (x+number/x)/2
square_root = x
return square_root
To actually make use of guess you should keep updating it as you approximate the square root:
def sqrt(number,guess,threshold):
while abs(guess - number / guess) > threshold:
guess = (guess + number / guess) / 2
return guess

Incorrect answer while calculating pi value from given series

I was trying to calculate value of pi using this formula:
I had written this code for finding it for a given n:
def pisum(n):
sum=3.0
x=2.0
while (n>0):
if n%2==1:
sum=sum+(4/(x*(x+1)*(x+2)))
else :
sum=sum-(4/(x*(x+1)*(x+2)))
x=x+2
n=n-1
return str(sum)
It runs fine for n=0 and n=1 and gives output 3.0, 3.16666666667. But for n=50 the output should be 3.1415907698497954 but it is giving 2.85840923015. Why so much difference? Please help to correct if i had done something wrong.
The problem is that you are using n%2 in order to determine whether to subtract or add. It is not the amount of loops that you start with that should matter, but which loop you're in. To see that, try using your function for an odd number, e.g. 51 and you will see that it will give you a correct answer.
To explain further, if you start with n=50, you will initially subtract (4/(x*(x+1)*(x+2))) from 3 rather than add to it, but if you start with n=51, you will initially add.
If you modify your function as follows:
def pisum(n):
sum = 3.0
x = 2.0
for i in range(n):
if i % 2 == 0:
sum = sum + (4 / (x * (x + 1) * (x + 2)))
else:
sum = sum - (4 / (x * (x + 1) * (x + 2)))
x = x + 2
return str(sum)
you will always get a correct result.
You made a small mistake.
One correct program:
def pisum(n):
sum = 3.
for i in xrange(2, 2*n+2, 2):
sum += (4. if (i&2) == 2 else -4.)/i/(i+1)/(i+2)
return sum
Being more conservative with number of lines:
def pisum(n):
return 3. + sum([(4. if (i&2) == 2 else -4.)/i/(i+1)/(i+2) for i in xrange(2,2*n+2,2)])
Mistake in yours:
You are iterating on n in reverse, thus one time (odd value of n) you are calculating:
and for another value of n (even value apart from 0) you are calculating

Categories