I'm trying to perform clustering in Python using Random Forests. In the R implementation of Random Forests, there is a flag you can set to get the proximity matrix. I can't seem to find anything similar in the python scikit version of Random Forest. Does anyone know if there is an equivalent calculation for the python version?
We don't implement proximity matrix in Scikit-Learn (yet).
However, this could be done by relying on the apply function provided in our implementation of decision trees. That is, for all pairs of samples in your dataset, iterate over the decision trees in the forest (through forest.estimators_) and count the number of times they fall in the same leaf, i.e., the number of times apply give the same node id for both samples in the pair.
Hope this helps.
Based on Gilles Louppe answer I have written a function. I don't know if it is effective, but it works. Best regards.
def proximityMatrix(model, X, normalize=True):
terminals = model.apply(X)
nTrees = terminals.shape[1]
a = terminals[:,0]
proxMat = 1*np.equal.outer(a, a)
for i in range(1, nTrees):
a = terminals[:,i]
proxMat += 1*np.equal.outer(a, a)
if normalize:
proxMat = proxMat / nTrees
return proxMat
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_breast_cancer
train = load_breast_cancer()
model = RandomForestClassifier(n_estimators=500, max_features=2, min_samples_leaf=40)
model.fit(train.data, train.target)
proximityMatrix(model, train.data, normalize=True)
## array([[ 1. , 0.414, 0.77 , ..., 0.146, 0.79 , 0.002],
## [ 0.414, 1. , 0.362, ..., 0.334, 0.296, 0.008],
## [ 0.77 , 0.362, 1. , ..., 0.218, 0.856, 0. ],
## ...,
## [ 0.146, 0.334, 0.218, ..., 1. , 0.21 , 0.028],
## [ 0.79 , 0.296, 0.856, ..., 0.21 , 1. , 0. ],
## [ 0.002, 0.008, 0. , ..., 0.028, 0. , 1. ]])
There is nothing currently implemented for this in python. I took a first try at it here. It would be great if somebody would be interested in adding these methods to scikit.
Related
I have a problem of two objective functions, three variables, and zero constraints.
I have also a search space for these variables read from CSV.
Is it possible to use pymoo to use that search space of variables (instead of xl, and xu) to get the best combination of them that maximize the two functions.
class MyProblem (Problem):
def __init__(self):
super().__init__(n_var=3,
n_obj=2,
n_constr=0,
#I want to use the search space of the three variables (I already have)
xl=np.array([0.0,0.0,0.0]),
xu=np.array([1.0,1.0,1.0])
)
def _evaluate(self,X,out,*args,**kwargs):
#Maximizing the triangle area of the three variables
f1=-1*(0.5*math.sin(120)*(X[:,0]*X[:,1] +X[:,2]*X[:,1]+X[:,0]*X[:,2]))
#maximizing the sum of the variables
f2 = -1*(X[:,0]+X[:,1]+X[:,2])
out["F"] = np.column_stack([f1, f2])
problem = MyProblem()
When I use the xl and xu, it always gets the combination of ones [1.0,1.0,1.0], but I want to get the best combination out of my numpy multi-dimension array.
import csv
with open("sample_data/dimensions.csv", 'r') as f:
dimensions = list(csv.reader(f, delimiter=","))
import numpy as np
dimensions = np.array(dimensions[1:])
dimensions=np.array(dimensions[:,1:], dtype=np.float)
dimensions
that looks like the following:
array([[0.27 , 0.45 , 0.23 ],
[0. , 0.23 , 0.09 ],
[0.82 , 0.32 , 0.27 ],
[0.64 , 0.55 , 0.32 ],
[0.77 , 0.55 , 0.36 ],
[0.25 , 0.86 , 0.18 ],
[0. , 0.68 , 0.09 ],...])
Thanks for your help!
Have you tried sampling by numpy.array?
class pymoo.algorithms.nsga2.NSGA2(self, pop_size=100, sampling=numpy.array)
where (from pymoo API)
The sampling process defines the initial set of solutions which are
the starting point of the optimization algorithm. Here, you have three
different options by passing
(i) A Sampling implementation which is an implementation of a random
sampling method.
(ii) A Population object containing the variables to be evaluated
initially OR already evaluated solutions (F needs to be set in this
case).
(iii) Pass a two dimensional numpy.array with (n_individuals, n_var)
which contains the variable space values for each individual.
I have the following distance matrix based on 10 datapoints:
import numpy as np
distance_matrix = np.array([[0. , 0.00981376, 0.0698306 , 0.01313118, 0.05344448,
0.0085152 , 0.01996724, 0.14019663, 0.03702411, 0.07054652],
[0.00981376, 0. , 0.06148157, 0.00563764, 0.04473798,
0.00905327, 0.01223233, 0.13140022, 0.03114453, 0.06215728],
[0.0698306 , 0.06148157, 0. , 0.05693448, 0.02083512,
0.06390897, 0.05107812, 0.07539802, 0.04003773, 0.00703263],
[0.01313118, 0.00563764, 0.05693448, 0. , 0.0408836 ,
0.00787845, 0.00799949, 0.12779965, 0.02552774, 0.05766039],
[0.05344448, 0.04473798, 0.02083512, 0.0408836 , 0. ,
0.04846382, 0.03638932, 0.0869414 , 0.03579818, 0.0192329 ],
[0.0085152 , 0.00905327, 0.06390897, 0.00787845, 0.04846382,
0. , 0.01284173, 0.13540522, 0.03010677, 0.0646998 ],
[0.01996724, 0.01223233, 0.05107812, 0.00799949, 0.03638932,
0.01284173, 0. , 0.12310601, 0.01916205, 0.05188323],
[0.14019663, 0.13140022, 0.07539802, 0.12779965, 0.0869414 ,
0.13540522, 0.12310601, 0. , 0.11271352, 0.07346808],
[0.03702411, 0.03114453, 0.04003773, 0.02552774, 0.03579818,
0.03010677, 0.01916205, 0.11271352, 0. , 0.04157886],
[0.07054652, 0.06215728, 0.00703263, 0.05766039, 0.0192329 ,
0.0646998 , 0.05188323, 0.07346808, 0.04157886, 0. ]])
I transform the distance_matrix to an affinity_matrix by using the following
delta = 0.1
np.exp(- distance_matrix ** 2 / (2. * delta ** 2))
Which gives
affinity_matrix = np.array([[1. , 0.99519608, 0.7836321 , 0.99141566, 0.86691389,
0.99638113, 0.98026285, 0.37427863, 0.93375682, 0.77970427],
[0.99519608, 1. , 0.82778719, 0.99841211, 0.90477015,
0.9959103 , 0.99254642, 0.42176757, 0.95265821, 0.82433657],
[0.7836321 , 0.82778719, 1. , 0.85037594, 0.97852875,
0.81528476, 0.8777015 , 0.75258369, 0.92297697, 0.99753016],
[0.99141566, 0.99841211, 0.85037594, 1. , 0.91982353,
0.99690131, 0.99680552, 0.44191509, 0.96794184, 0.84684633],
[0.86691389, 0.90477015, 0.97852875, 0.91982353, 1. ,
0.88919645, 0.93593511, 0.68527137, 0.9379342 , 0.98167476],
[0.99638113, 0.9959103 , 0.81528476, 0.99690131, 0.88919645,
1. , 0.9917884 , 0.39982486, 0.95569077, 0.81114925],
[0.98026285, 0.99254642, 0.8777015 , 0.99680552, 0.93593511,
0.9917884 , 1. , 0.46871776, 0.9818083 , 0.87407117],
[0.37427863, 0.42176757, 0.75258369, 0.44191509, 0.68527137,
0.39982486, 0.46871776, 1. , 0.52982057, 0.76347268],
[0.93375682, 0.95265821, 0.92297697, 0.96794184, 0.9379342 ,
0.95569077, 0.9818083 , 0.52982057, 1. , 0.91719051],
[0.77970427, 0.82433657, 0.99753016, 0.84684633, 0.98167476,
0.81114925, 0.87407117, 0.76347268, 0.91719051, 1. ]])
I transform the distance_matrix into a heatmap to get a better visual of the data
import seaborn as sns
distance_matrix_df = pd.DataFrame(distance_matrix)
distance_matrix_df.columns = [x + 1 for x in range(10))]
distance_matrix_df.index = [x + 1 for x in range(10)]
sns.heatmap(distance_matrix_df, cmap='RdYlGn_r', annot=True, linewidths=0.5)
Next I want to cluster the affinity_matrix in 3 clusters. Before running the actual clustering, I inspect the heatmap to forecast the clusters. Clearly #8 is an outlier and will be a cluster on its own.
Next I run the actual clustering.
from sklearn.cluster import SpectralClustering
clustering = SpectralClustering(n_clusters=3,
assign_labels='kmeans',
affinity='precomputed').fit(affinity_matrix)
clusters = clustering.labels_.copy()
clusters = clusters.astype(np.int32) + 1
The outputs yields
[1, 1, 2, 1, 2, 1, 1, 2, 3, 2]
So, #8 is part of cluster 2 which consists of three other data points. Initially, I would assume that it would be a cluster on its own. Did I do something wrong? Or can someone show me why #8 looks like #3, #5 and #10. Please advice.
When we are moving away from relatively simple clustering algorithms, say like k-means, whatever intuition we may carry along regarding algorithms results and expected behaviors breaks down; indeed, the scikit-learn documentation on spectral clustering gives an implicit warning about that:
Apply clustering to a projection of the normalized Laplacian.
In practice Spectral Clustering is very useful when the structure of
the individual clusters is highly non-convex or more generally when a
measure of the center and spread of the cluster is not a suitable
description of the complete cluster. For instance when clusters are
nested circles on the 2D plane.
Now, even if one pretends to understand exactly what "a projection of the normalized Laplacian" means (I won't), the rest of the description arguably makes clear enough that here we should not expect results similar with more intuitive, distance-based clustering algorithms like k-means.
Nevertheless, your own intuition is not unfounded, and it shows if you just try a k-means clustering instead of a spherical one; using your exact data, we get
from sklearn.cluster import KMeans
clustering = KMeans(n_clusters=3, random_state=42).fit(affinity_matrix)
clusters = clustering.labels_.copy()
clusters = clusters.astype(np.int32) + 1
clusters
# result:
array([2, 2, 1, 2, 1, 2, 2, 3, 2, 1], dtype=int32)
where indeed sample #8 stands out as an outlier in a cluster of its own (#3).
Nevertheless, the same intuition is not necessarily applicable or useful with other clustering algorithms, whose value is arguably exactly that they can uncover regularities of different kinds in the data - arguably they would not be that useful if they just replicated results from existing algorithms like k-means, would they?
The scikit-learn vignette Comparing different clustering algorithms on toy datasets might be useful to get an idea of how different clustering algorithms behave on some toy 2D datasets; here is the summary finding:
For apply function, you can refer to here
My confusion is more from this sample, and I have added some print to below code snippet to output more debug information,
grd = GradientBoostingClassifier(n_estimators=n_estimator)
grd_enc = OneHotEncoder()
grd_lm = LogisticRegression()
grd.fit(X_train, y_train)
test_var = grd.apply(X_train)[:, :, 0]
print "test_var.shape", test_var.shape
print "test_var", test_var
grd_enc.fit(grd.apply(X_train)[:, :, 0])
grd_lm.fit(grd_enc.transform(grd.apply(X_train_lr)[:, :, 0]), y_train_lr)
The output is like below, and confused what are the numbers like 6., 3. and 10. mean? And how they are related to the final classification result?
test_var.shape (20000, 10)
test_var [[ 6. 6. 6. ..., 10. 10. 10.]
[ 10. 10. 10. ..., 3. 3. 3.]
[ 6. 6. 6. ..., 11. 10. 10.]
...,
[ 6. 6. 6. ..., 10. 10. 10.]
[ 6. 6. 6. ..., 11. 10. 10.]
[ 6. 6. 6. ..., 11. 10. 10.]]
To understand gradient boosting, you need first to understand individual trees. I will show a small example.
Here is the setup: a small GB model trained on Iris dataset to predict whether a flower belongs to the class 2.
# import the most common dataset
from sklearn.datasets import load_iris
from sklearn.ensemble import GradientBoostingClassifier
X, y = load_iris(return_X_y=True)
# there are 150 observations and 4 features
print(X.shape) # (150, 4)
# let's build a small model = 5 trees with depth no more than 2
model = GradientBoostingClassifier(n_estimators=5, max_depth=2, learning_rate=1.0)
model.fit(X, y==2) # predict 2nd class vs rest, for simplicity
# we can access individual trees
trees = model.estimators_.ravel()
print(len(trees)) # 5
# there are 150 observations, each is encoded by 5 trees, each tree has 1 output
applied = model.apply(X)
print(applied.shape) # (150, 5, 1)
print(applied[0].T) # [[2. 2. 2. 5. 2.]] - a single row of the apply() result
print(X[0]) # [5.1 3.5 1.4 0.2] - the pbservation corresponding to that row
print(trees[0].apply(X[[0]])) # [2] - 2 is the result of application the 0'th tree to the sample
print(trees[3].apply(X[[0]])) # [5] - 5 is the result of application the 3'th tree to the sample
You can see that each number in the sequence [2. 2. 2. 5. 2.] produced by model.apply() corresponds to an output of a single tree. But what do these numbers mean?
We can easily analyse decision trees by visual examination. Here is a function to plot one
# a function to draw a tree. You need pydotplus and graphviz installed
# sudo apt-get install graphviz
# pip install pydotplus
from sklearn.externals.six import StringIO
from IPython.display import Image
from sklearn.tree import export_graphviz
import pydotplus
def plot_tree(clf):
dot_data = StringIO()
export_graphviz(clf, out_file=dot_data, node_ids=True,
filled=True, rounded=True,
special_characters=True)
graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
return Image(graph.create_png())
# now we can plot the first tree
plot_tree(trees[0])
You can see that each node has a number (from 0 to 6). If we push our single example into this tree, it will first go to node #1 (because the feature x3 has value 0.2 < 1.75), and then to node #2 (because the feature x2 has value 1.4 < 4.95.
In the same way, we can analyze the tree 3 which has produced the output 5:
plot_tree(trees[3])
Here our observation goes first to node #4 and then to node #5, because x1=3.5>2.25 and x2=1.4<4.85. Thus, it ends up with number 5.
It's that simple! Each number produced by apply() is the ordinal number of the node of the corresponding tree in which the sample ends up.
The relation of these numbers to the final classification result is through the value of the leaves in the corresponding trees. In case of binary classification, the value in all leaves just adds up, and if it is positive, then the 'positive' wins, otherwise the 'negative' class. In case of multiclass classification, the values add up for each class, and the class with the largest total value wins.
In our case, the first tree (with its node #2) gives value -1.454, the other trees also give some values, and total sum of them is -4.84. It is negative, thus, our example does not belong to class 2.
values = [trees[i].tree_.value[int(leaf)][0,0] for i, leaf in enumerate(applied[0].ravel())]
print(values) # [-1.454, -1.05, -0.74, -1.016, -0.58] - the values of nodes [2,2,2,5,2] in the corresponding trees
print(sum(values)) # -4.84 - sum of these values is negative -> this is not class 2
I have the following code which successfully runs an OLS regression on the supplied dataset:
y = df['SPXR_{}D'.format(window)]
x = df[cols]
x = sm.add_constant(x)
mod = sm.OLS(y, x)
res = mod.fit()
How would I run lasso and ridge instead? I can't seem to find any statsmodels function or package to do this.
Updated code using sklearn:
y = df['SPXR_{}D'.format(window)]
x = df[cols]
x = sm.add_constant(x)
mod = linear_model.Lasso()
res = mod.fit(x, y)
print(res.coef_)
print(res.intercept_)
res.coef_ looks like this:
[ 0. 0. -0. 0. -0. -0. -0. 0. 0. -0. 0. 0. 0. -0. -0. 0. -0.]
Is there an issue in how I'm using the function? (perhaps I shouldn't be using statsmodels to add the alpha constants to my DF?)
As sacul writes, it is better to use sklearn for these things. In this case,
from sklearn import linear_model
rgr = linear_model.Ridge().fit(x, y)
Note the following:
The fit_intercept=True parameter of Ridge alleviates the need to manually add the constant as you did.
Shameless plug: I wrote ibex, a library that aims to make sklearn work better with pandas.
I’m trying to generate simulated student grades in 4 subjects, where a student record is a single row of data. The code shown here will generate normally distributed random numbers with a mean of 60 and a standard deviation of 15.
df = pd.DataFrame(15 * np.random.randn(5, 4) + 60, columns=['Math', 'Science', 'History', 'Art'])
What I can’t figure out is how to make it so that a student’s Science mark is highly correlated to their Math mark, and that their History and Art marks are less so, but still somewhat correlated to the Math mark.
I’m neither a statistician or an expert programmer, so a less sophisticated but more easily understood solution is what I’m hoping for.
Let's put what has been suggested by #Daniel into code.
Step 1
Let's import multivariate_normal:
import numpy as np
from scipy.stats import multivariate_normal as mvn
Step 2
Let's construct covariance data and generate data:
cov = np.array([[1, 0.8,.7, .6],[.8,1.,.5,.5],[0.7,.5,1.,.5],[0.6,.5,.5,1]])
cov
array([[ 1. , 0.8, 0.7, 0.6],
[ 0.8, 1. , 0.5, 0.5],
[ 0.7, 0.5, 1. , 0.5],
[ 0.6, 0.5, 0.5, 1. ]])
This is the key step. Note, that covariance matrix has 1's in diagonal, and the covariances decrease as you step from left to right.
Now we are ready to generate data, let's sat 1'000 points:
scores = mvn.rvs(mean = [60.,60.,60.,60.], cov=cov, size = 1000)
Sanity check (from covariance matrix to simple correlations):
np.corrcoef(scores.T):
array([[ 1. , 0.78886583, 0.70198586, 0.56810058],
[ 0.78886583, 1. , 0.49187904, 0.45994833],
[ 0.70198586, 0.49187904, 1. , 0.4755558 ],
[ 0.56810058, 0.45994833, 0.4755558 , 1. ]])
Note, that np.corrcoef expects your data in rows.
Finally, let's put your data into Pandas' DataFrame:
df = pd.DataFrame(data = scores, columns = ["Math", "Science","History", "Art"])
df.head()
Math Science History Art
0 60.629673 61.238697 61.805788 61.848049
1 59.728172 60.095608 61.139197 61.610891
2 61.205913 60.812307 60.822623 59.497453
3 60.581532 62.163044 59.277956 60.992206
4 61.408262 59.894078 61.154003 61.730079
Step 3
Let's visualize some data that we've just generated:
ax = df.plot(x = "Math",y="Art", kind="scatter", color = "r", alpha = .5, label = "Art, $corr_{Math}$ = .6")
df.plot(x = "Math",y="Science", kind="scatter", ax = ax, color = "b", alpha = .2, label = "Science, $corr_{Math}$ = .8")
ax.set_ylabel("Art and Science");
The statistical tool for that is the covariance matrix: https://en.wikipedia.org/wiki/Covariance.
Each cell (i,j) is representing the dependecy between the variable i and the variable j, so in your case it can be between math and science. If there is no dependency the value would be 0.
What you did was assuming that the covariance was a diagonal matrix with the same values on the diagonal. So what you have to do is defines your covariance matrix and afterwards draw the samples from a gaussian with numpy.random.multivariate_normal https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.multivariate_normal.html or any other distribution functions.
Thank you guys for the responses; they were extremely useful. I adapted the code provided by Sergey to produce the result I was looking for, which was records with Math and Science marks that are relatively close most of the time, and History and Art marks that are more independent.
The following produced data that looks reasonable:
cov = np.array([[1, 0.5,.2, .1],[.5,1.,.1,.1],[0.2,.1,1,.3],[0.1,.1,.3,1]])
scores = mvn.rvs(mean = [0.,0.,0.,0.], cov=cov, size = 100)
df = pd.DataFrame(data = 15 * scores + 60, columns = ["Math","Science","History", "Art"])
df.head(10)
The next step would be to make it so that each subject has a different mean, but I have an idea of how to do that. Thanks again.
example dataframe