Related
I know to write something simple and slow with loop, but I need it to run super fast in big scale.
input:
lst = [[1, 1, 2], ["txt1", "txt2", "txt3"]]
desired out put:
d = {1 : ["txt1", "txt2"], 2 : "txt3"]
There is something built-in at python which make dict() extend key instead replacing it?
dict(list(zip(lst[0], lst[1])))
One option is to use dict.setdefault:
out = {}
for k, v in zip(*lst):
out.setdefault(k, []).append(v)
Output:
{1: ['txt1', 'txt2'], 2: ['txt3']}
If you want the element itself for singleton lists, one way is adding a condition that checks for it while you build an output dictionary:
out = {}
for k,v in zip(*lst):
if k in out:
if isinstance(out[k], list):
out[k].append(v)
else:
out[k] = [out[k], v]
else:
out[k] = v
or if lst[0] is sorted (like it is in your sample), you could use itertools.groupby:
from itertools import groupby
out = {}
pos = 0
for k, v in groupby(lst[0]):
length = len([*v])
if length > 1:
out[k] = lst[1][pos:pos+length]
else:
out[k] = lst[1][pos]
pos += length
Output:
{1: ['txt1', 'txt2'], 2: 'txt3'}
But as #timgeb notes, it's probably not something you want because afterwards, you'll have to check for data type each time you access this dictionary (if value is a list or not), which is an unnecessary problem that you could avoid by having all values as lists.
If you're dealing with large datasets it may be useful to add a pandas solution.
>>> import pandas as pd
>>> lst = [[1, 1, 2], ["txt1", "txt2", "txt3"]]
>>> s = pd.Series(lst[1], index=lst[0])
>>> s
1 txt1
1 txt2
2 txt3
>>> s.groupby(level=0).apply(list).to_dict()
{1: ['txt1', 'txt2'], 2: ['txt3']}
Note that this also produces lists for single elements (e.g. ['txt3']) which I highly recommend. Having both lists and strings as possible values will result in bugs because both of those types are iterable. You'd need to remember to check the type each time you process a dict-value.
You can use a defaultdict to group the strings by their corresponding key, then make a second pass through the list to extract the strings from singleton lists. Regardless of what you do, you'll need to access every element in both lists at least once, so some iteration structure is necessary (and even if you don't explicitly use iteration, whatever you use will almost definitely use iteration under the hood):
from collections import defaultdict
lst = [[1, 1, 2], ["txt1", "txt2", "txt3"]]
result = defaultdict(list)
for key, value in zip(lst[0], lst[1]):
result[key].append(value)
for key in result:
if len(result[key]) == 1:
result[key] = result[key][0]
print(dict(result)) # Prints {1: ['txt1', 'txt2'], 2: 'txt3'}
Given a dictionary like so:
my_map = {'a': 1, 'b': 2}
How can one invert this map to get:
inv_map = {1: 'a', 2: 'b'}
Python 3+:
inv_map = {v: k for k, v in my_map.items()}
Python 2:
inv_map = {v: k for k, v in my_map.iteritems()}
Assuming that the values in the dict are unique:
Python 3:
dict((v, k) for k, v in my_map.items())
Python 2:
dict((v, k) for k, v in my_map.iteritems())
If the values in my_map aren't unique:
Python 3:
inv_map = {}
for k, v in my_map.items():
inv_map[v] = inv_map.get(v, []) + [k]
Python 2:
inv_map = {}
for k, v in my_map.iteritems():
inv_map[v] = inv_map.get(v, []) + [k]
To do this while preserving the type of your mapping (assuming that it is a dict or a dict subclass):
def inverse_mapping(f):
return f.__class__(map(reversed, f.items()))
Try this:
inv_map = dict(zip(my_map.values(), my_map.keys()))
(Note that the Python docs on dictionary views explicitly guarantee that .keys() and .values() have their elements in the same order, which allows the approach above to work.)
Alternatively:
inv_map = dict((my_map[k], k) for k in my_map)
or using python 3.0's dict comprehensions
inv_map = {my_map[k] : k for k in my_map}
Another, more functional, way:
my_map = { 'a': 1, 'b':2 }
dict(map(reversed, my_map.items()))
We can also reverse a dictionary with duplicate keys using defaultdict:
from collections import Counter, defaultdict
def invert_dict(d):
d_inv = defaultdict(list)
for k, v in d.items():
d_inv[v].append(k)
return d_inv
text = 'aaa bbb ccc ddd aaa bbb ccc aaa'
c = Counter(text.split()) # Counter({'aaa': 3, 'bbb': 2, 'ccc': 2, 'ddd': 1})
dict(invert_dict(c)) # {1: ['ddd'], 2: ['bbb', 'ccc'], 3: ['aaa']}
See here:
This technique is simpler and faster than an equivalent technique using dict.setdefault().
This expands upon the answer by Robert, applying to when the values in the dict aren't unique.
class ReversibleDict(dict):
# Ref: https://stackoverflow.com/a/13057382/
def reversed(self):
"""
Return a reversed dict, with common values in the original dict
grouped into a list in the returned dict.
Example:
>>> d = ReversibleDict({'a': 3, 'c': 2, 'b': 2, 'e': 3, 'd': 1, 'f': 2})
>>> d.reversed()
{1: ['d'], 2: ['c', 'b', 'f'], 3: ['a', 'e']}
"""
revdict = {}
for k, v in self.items():
revdict.setdefault(v, []).append(k)
return revdict
The implementation is limited in that you cannot use reversed twice and get the original back. It is not symmetric as such. It is tested with Python 2.6. Here is a use case of how I am using to print the resultant dict.
If you'd rather use a set than a list, and there could exist unordered applications for which this makes sense, instead of setdefault(v, []).append(k), use setdefault(v, set()).add(k).
Combination of list and dictionary comprehension. Can handle duplicate keys
{v:[i for i in d.keys() if d[i] == v ] for k,v in d.items()}
A case where the dictionary values is a set. Like:
some_dict = {"1":{"a","b","c"},
"2":{"d","e","f"},
"3":{"g","h","i"}}
The inverse would like:
some_dict = {vi: k for k, v in some_dict.items() for vi in v}
The output is like this:
{'c': '1',
'b': '1',
'a': '1',
'f': '2',
'd': '2',
'e': '2',
'g': '3',
'h': '3',
'i': '3'}
For instance, you have the following dictionary:
my_dict = {'a': 'fire', 'b': 'ice', 'c': 'fire', 'd': 'water'}
And you wanna get it in such an inverted form:
inverted_dict = {'fire': ['a', 'c'], 'ice': ['b'], 'water': ['d']}
First Solution. For inverting key-value pairs in your dictionary use a for-loop approach:
# Use this code to invert dictionaries that have non-unique values
inverted_dict = dict()
for key, value in my_dict.items():
inverted_dict.setdefault(value, list()).append(key)
Second Solution. Use a dictionary comprehension approach for inversion:
# Use this code to invert dictionaries that have unique values
inverted_dict = {value: key for key, value in my_dict.items()}
Third Solution. Use reverting the inversion approach (relies on the second solution):
# Use this code to invert dictionaries that have lists of values
my_dict = {value: key for key in inverted_dict for value in my_map[key]}
Lot of answers but didn't find anything clean in case we are talking about a dictionary with non-unique values.
A solution would be:
from collections import defaultdict
inv_map = defaultdict(list)
for k, v in my_map.items():
inv_map[v].append(k)
Example:
If initial dict my_map = {'c': 1, 'd': 5, 'a': 5, 'b': 10}
then, running the code above will give:
{5: ['a', 'd'], 1: ['c'], 10: ['b']}
I found that this version is more than 10% faster than the accepted version of a dictionary with 10000 keys.
d = {i: str(i) for i in range(10000)}
new_d = dict(zip(d.values(), d.keys()))
In addition to the other functions suggested above, if you like lambdas:
invert = lambda mydict: {v:k for k, v in mydict.items()}
Or, you could do it this way too:
invert = lambda mydict: dict( zip(mydict.values(), mydict.keys()) )
I think the best way to do this is to define a class. Here is an implementation of a "symmetric dictionary":
class SymDict:
def __init__(self):
self.aToB = {}
self.bToA = {}
def assocAB(self, a, b):
# Stores and returns a tuple (a,b) of overwritten bindings
currB = None
if a in self.aToB: currB = self.bToA[a]
currA = None
if b in self.bToA: currA = self.aToB[b]
self.aToB[a] = b
self.bToA[b] = a
return (currA, currB)
def lookupA(self, a):
if a in self.aToB:
return self.aToB[a]
return None
def lookupB(self, b):
if b in self.bToA:
return self.bToA[b]
return None
Deletion and iteration methods are easy enough to implement if they're needed.
This implementation is way more efficient than inverting an entire dictionary (which seems to be the most popular solution on this page). Not to mention, you can add or remove values from your SymDict as much as you want, and your inverse-dictionary will always stay valid -- this isn't true if you simply reverse the entire dictionary once.
If the values aren't unique, and you're a little hardcore:
inv_map = dict(
(v, [k for (k, xx) in filter(lambda (key, value): value == v, my_map.items())])
for v in set(my_map.values())
)
Especially for a large dict, note that this solution is far less efficient than the answer Python reverse / invert a mapping because it loops over items() multiple times.
This handles non-unique values and retains much of the look of the unique case.
inv_map = {v:[k for k in my_map if my_map[k] == v] for v in my_map.itervalues()}
For Python 3.x, replace itervalues with values.
I am aware that this question already has many good answers, but I wanted to share this very neat solution that also takes care of duplicate values:
def dict_reverser(d):
seen = set()
return {v: k for k, v in d.items() if v not in seen or seen.add(v)}
This relies on the fact that set.add always returns None in Python.
Here is another way to do it.
my_map = {'a': 1, 'b': 2}
inv_map= {}
for key in my_map.keys() :
val = my_map[key]
inv_map[val] = key
dict([(value, key) for key, value in d.items()])
Function is symmetric for values of type list; Tuples are coverted to lists when performing reverse_dict(reverse_dict(dictionary))
def reverse_dict(dictionary):
reverse_dict = {}
for key, value in dictionary.iteritems():
if not isinstance(value, (list, tuple)):
value = [value]
for val in value:
reverse_dict[val] = reverse_dict.get(val, [])
reverse_dict[val].append(key)
for key, value in reverse_dict.iteritems():
if len(value) == 1:
reverse_dict[key] = value[0]
return reverse_dict
Since dictionaries require one unique key within the dictionary unlike values, we have to append the reversed values into a list of sort to be included within the new specific keys.
def r_maping(dictionary):
List_z=[]
Map= {}
for z, x in dictionary.iteritems(): #iterate through the keys and values
Map.setdefault(x,List_z).append(z) #Setdefault is the same as dict[key]=default."The method returns the key value available in the dictionary and if given key is not available then it will return provided default value. Afterward, we will append into the default list our new values for the specific key.
return Map
Fast functional solution for non-bijective maps (values not unique):
from itertools import imap, groupby
def fst(s):
return s[0]
def snd(s):
return s[1]
def inverseDict(d):
"""
input d: a -> b
output : b -> set(a)
"""
return {
v : set(imap(fst, kv_iter))
for (v, kv_iter) in groupby(
sorted(d.iteritems(),
key=snd),
key=snd
)
}
In theory this should be faster than adding to the set (or appending to the list) one by one like in the imperative solution.
Unfortunately the values have to be sortable, the sorting is required by groupby.
Try this for python 2.7/3.x
inv_map={};
for i in my_map:
inv_map[my_map[i]]=i
print inv_map
def invertDictionary(d):
myDict = {}
for i in d:
value = d.get(i)
myDict.setdefault(value,[]).append(i)
return myDict
print invertDictionary({'a':1, 'b':2, 'c':3 , 'd' : 1})
This will provide output as : {1: ['a', 'd'], 2: ['b'], 3: ['c']}
A lambda solution for current python 3.x versions:
d1 = dict(alice='apples', bob='bananas')
d2 = dict(map(lambda key: (d1[key], key), d1.keys()))
print(d2)
Result:
{'apples': 'alice', 'bananas': 'bob'}
This solution does not check for duplicates.
Some remarks:
The lambda construct can access d1 from the outer scope, so we only
pass in the current key. It returns a tuple.
The dict() constructor accepts a list of tuples. It
also accepts the result of a map, so we can skip the conversion to a
list.
This solution has no explicit for loop. It also avoids using a list comprehension for those who are bad at math ;-)
Taking up the highly voted answer starting If the values in my_map aren't unique:, I had a problem where not only the values were not unique, but in addition, they were a list, with each item in the list consisting again of a list of three elements: a string value, a number, and another number.
Example:
mymap['key1'] gives you:
[('xyz', 1, 2),
('abc', 5, 4)]
I wanted to switch only the string value with the key, keeping the two number elements at the same place. You simply need another nested for loop then:
inv_map = {}
for k, v in my_map.items():
for x in v:
# with x[1:3] same as x[1], x[2]:
inv_map[x[0]] = inv_map.get(x[0], []) + [k, x[1:3]]
Example:
inv_map['abc'] now gives you:
[('key1', 1, 2),
('key1', 5, 4)]
This works even if you have non-unique values in the original dictionary.
def dict_invert(d):
'''
d: dict
Returns an inverted dictionary
'''
# Your code here
inv_d = {}
for k, v in d.items():
if v not in inv_d.keys():
inv_d[v] = [k]
else:
inv_d[v].append(k)
inv_d[v].sort()
print(f"{inv_d[v]} are the values")
return inv_d
I would do it that way in python 2.
inv_map = {my_map[x] : x for x in my_map}
Not something completely different, just a bit rewritten recipe from Cookbook. It's futhermore optimized by retaining setdefault method, instead of each time getting it through the instance:
def inverse(mapping):
'''
A function to inverse mapping, collecting keys with simillar values
in list. Careful to retain original type and to be fast.
>> d = dict(a=1, b=2, c=1, d=3, e=2, f=1, g=5, h=2)
>> inverse(d)
{1: ['f', 'c', 'a'], 2: ['h', 'b', 'e'], 3: ['d'], 5: ['g']}
'''
res = {}
setdef = res.setdefault
for key, value in mapping.items():
setdef(value, []).append(key)
return res if mapping.__class__==dict else mapping.__class__(res)
Designed to be run under CPython 3.x, for 2.x replace mapping.items() with mapping.iteritems()
On my machine runs a bit faster, than other examples here
Given a dictionary like so:
my_map = {'a': 1, 'b': 2}
How can one invert this map to get:
inv_map = {1: 'a', 2: 'b'}
Python 3+:
inv_map = {v: k for k, v in my_map.items()}
Python 2:
inv_map = {v: k for k, v in my_map.iteritems()}
Assuming that the values in the dict are unique:
Python 3:
dict((v, k) for k, v in my_map.items())
Python 2:
dict((v, k) for k, v in my_map.iteritems())
If the values in my_map aren't unique:
Python 3:
inv_map = {}
for k, v in my_map.items():
inv_map[v] = inv_map.get(v, []) + [k]
Python 2:
inv_map = {}
for k, v in my_map.iteritems():
inv_map[v] = inv_map.get(v, []) + [k]
To do this while preserving the type of your mapping (assuming that it is a dict or a dict subclass):
def inverse_mapping(f):
return f.__class__(map(reversed, f.items()))
Try this:
inv_map = dict(zip(my_map.values(), my_map.keys()))
(Note that the Python docs on dictionary views explicitly guarantee that .keys() and .values() have their elements in the same order, which allows the approach above to work.)
Alternatively:
inv_map = dict((my_map[k], k) for k in my_map)
or using python 3.0's dict comprehensions
inv_map = {my_map[k] : k for k in my_map}
Another, more functional, way:
my_map = { 'a': 1, 'b':2 }
dict(map(reversed, my_map.items()))
We can also reverse a dictionary with duplicate keys using defaultdict:
from collections import Counter, defaultdict
def invert_dict(d):
d_inv = defaultdict(list)
for k, v in d.items():
d_inv[v].append(k)
return d_inv
text = 'aaa bbb ccc ddd aaa bbb ccc aaa'
c = Counter(text.split()) # Counter({'aaa': 3, 'bbb': 2, 'ccc': 2, 'ddd': 1})
dict(invert_dict(c)) # {1: ['ddd'], 2: ['bbb', 'ccc'], 3: ['aaa']}
See here:
This technique is simpler and faster than an equivalent technique using dict.setdefault().
This expands upon the answer by Robert, applying to when the values in the dict aren't unique.
class ReversibleDict(dict):
# Ref: https://stackoverflow.com/a/13057382/
def reversed(self):
"""
Return a reversed dict, with common values in the original dict
grouped into a list in the returned dict.
Example:
>>> d = ReversibleDict({'a': 3, 'c': 2, 'b': 2, 'e': 3, 'd': 1, 'f': 2})
>>> d.reversed()
{1: ['d'], 2: ['c', 'b', 'f'], 3: ['a', 'e']}
"""
revdict = {}
for k, v in self.items():
revdict.setdefault(v, []).append(k)
return revdict
The implementation is limited in that you cannot use reversed twice and get the original back. It is not symmetric as such. It is tested with Python 2.6. Here is a use case of how I am using to print the resultant dict.
If you'd rather use a set than a list, and there could exist unordered applications for which this makes sense, instead of setdefault(v, []).append(k), use setdefault(v, set()).add(k).
Combination of list and dictionary comprehension. Can handle duplicate keys
{v:[i for i in d.keys() if d[i] == v ] for k,v in d.items()}
A case where the dictionary values is a set. Like:
some_dict = {"1":{"a","b","c"},
"2":{"d","e","f"},
"3":{"g","h","i"}}
The inverse would like:
some_dict = {vi: k for k, v in some_dict.items() for vi in v}
The output is like this:
{'c': '1',
'b': '1',
'a': '1',
'f': '2',
'd': '2',
'e': '2',
'g': '3',
'h': '3',
'i': '3'}
For instance, you have the following dictionary:
my_dict = {'a': 'fire', 'b': 'ice', 'c': 'fire', 'd': 'water'}
And you wanna get it in such an inverted form:
inverted_dict = {'fire': ['a', 'c'], 'ice': ['b'], 'water': ['d']}
First Solution. For inverting key-value pairs in your dictionary use a for-loop approach:
# Use this code to invert dictionaries that have non-unique values
inverted_dict = dict()
for key, value in my_dict.items():
inverted_dict.setdefault(value, list()).append(key)
Second Solution. Use a dictionary comprehension approach for inversion:
# Use this code to invert dictionaries that have unique values
inverted_dict = {value: key for key, value in my_dict.items()}
Third Solution. Use reverting the inversion approach (relies on the second solution):
# Use this code to invert dictionaries that have lists of values
my_dict = {value: key for key in inverted_dict for value in my_map[key]}
Lot of answers but didn't find anything clean in case we are talking about a dictionary with non-unique values.
A solution would be:
from collections import defaultdict
inv_map = defaultdict(list)
for k, v in my_map.items():
inv_map[v].append(k)
Example:
If initial dict my_map = {'c': 1, 'd': 5, 'a': 5, 'b': 10}
then, running the code above will give:
{5: ['a', 'd'], 1: ['c'], 10: ['b']}
I found that this version is more than 10% faster than the accepted version of a dictionary with 10000 keys.
d = {i: str(i) for i in range(10000)}
new_d = dict(zip(d.values(), d.keys()))
In addition to the other functions suggested above, if you like lambdas:
invert = lambda mydict: {v:k for k, v in mydict.items()}
Or, you could do it this way too:
invert = lambda mydict: dict( zip(mydict.values(), mydict.keys()) )
I think the best way to do this is to define a class. Here is an implementation of a "symmetric dictionary":
class SymDict:
def __init__(self):
self.aToB = {}
self.bToA = {}
def assocAB(self, a, b):
# Stores and returns a tuple (a,b) of overwritten bindings
currB = None
if a in self.aToB: currB = self.bToA[a]
currA = None
if b in self.bToA: currA = self.aToB[b]
self.aToB[a] = b
self.bToA[b] = a
return (currA, currB)
def lookupA(self, a):
if a in self.aToB:
return self.aToB[a]
return None
def lookupB(self, b):
if b in self.bToA:
return self.bToA[b]
return None
Deletion and iteration methods are easy enough to implement if they're needed.
This implementation is way more efficient than inverting an entire dictionary (which seems to be the most popular solution on this page). Not to mention, you can add or remove values from your SymDict as much as you want, and your inverse-dictionary will always stay valid -- this isn't true if you simply reverse the entire dictionary once.
If the values aren't unique, and you're a little hardcore:
inv_map = dict(
(v, [k for (k, xx) in filter(lambda (key, value): value == v, my_map.items())])
for v in set(my_map.values())
)
Especially for a large dict, note that this solution is far less efficient than the answer Python reverse / invert a mapping because it loops over items() multiple times.
This handles non-unique values and retains much of the look of the unique case.
inv_map = {v:[k for k in my_map if my_map[k] == v] for v in my_map.itervalues()}
For Python 3.x, replace itervalues with values.
I am aware that this question already has many good answers, but I wanted to share this very neat solution that also takes care of duplicate values:
def dict_reverser(d):
seen = set()
return {v: k for k, v in d.items() if v not in seen or seen.add(v)}
This relies on the fact that set.add always returns None in Python.
Here is another way to do it.
my_map = {'a': 1, 'b': 2}
inv_map= {}
for key in my_map.keys() :
val = my_map[key]
inv_map[val] = key
dict([(value, key) for key, value in d.items()])
Function is symmetric for values of type list; Tuples are coverted to lists when performing reverse_dict(reverse_dict(dictionary))
def reverse_dict(dictionary):
reverse_dict = {}
for key, value in dictionary.iteritems():
if not isinstance(value, (list, tuple)):
value = [value]
for val in value:
reverse_dict[val] = reverse_dict.get(val, [])
reverse_dict[val].append(key)
for key, value in reverse_dict.iteritems():
if len(value) == 1:
reverse_dict[key] = value[0]
return reverse_dict
Since dictionaries require one unique key within the dictionary unlike values, we have to append the reversed values into a list of sort to be included within the new specific keys.
def r_maping(dictionary):
List_z=[]
Map= {}
for z, x in dictionary.iteritems(): #iterate through the keys and values
Map.setdefault(x,List_z).append(z) #Setdefault is the same as dict[key]=default."The method returns the key value available in the dictionary and if given key is not available then it will return provided default value. Afterward, we will append into the default list our new values for the specific key.
return Map
Fast functional solution for non-bijective maps (values not unique):
from itertools import imap, groupby
def fst(s):
return s[0]
def snd(s):
return s[1]
def inverseDict(d):
"""
input d: a -> b
output : b -> set(a)
"""
return {
v : set(imap(fst, kv_iter))
for (v, kv_iter) in groupby(
sorted(d.iteritems(),
key=snd),
key=snd
)
}
In theory this should be faster than adding to the set (or appending to the list) one by one like in the imperative solution.
Unfortunately the values have to be sortable, the sorting is required by groupby.
Try this for python 2.7/3.x
inv_map={};
for i in my_map:
inv_map[my_map[i]]=i
print inv_map
def invertDictionary(d):
myDict = {}
for i in d:
value = d.get(i)
myDict.setdefault(value,[]).append(i)
return myDict
print invertDictionary({'a':1, 'b':2, 'c':3 , 'd' : 1})
This will provide output as : {1: ['a', 'd'], 2: ['b'], 3: ['c']}
A lambda solution for current python 3.x versions:
d1 = dict(alice='apples', bob='bananas')
d2 = dict(map(lambda key: (d1[key], key), d1.keys()))
print(d2)
Result:
{'apples': 'alice', 'bananas': 'bob'}
This solution does not check for duplicates.
Some remarks:
The lambda construct can access d1 from the outer scope, so we only
pass in the current key. It returns a tuple.
The dict() constructor accepts a list of tuples. It
also accepts the result of a map, so we can skip the conversion to a
list.
This solution has no explicit for loop. It also avoids using a list comprehension for those who are bad at math ;-)
Taking up the highly voted answer starting If the values in my_map aren't unique:, I had a problem where not only the values were not unique, but in addition, they were a list, with each item in the list consisting again of a list of three elements: a string value, a number, and another number.
Example:
mymap['key1'] gives you:
[('xyz', 1, 2),
('abc', 5, 4)]
I wanted to switch only the string value with the key, keeping the two number elements at the same place. You simply need another nested for loop then:
inv_map = {}
for k, v in my_map.items():
for x in v:
# with x[1:3] same as x[1], x[2]:
inv_map[x[0]] = inv_map.get(x[0], []) + [k, x[1:3]]
Example:
inv_map['abc'] now gives you:
[('key1', 1, 2),
('key1', 5, 4)]
This works even if you have non-unique values in the original dictionary.
def dict_invert(d):
'''
d: dict
Returns an inverted dictionary
'''
# Your code here
inv_d = {}
for k, v in d.items():
if v not in inv_d.keys():
inv_d[v] = [k]
else:
inv_d[v].append(k)
inv_d[v].sort()
print(f"{inv_d[v]} are the values")
return inv_d
I would do it that way in python 2.
inv_map = {my_map[x] : x for x in my_map}
Not something completely different, just a bit rewritten recipe from Cookbook. It's futhermore optimized by retaining setdefault method, instead of each time getting it through the instance:
def inverse(mapping):
'''
A function to inverse mapping, collecting keys with simillar values
in list. Careful to retain original type and to be fast.
>> d = dict(a=1, b=2, c=1, d=3, e=2, f=1, g=5, h=2)
>> inverse(d)
{1: ['f', 'c', 'a'], 2: ['h', 'b', 'e'], 3: ['d'], 5: ['g']}
'''
res = {}
setdef = res.setdefault
for key, value in mapping.items():
setdef(value, []).append(key)
return res if mapping.__class__==dict else mapping.__class__(res)
Designed to be run under CPython 3.x, for 2.x replace mapping.items() with mapping.iteritems()
On my machine runs a bit faster, than other examples here
Given a dictionary like so:
my_map = {'a': 1, 'b': 2}
How can one invert this map to get:
inv_map = {1: 'a', 2: 'b'}
Python 3+:
inv_map = {v: k for k, v in my_map.items()}
Python 2:
inv_map = {v: k for k, v in my_map.iteritems()}
Assuming that the values in the dict are unique:
Python 3:
dict((v, k) for k, v in my_map.items())
Python 2:
dict((v, k) for k, v in my_map.iteritems())
If the values in my_map aren't unique:
Python 3:
inv_map = {}
for k, v in my_map.items():
inv_map[v] = inv_map.get(v, []) + [k]
Python 2:
inv_map = {}
for k, v in my_map.iteritems():
inv_map[v] = inv_map.get(v, []) + [k]
To do this while preserving the type of your mapping (assuming that it is a dict or a dict subclass):
def inverse_mapping(f):
return f.__class__(map(reversed, f.items()))
Try this:
inv_map = dict(zip(my_map.values(), my_map.keys()))
(Note that the Python docs on dictionary views explicitly guarantee that .keys() and .values() have their elements in the same order, which allows the approach above to work.)
Alternatively:
inv_map = dict((my_map[k], k) for k in my_map)
or using python 3.0's dict comprehensions
inv_map = {my_map[k] : k for k in my_map}
Another, more functional, way:
my_map = { 'a': 1, 'b':2 }
dict(map(reversed, my_map.items()))
We can also reverse a dictionary with duplicate keys using defaultdict:
from collections import Counter, defaultdict
def invert_dict(d):
d_inv = defaultdict(list)
for k, v in d.items():
d_inv[v].append(k)
return d_inv
text = 'aaa bbb ccc ddd aaa bbb ccc aaa'
c = Counter(text.split()) # Counter({'aaa': 3, 'bbb': 2, 'ccc': 2, 'ddd': 1})
dict(invert_dict(c)) # {1: ['ddd'], 2: ['bbb', 'ccc'], 3: ['aaa']}
See here:
This technique is simpler and faster than an equivalent technique using dict.setdefault().
This expands upon the answer by Robert, applying to when the values in the dict aren't unique.
class ReversibleDict(dict):
# Ref: https://stackoverflow.com/a/13057382/
def reversed(self):
"""
Return a reversed dict, with common values in the original dict
grouped into a list in the returned dict.
Example:
>>> d = ReversibleDict({'a': 3, 'c': 2, 'b': 2, 'e': 3, 'd': 1, 'f': 2})
>>> d.reversed()
{1: ['d'], 2: ['c', 'b', 'f'], 3: ['a', 'e']}
"""
revdict = {}
for k, v in self.items():
revdict.setdefault(v, []).append(k)
return revdict
The implementation is limited in that you cannot use reversed twice and get the original back. It is not symmetric as such. It is tested with Python 2.6. Here is a use case of how I am using to print the resultant dict.
If you'd rather use a set than a list, and there could exist unordered applications for which this makes sense, instead of setdefault(v, []).append(k), use setdefault(v, set()).add(k).
Combination of list and dictionary comprehension. Can handle duplicate keys
{v:[i for i in d.keys() if d[i] == v ] for k,v in d.items()}
A case where the dictionary values is a set. Like:
some_dict = {"1":{"a","b","c"},
"2":{"d","e","f"},
"3":{"g","h","i"}}
The inverse would like:
some_dict = {vi: k for k, v in some_dict.items() for vi in v}
The output is like this:
{'c': '1',
'b': '1',
'a': '1',
'f': '2',
'd': '2',
'e': '2',
'g': '3',
'h': '3',
'i': '3'}
For instance, you have the following dictionary:
my_dict = {'a': 'fire', 'b': 'ice', 'c': 'fire', 'd': 'water'}
And you wanna get it in such an inverted form:
inverted_dict = {'fire': ['a', 'c'], 'ice': ['b'], 'water': ['d']}
First Solution. For inverting key-value pairs in your dictionary use a for-loop approach:
# Use this code to invert dictionaries that have non-unique values
inverted_dict = dict()
for key, value in my_dict.items():
inverted_dict.setdefault(value, list()).append(key)
Second Solution. Use a dictionary comprehension approach for inversion:
# Use this code to invert dictionaries that have unique values
inverted_dict = {value: key for key, value in my_dict.items()}
Third Solution. Use reverting the inversion approach (relies on the second solution):
# Use this code to invert dictionaries that have lists of values
my_dict = {value: key for key in inverted_dict for value in my_map[key]}
Lot of answers but didn't find anything clean in case we are talking about a dictionary with non-unique values.
A solution would be:
from collections import defaultdict
inv_map = defaultdict(list)
for k, v in my_map.items():
inv_map[v].append(k)
Example:
If initial dict my_map = {'c': 1, 'd': 5, 'a': 5, 'b': 10}
then, running the code above will give:
{5: ['a', 'd'], 1: ['c'], 10: ['b']}
I found that this version is more than 10% faster than the accepted version of a dictionary with 10000 keys.
d = {i: str(i) for i in range(10000)}
new_d = dict(zip(d.values(), d.keys()))
In addition to the other functions suggested above, if you like lambdas:
invert = lambda mydict: {v:k for k, v in mydict.items()}
Or, you could do it this way too:
invert = lambda mydict: dict( zip(mydict.values(), mydict.keys()) )
I think the best way to do this is to define a class. Here is an implementation of a "symmetric dictionary":
class SymDict:
def __init__(self):
self.aToB = {}
self.bToA = {}
def assocAB(self, a, b):
# Stores and returns a tuple (a,b) of overwritten bindings
currB = None
if a in self.aToB: currB = self.bToA[a]
currA = None
if b in self.bToA: currA = self.aToB[b]
self.aToB[a] = b
self.bToA[b] = a
return (currA, currB)
def lookupA(self, a):
if a in self.aToB:
return self.aToB[a]
return None
def lookupB(self, b):
if b in self.bToA:
return self.bToA[b]
return None
Deletion and iteration methods are easy enough to implement if they're needed.
This implementation is way more efficient than inverting an entire dictionary (which seems to be the most popular solution on this page). Not to mention, you can add or remove values from your SymDict as much as you want, and your inverse-dictionary will always stay valid -- this isn't true if you simply reverse the entire dictionary once.
If the values aren't unique, and you're a little hardcore:
inv_map = dict(
(v, [k for (k, xx) in filter(lambda (key, value): value == v, my_map.items())])
for v in set(my_map.values())
)
Especially for a large dict, note that this solution is far less efficient than the answer Python reverse / invert a mapping because it loops over items() multiple times.
This handles non-unique values and retains much of the look of the unique case.
inv_map = {v:[k for k in my_map if my_map[k] == v] for v in my_map.itervalues()}
For Python 3.x, replace itervalues with values.
I am aware that this question already has many good answers, but I wanted to share this very neat solution that also takes care of duplicate values:
def dict_reverser(d):
seen = set()
return {v: k for k, v in d.items() if v not in seen or seen.add(v)}
This relies on the fact that set.add always returns None in Python.
Here is another way to do it.
my_map = {'a': 1, 'b': 2}
inv_map= {}
for key in my_map.keys() :
val = my_map[key]
inv_map[val] = key
dict([(value, key) for key, value in d.items()])
Function is symmetric for values of type list; Tuples are coverted to lists when performing reverse_dict(reverse_dict(dictionary))
def reverse_dict(dictionary):
reverse_dict = {}
for key, value in dictionary.iteritems():
if not isinstance(value, (list, tuple)):
value = [value]
for val in value:
reverse_dict[val] = reverse_dict.get(val, [])
reverse_dict[val].append(key)
for key, value in reverse_dict.iteritems():
if len(value) == 1:
reverse_dict[key] = value[0]
return reverse_dict
Since dictionaries require one unique key within the dictionary unlike values, we have to append the reversed values into a list of sort to be included within the new specific keys.
def r_maping(dictionary):
List_z=[]
Map= {}
for z, x in dictionary.iteritems(): #iterate through the keys and values
Map.setdefault(x,List_z).append(z) #Setdefault is the same as dict[key]=default."The method returns the key value available in the dictionary and if given key is not available then it will return provided default value. Afterward, we will append into the default list our new values for the specific key.
return Map
Fast functional solution for non-bijective maps (values not unique):
from itertools import imap, groupby
def fst(s):
return s[0]
def snd(s):
return s[1]
def inverseDict(d):
"""
input d: a -> b
output : b -> set(a)
"""
return {
v : set(imap(fst, kv_iter))
for (v, kv_iter) in groupby(
sorted(d.iteritems(),
key=snd),
key=snd
)
}
In theory this should be faster than adding to the set (or appending to the list) one by one like in the imperative solution.
Unfortunately the values have to be sortable, the sorting is required by groupby.
Try this for python 2.7/3.x
inv_map={};
for i in my_map:
inv_map[my_map[i]]=i
print inv_map
def invertDictionary(d):
myDict = {}
for i in d:
value = d.get(i)
myDict.setdefault(value,[]).append(i)
return myDict
print invertDictionary({'a':1, 'b':2, 'c':3 , 'd' : 1})
This will provide output as : {1: ['a', 'd'], 2: ['b'], 3: ['c']}
A lambda solution for current python 3.x versions:
d1 = dict(alice='apples', bob='bananas')
d2 = dict(map(lambda key: (d1[key], key), d1.keys()))
print(d2)
Result:
{'apples': 'alice', 'bananas': 'bob'}
This solution does not check for duplicates.
Some remarks:
The lambda construct can access d1 from the outer scope, so we only
pass in the current key. It returns a tuple.
The dict() constructor accepts a list of tuples. It
also accepts the result of a map, so we can skip the conversion to a
list.
This solution has no explicit for loop. It also avoids using a list comprehension for those who are bad at math ;-)
Taking up the highly voted answer starting If the values in my_map aren't unique:, I had a problem where not only the values were not unique, but in addition, they were a list, with each item in the list consisting again of a list of three elements: a string value, a number, and another number.
Example:
mymap['key1'] gives you:
[('xyz', 1, 2),
('abc', 5, 4)]
I wanted to switch only the string value with the key, keeping the two number elements at the same place. You simply need another nested for loop then:
inv_map = {}
for k, v in my_map.items():
for x in v:
# with x[1:3] same as x[1], x[2]:
inv_map[x[0]] = inv_map.get(x[0], []) + [k, x[1:3]]
Example:
inv_map['abc'] now gives you:
[('key1', 1, 2),
('key1', 5, 4)]
This works even if you have non-unique values in the original dictionary.
def dict_invert(d):
'''
d: dict
Returns an inverted dictionary
'''
# Your code here
inv_d = {}
for k, v in d.items():
if v not in inv_d.keys():
inv_d[v] = [k]
else:
inv_d[v].append(k)
inv_d[v].sort()
print(f"{inv_d[v]} are the values")
return inv_d
I would do it that way in python 2.
inv_map = {my_map[x] : x for x in my_map}
Not something completely different, just a bit rewritten recipe from Cookbook. It's futhermore optimized by retaining setdefault method, instead of each time getting it through the instance:
def inverse(mapping):
'''
A function to inverse mapping, collecting keys with simillar values
in list. Careful to retain original type and to be fast.
>> d = dict(a=1, b=2, c=1, d=3, e=2, f=1, g=5, h=2)
>> inverse(d)
{1: ['f', 'c', 'a'], 2: ['h', 'b', 'e'], 3: ['d'], 5: ['g']}
'''
res = {}
setdef = res.setdefault
for key, value in mapping.items():
setdef(value, []).append(key)
return res if mapping.__class__==dict else mapping.__class__(res)
Designed to be run under CPython 3.x, for 2.x replace mapping.items() with mapping.iteritems()
On my machine runs a bit faster, than other examples here
I'm trying to do the same as
Get the key corresponding to the minimum value within a dictionary, where we want to get the key corresponding to the minimum value in a dictionary.
The best way appears to be:
min(d, key=d.get)
BUT I want to apply this on a dictionary with multiple minimum values:
d = {'a' : 1, 'b' : 2, 'c' : 1}
Note that the answer from the above would be:
>>> min(d, key=d.get)
'a'
However, I need both the two keys that have a minimum value, namely a and c.
What would be the best approach?
(Ultimately I want to pick one of the two at random, but I don't think this is relevant).
One simple option is to first determine the minimum value, and then select all keys mapping to that minimum:
min_value = min(d.itervalues())
min_keys = [k for k in d if d[k] == min_value]
For Python 3 use d.values() instead of d.itervalues().
This needs two passes through the dictionary, but should be one of the fastest options to do this anyway.
Using reservoir sampling, you can implement a single pass approach that selects one of the items at random:
it = d.iteritems()
min_key, min_value = next(it)
num_mins = 1
for k, v in it:
if v < min_value:
num_mins = 1
min_key, min_value = k, v
elif v == min_value:
num_mins += 1
if random.randrange(num_mins) == 0:
min_key = k
After writing down this code, I think this option is of rather theoretical interest… :)
EDITED: Now using setdefault as suggested :)
I don't know if that helps you but you could build a reverse dictionary with the values as key and the keys (in a list as values).
d = {'a' : 1, 'b' : 2, 'c' : 1}
d2 = {}
for k, v in d.iteritems():
d2.setdefault(v, []).append(k)
print d2[min(d2)]
It will print this:
['a', 'c']
However, I think the other solutions are more compact and probably more elegant...
min_keys = [k for k in d if all(d[m] >= d[k] for m in d)]
or, slightly optimized
min_keys = [k for k, x in d.items() if not any(y < x for y in d.values())]
It's not as efficient as other solutions, but demonstrates the beauty of python (well, to me at least).
def get_rand_min(d):
min_val = min(d.values())
min_keys = filter(lambda k: d[k] == min_val, d)
return random.choice(min_keys)
You can use heapq.nsmallest to get the N smallest members of the dict, then filter out all that are not equal to the lowest one. That's provided you know the maximal number of smallest members you can have, let's assume it's N here. something like:
from heapq import nsmallest
from operator import itemgetter
#get the N smallest members
smallestN = nsmallest(N, myDict.iteritems(), itemgetter(1)))
#leave in only the ones with a score equal to the smallest one
smallest = [x for x in smallestN if x[1] == smallestN[0][1]]
minValue,minKey = min((v,k) for k,v in d.items())
Due to your semantics you need to go through the entire dictionary at least once. This will retrieve exactly 1 minimum element.
If you want all the minimum items in O(log(N)) query time, you can insert your elements into a priority queue as you generate them (if you can). The priority queue must have O(1) insertion time and O(log(N)) extract-min time. (This will be as bad as sorting if all your elements have the same value, but otherwise may work quite well.)
One pass solution would be:
>>> result = [100000, []]
>>> for key, val in d.items():
... if val < result[0]:
... result[1] = [key]; result[0]=val;
... elif val == result[0]:
... result[1].append(key)
...
>>> result
[1, ['a', 'c']]
Here's another way to do it in one pass:
d = {'foo': 2, 'a' : 1, 'b' : 2, 'c' : 1, 'z': 99, 'x': 1}
current_min = d[d.keys()[0]]
min_keys = []
for k, v in d.iteritems():
if v < current_min:
current_min = v
min_keys = [k]
elif v == current_min:
min_keys.append(k)
print min_keys
['a', 'x', 'c']
This works:
d = {'a' :1, 'b' : 2, 'c' : 1}
min_value = min(d.values())
result = [x[0] for x in d.items() if x[1] == k]
Hmpf. After fixing up the code to work, I ended up with #Sven Marnach's answer, so, disregard this ;)