Decode base64 encoded file and print results to the console - python

So I have a file that I have already encoded with base64, now I want to decode it back but instead of creating another file, I want to decode it in the console and print the results to screen. How to do that?
encoded file string = MUhRRy1ITVRELU0zWDItNlcxSA==
FYI:
this would mean first opening the file in console, then decoding the give string
Thanks

Unless I'm overlooking something, this is as simple as reading in your encoded string and then calling the standard library's base64.b64decode function on it.
Something like:
with open(path_to_encoded_file) as encoded_file:
print base64.b64decode(encoded_file.read().strip())

Using base64.decode, set sys.stdout (sys.stdout.buffer.raw in python 3.x) as output.
import sys
import base64
with open('filepath') as f:
base64.decode(f, sys.stdout)

Related

How to write strings in Unicode to a text file in Python? [duplicate]

I'm having some brain failure in understanding reading and writing text to a file (Python 2.4).
# The string, which has an a-acute in it.
ss = u'Capit\xe1n'
ss8 = ss.encode('utf8')
repr(ss), repr(ss8)
("u'Capit\xe1n'", "'Capit\xc3\xa1n'")
print ss, ss8
print >> open('f1','w'), ss8
>>> file('f1').read()
'Capit\xc3\xa1n\n'
So I type in Capit\xc3\xa1n into my favorite editor, in file f2.
Then:
>>> open('f1').read()
'Capit\xc3\xa1n\n'
>>> open('f2').read()
'Capit\\xc3\\xa1n\n'
>>> open('f1').read().decode('utf8')
u'Capit\xe1n\n'
>>> open('f2').read().decode('utf8')
u'Capit\\xc3\\xa1n\n'
What am I not understanding here? Clearly there is some vital bit of magic (or good sense) that I'm missing. What does one type into text files to get proper conversions?
What I'm truly failing to grok here, is what the point of the UTF-8 representation is, if you can't actually get Python to recognize it, when it comes from outside. Maybe I should just JSON dump the string, and use that instead, since that has an asciiable representation! More to the point, is there an ASCII representation of this Unicode object that Python will recognize and decode, when coming in from a file? If so, how do I get it?
>>> print simplejson.dumps(ss)
'"Capit\u00e1n"'
>>> print >> file('f3','w'), simplejson.dumps(ss)
>>> simplejson.load(open('f3'))
u'Capit\xe1n'
Rather than mess with .encode and .decode, specify the encoding when opening the file. The io module, added in Python 2.6, provides an io.open function, which allows specifying the file's encoding.
Supposing the file is encoded in UTF-8, we can use:
>>> import io
>>> f = io.open("test", mode="r", encoding="utf-8")
Then f.read returns a decoded Unicode object:
>>> f.read()
u'Capit\xe1l\n\n'
In 3.x, the io.open function is an alias for the built-in open function, which supports the encoding argument (it does not in 2.x).
We can also use open from the codecs standard library module:
>>> import codecs
>>> f = codecs.open("test", "r", "utf-8")
>>> f.read()
u'Capit\xe1l\n\n'
Note, however, that this can cause problems when mixing read() and readline().
In the notation u'Capit\xe1n\n' (should be just 'Capit\xe1n\n' in 3.x, and must be in 3.0 and 3.1), the \xe1 represents just one character. \x is an escape sequence, indicating that e1 is in hexadecimal.
Writing Capit\xc3\xa1n into the file in a text editor means that it actually contains \xc3\xa1. Those are 8 bytes and the code reads them all. We can see this by displaying the result:
# Python 3.x - reading the file as bytes rather than text,
# to ensure we see the raw data
>>> open('f2', 'rb').read()
b'Capit\\xc3\\xa1n\n'
# Python 2.x
>>> open('f2').read()
'Capit\\xc3\\xa1n\n'
Instead, just input characters like á in the editor, which should then handle the conversion to UTF-8 and save it.
In 2.x, a string that actually contains these backslash-escape sequences can be decoded using the string_escape codec:
# Python 2.x
>>> print 'Capit\\xc3\\xa1n\n'.decode('string_escape')
Capitán
The result is a str that is encoded in UTF-8 where the accented character is represented by the two bytes that were written \\xc3\\xa1 in the original string. To get a unicode result, decode again with UTF-8.
In 3.x, the string_escape codec is replaced with unicode_escape, and it is strictly enforced that we can only encode from a str to bytes, and decode from bytes to str. unicode_escape needs to start with a bytes in order to process the escape sequences (the other way around, it adds them); and then it will treat the resulting \xc3 and \xa1 as character escapes rather than byte escapes. As a result, we have to do a bit more work:
# Python 3.x
>>> 'Capit\\xc3\\xa1n\n'.encode('ascii').decode('unicode_escape').encode('latin-1').decode('utf-8')
'Capitán\n'
Now all you need in Python3 is open(Filename, 'r', encoding='utf-8')
[Edit on 2016-02-10 for requested clarification]
Python3 added the encoding parameter to its open function. The following information about the open function is gathered from here: https://docs.python.org/3/library/functions.html#open
open(file, mode='r', buffering=-1,
encoding=None, errors=None, newline=None,
closefd=True, opener=None)
Encoding is the name of the encoding used to decode or encode the
file. This should only be used in text mode. The default encoding is
platform dependent (whatever locale.getpreferredencoding()
returns), but any text encoding supported by Python can be used.
See the codecs module for the list of supported encodings.
So by adding encoding='utf-8' as a parameter to the open function, the file reading and writing is all done as utf8 (which is also now the default encoding of everything done in Python.)
So, I've found a solution for what I'm looking for, which is:
print open('f2').read().decode('string-escape').decode("utf-8")
There are some unusual codecs that are useful here. This particular reading allows one to take UTF-8 representations from within Python, copy them into an ASCII file, and have them be read in to Unicode. Under the "string-escape" decode, the slashes won't be doubled.
This allows for the sort of round trip that I was imagining.
This works for reading a file with UTF-8 encoding in Python 3.2:
import codecs
f = codecs.open('file_name.txt', 'r', 'UTF-8')
for line in f:
print(line)
# -*- encoding: utf-8 -*-
# converting a unknown formatting file in utf-8
import codecs
import commands
file_location = "jumper.sub"
file_encoding = commands.getoutput('file -b --mime-encoding %s' % file_location)
file_stream = codecs.open(file_location, 'r', file_encoding)
file_output = codecs.open(file_location+"b", 'w', 'utf-8')
for l in file_stream:
file_output.write(l)
file_stream.close()
file_output.close()
Aside from codecs.open(), io.open() can be used in both 2.x and 3.x to read and write text files. Example:
import io
text = u'á'
encoding = 'utf8'
with io.open('data.txt', 'w', encoding=encoding, newline='\n') as fout:
fout.write(text)
with io.open('data.txt', 'r', encoding=encoding, newline='\n') as fin:
text2 = fin.read()
assert text == text2
To read in an Unicode string and then send to HTML, I did this:
fileline.decode("utf-8").encode('ascii', 'xmlcharrefreplace')
Useful for python powered http servers.
Well, your favorite text editor does not realize that \xc3\xa1 are supposed to be character literals, but it interprets them as text. That's why you get the double backslashes in the last line -- it's now a real backslash + xc3, etc. in your file.
If you want to read and write encoded files in Python, best use the codecs module.
Pasting text between the terminal and applications is difficult, because you don't know which program will interpret your text using which encoding. You could try the following:
>>> s = file("f1").read()
>>> print unicode(s, "Latin-1")
Capitán
Then paste this string into your editor and make sure that it stores it using Latin-1. Under the assumption that the clipboard does not garble the string, the round trip should work.
You have stumbled over the general problem with encodings: How can I tell in which encoding a file is?
Answer: You can't unless the file format provides for this. XML, for example, begins with:
<?xml encoding="utf-8"?>
This header was carefully chosen so that it can be read no matter the encoding. In your case, there is no such hint, hence neither your editor nor Python has any idea what is going on. Therefore, you must use the codecs module and use codecs.open(path,mode,encoding) which provides the missing bit in Python.
As for your editor, you must check if it offers some way to set the encoding of a file.
The point of UTF-8 is to be able to encode 21-bit characters (Unicode) as an 8-bit data stream (because that's the only thing all computers in the world can handle). But since most OSs predate the Unicode era, they don't have suitable tools to attach the encoding information to files on the hard disk.
The next issue is the representation in Python. This is explained perfectly in the comment by heikogerlach. You must understand that your console can only display ASCII. In order to display Unicode or anything >= charcode 128, it must use some means of escaping. In your editor, you must not type the escaped display string but what the string means (in this case, you must enter the umlaut and save the file).
That said, you can use the Python function eval() to turn an escaped string into a string:
>>> x = eval("'Capit\\xc3\\xa1n\\n'")
>>> x
'Capit\xc3\xa1n\n'
>>> x[5]
'\xc3'
>>> len(x[5])
1
As you can see, the string "\xc3" has been turned into a single character. This is now an 8-bit string, UTF-8 encoded. To get Unicode:
>>> x.decode('utf-8')
u'Capit\xe1n\n'
Gregg Lind asked: I think there are some pieces missing here: the file f2 contains: hex:
0000000: 4361 7069 745c 7863 335c 7861 316e Capit\xc3\xa1n
codecs.open('f2','rb', 'utf-8'), for example, reads them all in a separate chars (expected) Is there any way to write to a file in ASCII that would work?
Answer: That depends on what you mean. ASCII can't represent characters > 127. So you need some way to say "the next few characters mean something special" which is what the sequence "\x" does. It says: The next two characters are the code of a single character. "\u" does the same using four characters to encode Unicode up to 0xFFFF (65535).
So you can't directly write Unicode to ASCII (because ASCII simply doesn't contain the same characters). You can write it as string escapes (as in f2); in this case, the file can be represented as ASCII. Or you can write it as UTF-8, in which case, you need an 8-bit safe stream.
Your solution using decode('string-escape') does work, but you must be aware how much memory you use: Three times the amount of using codecs.open().
Remember that a file is just a sequence of bytes with 8 bits. Neither the bits nor the bytes have a meaning. It's you who says "65 means 'A'". Since \xc3\xa1 should become "à" but the computer has no means to know, you must tell it by specifying the encoding which was used when writing the file.
The \x.. sequence is something that's specific to Python. It's not a universal byte escape sequence.
How you actually enter in UTF-8-encoded non-ASCII depends on your OS and/or your editor. Here's how you do it in Windows. For OS X to enter a with an acute accent you can just hit option + E, then A, and almost all text editors in OS X support UTF-8.
You can also improve the original open() function to work with Unicode files by replacing it in place, using the partial function. The beauty of this solution is you don't need to change any old code. It's transparent.
import codecs
import functools
open = functools.partial(codecs.open, encoding='utf-8')
I was trying to parse iCal using Python 2.7.9:
from icalendar import Calendar
But I was getting:
Traceback (most recent call last):
File "ical.py", line 92, in parse
print "{}".format(e[attr])
UnicodeEncodeError: 'ascii' codec can't encode character u'\xe1' in position 7: ordinal not in range(128)
and it was fixed with just:
print "{}".format(e[attr].encode("utf-8"))
(Now it can print liké á böss.)
I found the most simple approach by changing the default encoding of the whole script to be 'UTF-8':
import sys
reload(sys)
sys.setdefaultencoding('utf8')
any open, print or other statement will just use utf8.
Works at least for Python 2.7.9.
Thx goes to https://markhneedham.com/blog/2015/05/21/python-unicodeencodeerror-ascii-codec-cant-encode-character-uxfc-in-position-11-ordinal-not-in-range128/ (look at the end).

'ascii' codec can't encode error when reading using Python to read JSON

Yet another person unable to find the correct magic incantation to get Python to print UTF-8 characters.
I have a JSON file. The JSON file contains string values. One of those string values contains the character "à". I have a Python program that reads in the JSON file and prints some of the strings in it. Sometimes when the program tries to print the string containing "à" I get the error
UnicodeEncodeError: 'ascii' codec can't encode character u'\xe0' in position 12: ordinal not in range(128)
This is hard to reproduce. Sometimes a slightly different program is able to print the string "à". A smaller JSON file containing only this string does not exhibit the problem. If I start sprinkling encode('utf-8') and decode('utf-8') around the code it changes what blows up in unpredictable ways. I haven't been able to create a minimal code fragment and input that exhibits this problem.
I load the JSON file like so.
with codecs.open(filename, 'r', 'utf-8') as f:
j = json.load(f)
I'll pull out the offending string like so.
s = j['key']
Later I do a print that has s as part of it and see the error.
I'm pretty sure the original file is in UTF-8 because in the interactive command line
codecs.open(filename, 'r', 'utf-8').read()
returns a string but
codecs.open(filename, 'r', 'ascii').read()
gives an error about the ascii codec not being able to decode such-and-such a byte. The file size in bytes is identical to the number of characters returned by wc -c, and I don't see anything else that looks like a non-ASCII character, so I suspect the problem lies entirely with this one high-ASCII "à".
I am not making any explicit calls to str() in my code.
I've been through the Python Unicode HOWTO multiple times. I understand that I'm supposed to "sandwich" unicode handling. I think I'm doing this, but obviously there's something I still misunderstand.
Mostly I'm confused because it seems like if I specify 'utf-8' in the codecs.open call, everything should be happening in UTF-8. I don't understand how the ASCII codec still sneaks in.
What am I doing wrong? How do I go about debugging this?
Edit: Used io module in place of codecs. Same result.
Edit: I don't have a minimal example, but at least I have a minimal repro scenario.
I am printing an object derived from the strings in the JSON that is causing the problem. So the following gives an error.
print(myobj)
(Note that I am using from __future__ import print_function though that does not appear to make a difference.)
Putting an encode('utf-8') on the end of my object's __str__ function return value does not fix the bug. However changing the print line to this does.
print("%s" % myobj)
This looks wrong to me. I'd expect these two print calls to be equivalent.
I can make this work by doing the sys.setdefaultencoding hack:
import sys
reload(sys)
sys.setdefaultencoding("UTF-8")
But this is apparently a bad idea that can make Python malfunction in other ways.
What is the correct way to do this? I tried
env PYTHONIOENCODING=UTF-8 ./myscript.py
but that didn't work. (Unsurprisingly, since the issue is the default encoding, not the io encoding.)
When you write directly to a file or redirect stdout to a file or pipe the default encoding is ASCII and you have to encode Unicode strings before writing them. With opened file handles you can set an encoding to have this happen automatically but with print you must use an encode() method.
print s.encode('utf-8')
It is recommended to use the newer io module in place of codecs because it has an improved implementation and is forward compatible with Py3.x open().

What is the proper way to use codecs' encoding in Python?

I have an HTML file encoded in utf-8. I want to ouput it to a text file, encoded in utf-8. Here's the code I'm using:
import codecs
IN = codecs.open("E2P3.html","r",encoding="utf-8")
codehtml = IN.read()
#codehtml = codehtml.decode("utf-8")
texte = re.sub("<br>","\n",codehtml)
#texte = texte.encode("utf-8")
OUT = codecs.open("E2P3.txt","w",encoding="utf-8")
OUT.write(texte)
IN.close()
OUT.close()
As you can see, I've tried using both 'decode' and 'codecs'. Neither of these work, my output text file defaults as Occidental (Windows-1252) and some entities become gibberish.
What am I doing wrong here?
When opening a UTF-8 file with the codecs module, as you did, the contents of the file are automatically decoded into Unicode strings, so you must not try to decode them again.
The same is true when writing the file; if you write it using the codecs module, the Unicode string you're passing will automatically be encoded to whatever encoding you specified.
To make it explicit that you're dealing with Unicode strings, it might be a better idea to use Unicode literals, as in
texte = re.sub(u"<br>", u"\n",codehtml)
although it doesn't really matter in this case (which could also be written as
texte = codehtml.replace(u"<br>", u"\n")
since you're not actually using a regular expression).
If the application doesn't recognize the UTF-8 file, it might help saving it with a BOM (Byte Order Mark) (which is generally discouraged, but if the application can't recognize a UTF-8 file otherwise, it's worth a try):
OUT = codecs.open("E2P3.txt","w",encoding="utf-8-sig")

How to save the output of airport -s -x to file with Python

i am learning python, and i am having troubles with saving the output of a small function to file. My python function is the following:
#!/usr/local/bin/python
import subprocess
import codecs
airport = '/System/Library/PrivateFrameworks/Apple80211.framework/Versions/Current/Resources/airport'
def getAirportInfo():
arguments = [airport, "--scan" , "--xml"]
execute = subprocess.Popen(arguments, stdout=subprocess.PIPE)
out, err = execute.communicate()
print out
return out
airportInfo = getAirportInfo()
outFile = codecs.open('wifi-data.txt', 'w')
outFile.write(airportInfo)
outFile.close()
I guess that this would only work on a Mac, as it references some PrivateFrameworks.
Anyways, the code almost works as it should. The print statement prints a huge xml file, that i'd like to store in a file, for future processing. And here start the problems.
In the version above, the script executes without any errors, however, when i try to open the file, i get an error message, along the lines of error with utf-8 encoding. Ignoring this, opens the file, and most of the things look fine, except for a couple of things:
some SSID have non-ascii characters, like ä, ö and ü. When printing those on the screen, they are correctly displayed as \xc3\xa4 and so on. When I open the file it is displayed incorrectly, the usual random garbage.
some of the xml values look like these when printed on screen: Data("\x00\x11WLAN-0024FE056185\x01\x08\x82\x84\x8b\x96\x0c\ … x10D\x00\x01\x02") but like this when read from file: //8AAAAAAAAAAAAAAAAAAA==
I thought it could be an encoding error (seen as the Umlauts have problems, the error message says something about the utf-8 encoding being messed up, and the text containing \x type of characters), and i tried looking here for possible solutions. However, no matter what i do, there are still errors:
adding an additional argument 'utf-8' to the codecs.open yields a
UnicodeDecodeError: 'ascii' codec can't decode byte 0x9a in position 24227: ordinal not in range(128) and the generated file is empty.
explicitly encoding to utf-8 with outFile.write(airportInfo.encode('utf-8')) before saving results in the same error
not being an expert, i tried decoding it, maybe i was just doing the exact opposite of what needed to be done, but i got an UnicodeDecodeError: 'utf8' codec can't decode byte 0x8a in position 8980: invalid start byte
The only the thing that worked (unsurprisingly), was to write the repr() of the string to file, but that is just not what i need, and also i can't make a nice .plist of a file full with escape symbols.
So please, please, can somebody help me? What am i missing?
If it helps, the type that gets saved in airportInfo is str (as in type(airportInfo) == str) and not u
You don't need re-encoding when your text is already unicode. Just write the text to a file. It should just work.
In [1]: t = 'äïöú'
In [2]: with open('test.txt', 'w') as f:
f.write(t)
...:
Additionally, you can make getAirportInfo simpler by using subprocess.check_output(). Also, mixed case names should only be used for classes, not functions. See PEP8.
import subprocess
def get_airport_info():
args = ['/System/Library/PrivateFrameworks/Apple80211.framework/Versions/Current/Resources/airport',
'--scan', '--xml']
return subprocess.check_output(args)
airportInfo = get_airport_info()
with open('wifi-data.txt', 'w') as outf:
outf.write(airportinfo)
I should have read this before my original answer:
What is the difference between encode/decode?
I always get confused between string and unicode conversion. On my mac, import sys; sys.getfilesystemencoding() suggests that subprocess returns a 'utf-8' string - so I don't know why airportInfo.encode('utf-8') fails. Is it possible to do airportInfo.encode('utf-8', 'ignore') and throw out the invalid characters?
Also - have you tried writing your file as wb: outFile = codecs.open('wifi-data.txt', 'wb') - doesn't 'w' open an ascii file?
Regarding your text editor - that may handle unicode characters differently. If it's reading a unicode text file as ascii, then the unicode characters may appear a garbled mess. You might try naming the file .xml, in which depending on your text editor may read it better as unicode.

Unicode (UTF-8) reading and writing to files in Python

I'm having some brain failure in understanding reading and writing text to a file (Python 2.4).
# The string, which has an a-acute in it.
ss = u'Capit\xe1n'
ss8 = ss.encode('utf8')
repr(ss), repr(ss8)
("u'Capit\xe1n'", "'Capit\xc3\xa1n'")
print ss, ss8
print >> open('f1','w'), ss8
>>> file('f1').read()
'Capit\xc3\xa1n\n'
So I type in Capit\xc3\xa1n into my favorite editor, in file f2.
Then:
>>> open('f1').read()
'Capit\xc3\xa1n\n'
>>> open('f2').read()
'Capit\\xc3\\xa1n\n'
>>> open('f1').read().decode('utf8')
u'Capit\xe1n\n'
>>> open('f2').read().decode('utf8')
u'Capit\\xc3\\xa1n\n'
What am I not understanding here? Clearly there is some vital bit of magic (or good sense) that I'm missing. What does one type into text files to get proper conversions?
What I'm truly failing to grok here, is what the point of the UTF-8 representation is, if you can't actually get Python to recognize it, when it comes from outside. Maybe I should just JSON dump the string, and use that instead, since that has an asciiable representation! More to the point, is there an ASCII representation of this Unicode object that Python will recognize and decode, when coming in from a file? If so, how do I get it?
>>> print simplejson.dumps(ss)
'"Capit\u00e1n"'
>>> print >> file('f3','w'), simplejson.dumps(ss)
>>> simplejson.load(open('f3'))
u'Capit\xe1n'
Rather than mess with .encode and .decode, specify the encoding when opening the file. The io module, added in Python 2.6, provides an io.open function, which allows specifying the file's encoding.
Supposing the file is encoded in UTF-8, we can use:
>>> import io
>>> f = io.open("test", mode="r", encoding="utf-8")
Then f.read returns a decoded Unicode object:
>>> f.read()
u'Capit\xe1l\n\n'
In 3.x, the io.open function is an alias for the built-in open function, which supports the encoding argument (it does not in 2.x).
We can also use open from the codecs standard library module:
>>> import codecs
>>> f = codecs.open("test", "r", "utf-8")
>>> f.read()
u'Capit\xe1l\n\n'
Note, however, that this can cause problems when mixing read() and readline().
In the notation u'Capit\xe1n\n' (should be just 'Capit\xe1n\n' in 3.x, and must be in 3.0 and 3.1), the \xe1 represents just one character. \x is an escape sequence, indicating that e1 is in hexadecimal.
Writing Capit\xc3\xa1n into the file in a text editor means that it actually contains \xc3\xa1. Those are 8 bytes and the code reads them all. We can see this by displaying the result:
# Python 3.x - reading the file as bytes rather than text,
# to ensure we see the raw data
>>> open('f2', 'rb').read()
b'Capit\\xc3\\xa1n\n'
# Python 2.x
>>> open('f2').read()
'Capit\\xc3\\xa1n\n'
Instead, just input characters like á in the editor, which should then handle the conversion to UTF-8 and save it.
In 2.x, a string that actually contains these backslash-escape sequences can be decoded using the string_escape codec:
# Python 2.x
>>> print 'Capit\\xc3\\xa1n\n'.decode('string_escape')
Capitán
The result is a str that is encoded in UTF-8 where the accented character is represented by the two bytes that were written \\xc3\\xa1 in the original string. To get a unicode result, decode again with UTF-8.
In 3.x, the string_escape codec is replaced with unicode_escape, and it is strictly enforced that we can only encode from a str to bytes, and decode from bytes to str. unicode_escape needs to start with a bytes in order to process the escape sequences (the other way around, it adds them); and then it will treat the resulting \xc3 and \xa1 as character escapes rather than byte escapes. As a result, we have to do a bit more work:
# Python 3.x
>>> 'Capit\\xc3\\xa1n\n'.encode('ascii').decode('unicode_escape').encode('latin-1').decode('utf-8')
'Capitán\n'
Now all you need in Python3 is open(Filename, 'r', encoding='utf-8')
[Edit on 2016-02-10 for requested clarification]
Python3 added the encoding parameter to its open function. The following information about the open function is gathered from here: https://docs.python.org/3/library/functions.html#open
open(file, mode='r', buffering=-1,
encoding=None, errors=None, newline=None,
closefd=True, opener=None)
Encoding is the name of the encoding used to decode or encode the
file. This should only be used in text mode. The default encoding is
platform dependent (whatever locale.getpreferredencoding()
returns), but any text encoding supported by Python can be used.
See the codecs module for the list of supported encodings.
So by adding encoding='utf-8' as a parameter to the open function, the file reading and writing is all done as utf8 (which is also now the default encoding of everything done in Python.)
So, I've found a solution for what I'm looking for, which is:
print open('f2').read().decode('string-escape').decode("utf-8")
There are some unusual codecs that are useful here. This particular reading allows one to take UTF-8 representations from within Python, copy them into an ASCII file, and have them be read in to Unicode. Under the "string-escape" decode, the slashes won't be doubled.
This allows for the sort of round trip that I was imagining.
This works for reading a file with UTF-8 encoding in Python 3.2:
import codecs
f = codecs.open('file_name.txt', 'r', 'UTF-8')
for line in f:
print(line)
# -*- encoding: utf-8 -*-
# converting a unknown formatting file in utf-8
import codecs
import commands
file_location = "jumper.sub"
file_encoding = commands.getoutput('file -b --mime-encoding %s' % file_location)
file_stream = codecs.open(file_location, 'r', file_encoding)
file_output = codecs.open(file_location+"b", 'w', 'utf-8')
for l in file_stream:
file_output.write(l)
file_stream.close()
file_output.close()
Aside from codecs.open(), io.open() can be used in both 2.x and 3.x to read and write text files. Example:
import io
text = u'á'
encoding = 'utf8'
with io.open('data.txt', 'w', encoding=encoding, newline='\n') as fout:
fout.write(text)
with io.open('data.txt', 'r', encoding=encoding, newline='\n') as fin:
text2 = fin.read()
assert text == text2
To read in an Unicode string and then send to HTML, I did this:
fileline.decode("utf-8").encode('ascii', 'xmlcharrefreplace')
Useful for python powered http servers.
Well, your favorite text editor does not realize that \xc3\xa1 are supposed to be character literals, but it interprets them as text. That's why you get the double backslashes in the last line -- it's now a real backslash + xc3, etc. in your file.
If you want to read and write encoded files in Python, best use the codecs module.
Pasting text between the terminal and applications is difficult, because you don't know which program will interpret your text using which encoding. You could try the following:
>>> s = file("f1").read()
>>> print unicode(s, "Latin-1")
Capitán
Then paste this string into your editor and make sure that it stores it using Latin-1. Under the assumption that the clipboard does not garble the string, the round trip should work.
You have stumbled over the general problem with encodings: How can I tell in which encoding a file is?
Answer: You can't unless the file format provides for this. XML, for example, begins with:
<?xml encoding="utf-8"?>
This header was carefully chosen so that it can be read no matter the encoding. In your case, there is no such hint, hence neither your editor nor Python has any idea what is going on. Therefore, you must use the codecs module and use codecs.open(path,mode,encoding) which provides the missing bit in Python.
As for your editor, you must check if it offers some way to set the encoding of a file.
The point of UTF-8 is to be able to encode 21-bit characters (Unicode) as an 8-bit data stream (because that's the only thing all computers in the world can handle). But since most OSs predate the Unicode era, they don't have suitable tools to attach the encoding information to files on the hard disk.
The next issue is the representation in Python. This is explained perfectly in the comment by heikogerlach. You must understand that your console can only display ASCII. In order to display Unicode or anything >= charcode 128, it must use some means of escaping. In your editor, you must not type the escaped display string but what the string means (in this case, you must enter the umlaut and save the file).
That said, you can use the Python function eval() to turn an escaped string into a string:
>>> x = eval("'Capit\\xc3\\xa1n\\n'")
>>> x
'Capit\xc3\xa1n\n'
>>> x[5]
'\xc3'
>>> len(x[5])
1
As you can see, the string "\xc3" has been turned into a single character. This is now an 8-bit string, UTF-8 encoded. To get Unicode:
>>> x.decode('utf-8')
u'Capit\xe1n\n'
Gregg Lind asked: I think there are some pieces missing here: the file f2 contains: hex:
0000000: 4361 7069 745c 7863 335c 7861 316e Capit\xc3\xa1n
codecs.open('f2','rb', 'utf-8'), for example, reads them all in a separate chars (expected) Is there any way to write to a file in ASCII that would work?
Answer: That depends on what you mean. ASCII can't represent characters > 127. So you need some way to say "the next few characters mean something special" which is what the sequence "\x" does. It says: The next two characters are the code of a single character. "\u" does the same using four characters to encode Unicode up to 0xFFFF (65535).
So you can't directly write Unicode to ASCII (because ASCII simply doesn't contain the same characters). You can write it as string escapes (as in f2); in this case, the file can be represented as ASCII. Or you can write it as UTF-8, in which case, you need an 8-bit safe stream.
Your solution using decode('string-escape') does work, but you must be aware how much memory you use: Three times the amount of using codecs.open().
Remember that a file is just a sequence of bytes with 8 bits. Neither the bits nor the bytes have a meaning. It's you who says "65 means 'A'". Since \xc3\xa1 should become "à" but the computer has no means to know, you must tell it by specifying the encoding which was used when writing the file.
The \x.. sequence is something that's specific to Python. It's not a universal byte escape sequence.
How you actually enter in UTF-8-encoded non-ASCII depends on your OS and/or your editor. Here's how you do it in Windows. For OS X to enter a with an acute accent you can just hit option + E, then A, and almost all text editors in OS X support UTF-8.
You can also improve the original open() function to work with Unicode files by replacing it in place, using the partial function. The beauty of this solution is you don't need to change any old code. It's transparent.
import codecs
import functools
open = functools.partial(codecs.open, encoding='utf-8')
I was trying to parse iCal using Python 2.7.9:
from icalendar import Calendar
But I was getting:
Traceback (most recent call last):
File "ical.py", line 92, in parse
print "{}".format(e[attr])
UnicodeEncodeError: 'ascii' codec can't encode character u'\xe1' in position 7: ordinal not in range(128)
and it was fixed with just:
print "{}".format(e[attr].encode("utf-8"))
(Now it can print liké á böss.)
I found the most simple approach by changing the default encoding of the whole script to be 'UTF-8':
import sys
reload(sys)
sys.setdefaultencoding('utf8')
any open, print or other statement will just use utf8.
Works at least for Python 2.7.9.
Thx goes to https://markhneedham.com/blog/2015/05/21/python-unicodeencodeerror-ascii-codec-cant-encode-character-uxfc-in-position-11-ordinal-not-in-range128/ (look at the end).

Categories