Bad idea to have two class opening the same file? - python

I have two classes in my Python program and one of them is a thread. Is it a bad idea to have both classes open the same log file and write to it?
Is there any good approach to write to the same log file for two classes which are running at the same time?

This is a classical concurrency issue. You need to ensure that you exactly control what is happening. Regarding log files, the easiest solution might be to have a queue collecting log messages from various places (from different threads or even processes) and then have one entity that pops messages from that queue and writes them to the log file. This way, at least single messages stay self-contained.
The operating system does not prevent message mix up if you write to the file from different unsynchronized entities. Hence, if you do not explicitly control what should happen in which order, you might end up with corrupted messages in that file, even if things seem to work most of the time.

Use the python logging module. It handles the gory details for you.

As long as you control which class is reading and writing from a file and ensure that only one of them can write to it at a time you should be fine and every time you switch you reread the file.
Look into using lock to ensure that both classes are not accessing the file at the same time.

Related

How to do proper file locking on NFS?

I am trying to implement a "record manager" class in python 3x and linux/macOS. The class is relatively easy and straightforward, the only "hard" thing I want is to be able to access the same file (where results are saved) on multiple processes.
This seemed pretty easy, conceptually: when saving, acquire an exclusive lock on the file. Update your information, save the new information, release exclusive lock on the file. Easy enough.
I am using fcntl.lockf(file, fcntl.LOCK_EX) to acquire the exclusive lock. The problem is that, looking on the internet, I am finding a lot of different websites saying how this is not reliable, that it won't work on windows, that the support on NFS is shaky, and that things could change between macOS and linux.
I have accepted that the code won't work on windows, but I was hoping to be able to make it work on macOS (single machine) and on linux (on multiple servers with NFS).
The problem is that I can't seem to make this work; and after a while of debugging and after the tests passed on macOS, they failed once I tried them on the NFS with linux (ubuntu 16.04). The issue is an inconsistency between the informations saved by multiple processes - some processes have their modifications missing, which means something went wrong in the locking and saving procedure.
I am sure there is something I am doing wrong, and I suspect this may be related to the issues that I read about online. So, what is the proper way to deal multiple access to the same file that works on macOS and linux over NFS?
Edit
This is what the typical method that writes new informations to disk looks like:
sf = open(self._save_file_path, 'rb+')
try:
fcntl.lockf(sf, fcntl.LOCK_EX) # acquire an exclusive lock - only one writer
self._raw_update(sf) #updates the records from file (other processes may have modified it)
self._saved_records[name] = new_info
self._raw_save() #does not check for locks (but does *not* release the lock on self._save_file_path)
finally:
sf.flush()
os.fsync(sf.fileno()) #forcing the OS to write to disk
sf.close() #release the lock and close
While this is how a typical method that only read info from disk looks like:
sf = open(self._save_file_path, 'rb')
try:
fcntl.lockf(sf, fcntl.LOCK_SH) # acquire shared lock - multiple writers
self._raw_update(sf) #updates the records from file (other processes may have modified it)
return self._saved_records
finally:
sf.close() #release the lock and close
Also, this is how _raw_save looks like:
def _raw_save(self):
#write to temp file first to avoid accidental corruption of information.
#os.replace is guaranteed to be an atomic operation in POSIX
with open('temp_file', 'wb') as p:
p.write(self._saved_records)
os.replace('temp_file', self._save_file_path) #pretty sure this does not release the lock
Error message
I have written a unit test where I create 100 different processes, 50 that read and 50 that write to the same file. Each process does some random waiting to avoid accessing the files sequentially.
The problem is that some of the records are not kept; at the end there are some 3-4 random records missing, so I only end up with 46-47 records rather than 50.
Edit 2
I have modified the code above and I acquire the lock not on the file itself, but on a separate lock file. This prevents the issue that closing the file would release the lock (as suggested by #janneb), and makes the code work correctly on mac. The same code fails on linux with NFS though.
I don't see how the combination of file locks and os.replace() can make sense. When the file is replaced (that is, the directory entry is replaced), all the existing file locks (probably including file locks waiting for the locking to succeed, I'm not sure of the semantics here) and file descriptors will be against the old file, not the new one. I suspect this is the reason behind the race conditions causing you to lose some of the records in your tests.
os.replace() is a good technique to ensure that a reader doesn't read a partial update. But it doesn't work robustly in the face of multiple updaters (unless losing some of the updates is ok).
Another issues is that fcntl is a really really stupid API. In particular, the locks are bound to the process, not the file descriptor. Which means that e.g. a close() on ANY file descriptor pointing to the file will release the lock.
One way would be to use a "lock file", e.g. taking advantage of the atomicity of link(). From http://man7.org/linux/man-pages/man2/open.2.html:
Portable
programs that want to perform atomic file locking using a
lockfile, and need to avoid reliance on NFS support for
O_EXCL, can create a unique file on the same filesystem (e.g.,
incorporating hostname and PID), and use link(2) to make a
link to the lockfile. If link(2) returns 0, the lock is
successful. Otherwise, use stat(2) on the unique file to
check if its link count has increased to 2, in which case the
lock is also successful.
If it's Ok to read slightly stale data then you can use this link() dance only for a temp file that you use when updating the file and then os.replace() the "main" file you use for reading (reading can then be lockless). If not, then you need to do the link() trick for the "main" file and forget about shared/exclusive locking, all locks are then exclusive.
Addendum: One tricky thing to deal with when using lock files is what to do when a process dies for whatever reason, and leaves the lock file around. If this is to run unattended, you might want to incorporate some kind of timeout and removal of lock files (e.g. check the stat() timestamps).
Using randomly named hard links and the link counts on those files as lock files is a common strategy (E.g. this), and arguable better than using lockd but for far more information about the limits of all sorts of locks over NFS read this: http://0pointer.de/blog/projects/locking.html
You'll also find that this is a long standing standard problem for MTA software using Mbox files over NFS. Probably the best answer there was to use Maildir instead of Mbox, but if you look for examples in the source code of something like postfix, it'll be close to best practice. And if they simply don't solve that problem, that might also be your answer.
NFS is great for file sharing. It sucks as a "transmission" medium.
I've been down the NFS-for-data-transmission road multiple times. In every instance, the solution involved moving away from NFS.
Getting reliable locking is one part of the problem. The other part is the update of the file on the server and expecting the clients to receive that data at some specific point-in-time (such as before they can grab the lock).
NFS isn't designed to be a data transmission solution. There are caches and timing involved. Not to mention paging of the file content, and file metadata (e.g. the atime attribute). And client O/S'es keeping track of state locally (such as "where" to append the client's data when writing to the end of the file).
For a distributed, synchronized store, I recommend looking at a tool that does just that. Such as Cassandra, or even a general-purpose database.
If I'm reading the use-case correctly, you could also go with a simple server-based solution. Have a server listen for TCP connections, read messages from the connections, and then write each to file, serializing the writes within the server itself. There's some added complexity in having your own protocol (to know where a message starts and stops), but otherwise, it's fairly straight-forward.

How to cache messages in Python's log module?

Our Python application needs to run on a new HW with write limitation.
I was asked to reduce writing as much as possible.
After changing verbosity, and reduce log messages, I was thinking of creating a cache mechanism that will log messages and write them once a day in one transaction.
How would I do that?
I was thinking if inherit and override the _log() method, but not sure how to write "one" message out of all the old messages, while making the log file still appears as with many messages.

Multiple threads reading from single folder on Linux

My projects needs multiple threads reading files from the same folder. This folder has incoming files and the file should only be processed by any one of those threads. Later, this file reading thread, deletes the file after processing it.
EDIT after the first answer: I don't want a single thread in charge of reading filenames and feeding those names to other threads, so that they can read it.
Is there any efficient way of achieving this in python?
You should probably use the Queue module. From the docs:
The Queue module implements multi-producer, multi-consumer queues. It is especially useful in threaded programming when information must be exchanged safely between multiple threads.
I would use a FIFO approach, with a thread in charge of checking for inbound files and queuing them, and a number of workers processing them. A LIFO approach or an approach in which priority is assigned with a custom method are also supported by the module.
EDIT: If you don't want to use the Queue module and you are under a *nix system, you could use fcntl.lockf instead. An alternative, opening the files with os.open('filename', os.O_EXLOCK).
Depending on how often you perform this operation, you might find it less performing than using Queue, as you will have to account for race conditions (i.e.: you might acquire the name of the file to open, but the file might get locked by another thread before you get a chance to open it, throwing an exception that you will have to trap). Queue is there for a reason! ;)
EDIT2: Comments in this and other questions are bringing up the problem with simultaneous disk access to different files and the consequent performance hit. I was thinking that task_done would have been used for preventing this, but reading others' comments it occurred to me that instead of queuing file names, one could queue the files' content directly. This second alternative would work only for a limited amount of limited size queued files, given that RAM would fill up rather quickly otherwise.
I'm unaware if RAID and other parallel disk configurations would already take care of reading one file per disk rather than bouncing back and forth between two files on both disks.
HTH!
If you want multiple threads to read directly from the same folder several files in parallel, then I must disappoint you. Reading in parallel from a single disk is not a viable option. A single disk needs to spin and seek the next location to be read. If you're reading with multiple threads, you are just bouncing the disk around between seeks and the performance is much worse than a simple sequential read.
Just stick to mac's advice and use a single thread for reading.

Process for converting python program into threaded application?

I have a code-base that I'm looking to split up and add to by using threading, however I'm relatively new on how to handle it. Please before reading further respect my wish of NOT just re-writing this code and tossing it back at me with the problem solved. I would much rather work the problem out by someone pointing me in the right direction, than someone solving it FOR me; I don't learn well that way.
The fully functioning code-base is here -- It requires the mechanize and beautifulsoup libraries which can be installed via easy_install.
I've separated out all of my functions, and tried to keep the code as clean as possible (I'm sure there are some optimizations in there that I'll get reamed for, but the main problem is how to thread this.
My ultimate goal is to pack this into a thread, and then share cookies between other initialized browser objects in order to do other things while my original code is running 'backgrounded'.
I've tried thus:
class Recon(threading.Thread):
def __init__(self):
threading.Thread.__init__(self)
#Packed the stuff above my original while loop in here, minus functions.
def run(self):
#Packed my code past the while loop in here.
somevar = Recon()
somevar.start()
Problem I'm having is that, once I run the program it will run the things in init, but afterwards it just sits there and freezes on me. No traceback, no errors, just doesn't do anything, doesn't even return my command prompt back to my control.
Could I just get some tips, or a general flow of how to convert this? I got overwhelmed and deleted the code I was trying with so I don't have that example, but do I need to be prepending 'self.' to all of my variables? Do I need to just define my vars as global?
Here is a reproduction of what I'm having trouble with after having tried to convert the script to use threading.
As long as you have a single thread (as in the above snippet, where you instantiate Recon just once), it shouldn't matter much what you do where; but of course I imagine the reason you're introducing threading is to eventually move to having multiple threads active.
If that's the case, then the first key issue is to ensure that you never have two or more threads simultaneously trying to use the same shared system/resource -- for example, multiple threads writing at the same time to ReconFile, in the case of the code at the pastebin URL you mention.
The classic way to avoid such issues is to use locking, but my favorite way is quite different: make sure any such resource is accessed by only one dedicated thread, and use a Queue.Queue instance (intrinsically threadsafe) to have other threads post work-request to the dedicated thread (so instead of writing to ReconFile directly each other thread would make a list of lines to be written contiguously, then .put the list on the queue where the "recon file writing" worker thread is waiting via .get).
When you need to get results back from such actions (not the case here), the requesting thread would place its own personal "queue on which to return results" as part of the "work request packet" it puts to the worker thread's queue. I've presented much more detail about this recommended architecture in the threading chapter of "Python in a Nutshell" 2nd edition (and why, as the book's author, I would of course never recommend you perform an illegal download of a free pirate copy of my book, I can however mention there's plenty of sites offering such pirate copies for download -- the legal way to read my book for free is to sign up for a trial offer to O'Reilly's "safari" online books website).
This does not address the specific problem you're observing, since it's happening when you only have one thread around. I notice that thread is trying to perform lots of I/O on standard input and standard output, which is possibly problematic from a thread -- consider doing the input for a thread before you start it (in the main thread) and for needed output use Python's standard logging module, which is guaranteed to be thread-safe. Do you still observe problems then? If that's the case, then the next step is to pepper your code with logging.info calls so that you can pinpoint exactly where it's stalling -- and tell us about that, so we can try to help from there!

suggestions for a daemon that accepts zip files for processing

im looking to write a daemon that:
reads a message from a queue (sqs, rabbit-mq, whatever ...) containing a path to a zip file
updates a record in the database saying something like "this job is processing"
reads the aforementioned archive's contents and inserts a row into a database w/ information culled from file meta data for each file found
duplicates each file to s3
deletes the zip file
marks the job as "complete"
read next message in queue, repeat
this should be running as a service, and initiated by a message queued when someone uploads a file via the web frontend. the uploader doesn't need to immediately see the results, but the upload be processed in the background fairly expediently.
im fluent with python, so the very first thing that comes to mind is writing a simple server with twisted to handle each request and carry out the process mentioned above. but, ive never written anything like this that would run in a multi-user context. its not going to service hundreds of uploads per minute or hour, but it'd be nice if it could handle several at a time, reasonable. i also am not terribly familiar with writing multi-threaded applications and dealing with issues like blocking.
how have people solved this in the past? what are some other approaches i could take?
thanks in advance for any help and discussion!
I've used Beanstalkd as a queueing daemon to very good effect (some near-time processing and image resizing - over 2 million so far in the last few weeks). Throw a message into the queue with the zip filename (maybe from a specific directory) [I serialise a command and parameters in JSON], and when you reserve the message in your worker-client, no one else can get it, unless you allow it to time out (when it goes back to the queue to be picked up).
The rest is the unzipping and uploading to S3, for which there are other libraries.
If you want to handle several zip files at once, run as many worker processes as you want.
I would avoid doing anything multi-threaded and instead use the queue and the database to synchronize as many worker processes as you care to start up.
For this application I think twisted or any framework for creating server applications is going to be overkill.
Keep it simple. Python script starts up, checks the queue, does some work, checks the queue again. If you want a proper background daemon you might want to just make sure you detach from the terminal as described here: How do you create a daemon in Python?
Add some logging, maybe a try/except block to email out failures to you.
i opted to use a combination of celery (http://ask.github.com/celery/introduction.html), rabbitmq, and a simple django view to handle uploads. the workflow looks like this:
django view accepts, stores upload
a celery Task is dispatched to process the upload. all work is done inside the Task.

Categories