I need to run the python (numpy) code:
numpy.linalg.svd(M.dot(M.T))
but M is a dense float64 matrix of shape 100224 x 349800
Obviously, it does not fit in memory.
I know pytables is supposed to be able to do out-of-core operations
but I have only found examples of element-wise operations, nothing like
a dot product or SVD.
Is this even possible in python? and if not, what are my options?
(Any programming language is probably fine)
Related
I have been trying for some days to calculate the nearest positive semi-definite matrix from a very large covariance matrix to be able to sample from it.
I have tried MATLAB for the effect, but the memory usage is insane and it always crashes eventually, no error message or log file as far as I searched. The function used for the calculation can be found here https://www.mathworks.com/matlabcentral/fileexchange/42885-nearestspd. Optimizing the function to remove intermediate matrices seemed to reduce the memory usage, but it eventually crashes much in the same way.
Found this approach for doing the calculation https://stackoverflow.com/a/63131309/18660401 and switched to Python, in hopes of finding some GPU libraries to accelerate the calculations, but it seems I cannot find an up-to-date library that suports calculating eigenvectors using the numpy function. This is the function I am using:
import numpy as np
def get_near_psd(A):
C = (A + A.T)/2
eigval, eigvec = np.linalg.eig(C)
eigval[eigval < 0] = 0
return eigvec.dot(np.diag(eigval)).dot(eigvec.T)
I am currently trying to run the same function with numba in hopes that the translation to LLVM is enough to make the calculations in reasonable time, only modified the above version to include the #jit decorator from numba.
There does not seem to be a very optimized way to do this as far as I can find on my own, so any suggestion is very appreciated to crack this.
Edit: The matrix is a two-dimensional 60416x60416 covariance matrix and it is to be used to generate new samples from the distribution of the mean and covariance matrix calculated from a set of samples using a GAN. For training purposes, samples also need to be generated from randomly sampling the distribution, which I am intending to use the function multivariate_normal from numpy for.
A very up to date library that does have these capabilities including GPU support is pytorch, check out the examples on the torch.linalg.eig-function and the corresponding accelerated function torch.linalg.eigh for symmetric/hermitian matrices. You do have to convert these matrices from numpy to pytorch-tensors first to do the computation (and then convert it back), but you can definitely use it in a very similar way.
Of course also this library can't just magically give you more memory, but it is highly optimized.
I have been experiencing with MPI in Python through mpi4py. And it's working amazingly well to parallelize some code I developed. However I rely heavily on Numpy for matrix manipulation. I have a question regarding the usage of Numpy with MPI.
Let's take for instance de dot function in Numpy. Let's say I have 2 huge matrices A and B and I want to compute their matrix product A*B:
numpy.dot(A, B)
I would like to know how to spread this function call over the whole cluster. I can chunk B (columnwise) into smaller matrices and spread the matrix product on the cluster nodes and therefore regroup the result. However it seems like a bad workaround. Is there a better solution ?
recently I'm working on a problem which requires
diagonalizing a huge hermitian matrix to get all the eigenvalues.
Currently I'm using Mathematica to do the job.
However it is not applicable due to the limitation of memory
when the matrix size approaches (2^15,2^15), where the diagonalization costs approximately 32 GBs memory.
I've tried using python by importing the matrix from mathematica,
import numpy as np
from scipy.io import mmread
from scipy.sparse import csc_matrix
#importing sparse matrix to save space
h = mmread("h.mtx")
h = csc_matrix(h)
#diagonlizing the dense one
ev = np.linalg.eigvalsh(h.todense())
It works but unfortunately an order of magnitude slower than Mathematica.
So, is there any other possible solutions, say, C++?
I know nothing about C++ so I guess the simplest way may be importing the
matrix to C++ and diagonalizing.
Thanks!
Running some preliminary test using this matrix:
http://math.nist.gov/MatrixMarket/data/NEP/h2plus/qc2534.html
I determined that the conversion to dense does not take up much of the time. The eigenvalue calculation does.
Numpy uses highly-optimized Lapack routines to calculate. These are the same you'd use in C++. Therefore C++ won't give you much of a speedup. If you want a speedup use the sparseness as a property, go to a better computer or switch to a distributed matrix storage(lot's of labor here).
P.S: if you do this for a university project you might want to look around if your university has a cluster of some sort. A cluster node typically has lots of memory. If not, check amazons AWS EC2 or googles compute engine for instances with lot's of ram.
Edit:
Here Wolfram says what Mathematica does behind the scenes: http://reference.wolfram.com/language/tutorial/LinearAlgebraAppendix.html#83486633
Arpack is a (arnoldi)subspace solver, giving you only the highest or lowest k-eigenvalues, ATLAS is just a Lapack implementation and the rest seems to be for solving linear systems.
All methods giving you the full eigenspectrum will require the matrix decomposition of a NxN matrix. If you only want k vectors there are methods which reduce it to a decomposition of a k x k-matrix.
There are modern alternatives to Arpack(http://slepc.upv.es/ or the one that comes with MKL), but they all give you a subspace.
c++ won't help much.
In python you can delegate easily to C++ and a lot of scipy routines will do just that (for performance). I also expect that if you only time the eigen value line you will get similar performance to Matematica and the difference in performance comes from reading the data.
The best solution is to look for a more appropriate algorithm, maybe something that operates on the sparse matrix directly, or decompose the original into smaller matrices and combine them.
To make the original solution more tractable you could try increasing the amount of swap space. In linux it's a dedicated partition, in windows it's a setting. This should allow Matematica/python to use more memory, but it's going to be much slower due to memory trashing. Get an SSD to speed this setup up, but note that it's going to be destroyed faster due to often writes. Or even better buy more RAM.
I'm trying to decomposing signals in components (matrix factorization) in a large sparse matrix in Python using the sklearn library.
I made use of scipy's scipy.sparse.csc_matrix to construct my matrix of data. However I'm unable to perform any analysis such as factor analysis or independent component analysis. The only thing I'm able to do is use truncatedSVD or scipy's scipy.sparse.linalg.svds and perform PCA.
Does anyone know any work-arounds to doing ICA or FA on a sparse matrix in python? Any help would be much appreciated! Thanks.
Given:
M = UΣV^t
The drawback with SVD is that the matrix U and V^t are dense matrices. It doesn't really matter that the input matrix is sparse, U and T will be dense. Also the computational complexity of SVD is O(n^2*m) or O(m^2*n) where n is the number of rows and m the number of columns in the input matrix M. It depends on which one is biggest.
It is worth mentioning that SVD will give you the optimal solution and if you can live with a smaller loss, calculated by the frobenius norm, you might want to consider using the CUR algorithm. It will scale to larger datasets with O(n*m).
U = CUR^t
Where C and R are now SPARSE matrices.
If you want to look at a python implementation, take a look at pymf. But be a bit careful about that exact implementations since it seems, at this point in time, there is an open issue with the implementation.
Even the input matrix is sparse the output will not be a sparse matrix. If the system does not support a dense matrix neither the results will not be supported
It is usually a best practice to use coo_matrix to establish the matrix and then convert it using .tocsc() to manipulate it.
long-time R and Python user here. I use R for my daily data analysis and Python for tasks heavier on text processing and shell-scripting. I am working with increasingly large data sets, and these files are often in binary or text files when I get them. The type of things I do normally is to apply statistical/machine learning algorithms and create statistical graphics in most cases. I use R with SQLite sometimes and write C for iteration-intensive tasks; before looking into Hadoop, I am considering investing some time in NumPy/Scipy because I've heard it has better memory management [and the transition to Numpy/Scipy for one with my background seems not that big] - I wonder if anyone has experience using the two and could comment on the improvements in this area, and if there are idioms in Numpy that deal with this issue. (I'm also aware of Rpy2 but wondering if Numpy/Scipy can handle most of my needs). Thanks -
R's strength when looking for an environment to do machine learning and statistics is most certainly the diversity of its libraries. To my knowledge, SciPy + SciKits cannot be a replacement for CRAN.
Regarding memory usage, R is using a pass-by-value paradigm while Python is using pass-by-reference. Pass-by-value can lead to more "intuitive" code, pass-by-reference can help optimize memory usage. Numpy also allows to have "views" on arrays (kind of subarrays without a copy being made).
Regarding speed, pure Python is faster than pure R for accessing individual elements in an array, but this advantage disappears when dealing with numpy arrays (benchmark). Fortunately, Cython lets one get serious speed improvements easily.
If working with Big Data, I find the support for storage-based arrays better with Python (HDF5).
I am not sure you should ditch one for the other but rpy2 can help you explore your options about a possible transition (arrays can be shuttled between R and Numpy without a copy being made).
I use NumPy daily and R nearly so.
For heavy number crunching, i prefer NumPy to R by a large margin (including R packages, like 'Matrix') I find the syntax cleaner, the function set larger, and computation is quicker (although i don't find R slow by any means). NumPy's Broadcasting functionality for instance, i do not think has an analog in R.
For instance, to read in a data set from a csv file and 'normalize' it for input to an ML algorithm (e.g., mean center then re-scale each dimension) requires just this:
data = NP.loadtxt(data1, delimiter=",") # 'data' is a NumPy array
data -= NP.mean(data, axis=0)
data /= NP.max(data, axis=0)
Also, i find that when coding ML algorithms, i need data structures that i can operate on element-wise and that also understand linear algebra (e.g., matrix multiplication, transpose, etc.). NumPy gets this and allows you to create these hybrid structures easily (no operator overloading or subclassing, etc.).
You won't be disappointed by NumPy/SciPy, more likely you'll be amazed.
So, a few recommendations--in general and in particular, given the facts in your question:
install both NumPy and Scipy. As a rough guide, NumPy provides the
core data structures (in particular
the ndarray) and SciPy (which is
actually several times larger than
NumPy) provides the domain-specific
functions (e.g., statistics, signal
processing, integration).
install the repository versions, particularly w/r/t NumPy because the
dev version is 2.0. Matplotlib and NumPy are tightly integrated, you can use one without the other of course, but both are the best in their respective class among python libraries. You can get all three via easy_install, which i assume you already.
NumPy/SciPy have several modules
specifically directed to Machine
Learning/Statistics, including the Clustering package and the Statistics package.
As well as packages directed to
general computation, but which are
make coding ML algorithms a lot
faster, in particular,
Optimization and Linear Algebra.
There are also the SciKits, not included in the base NumPy or
SciPy libraries; you need to install them separately.
Generally speaking, each SciKit is a
set of convenience wrappers to
streamline coding in a given domain. The SciKits you are likely to find most relevant are: ann (approximate Nearest Neighbor), and learn (a set of ML/Statistics regression and classification algorithms, e.g., Logistic Regression, Multi-Layer Perceptron, Support Vector Machine).