If I have data as:
Code, data_1, data_2, data_3, [....], data204700
a,1,1,0, ... , 1
b,1,0,0, ... , 1
a,1,1,0, ... , 1
c,0,1,0, ... , 1
b,1,0,0, ... , 1
etc. same code different value (0, 1, ?(not known))
I need to create a big matrix and I want to analyze.
How can I import data in a dictionary?
I want to use dictionary for column (204.700+1)
There is a built in function (or package) that return to me pattern?
(I expect a percent pattern). I mean as 90% of 1 in column 1, 80% of in column 2.
Alright so I am going to assume you want this in a dictionary for storing purposes and I will tell you that you don't want that with this kind of data. use a pandas DataFrame
this is how you will get your code into a dataframe:
import pandas as pd
my_file = 'file_name'
df = pd.read_csv(my_file)
now you don't need a package for returning the pattern you are looking for, just write a simple algorithm for returning that!
def one_percentage(data):
#get total number of rows for calculating percentages
size = len(data)
#get type so only grabbing the correct rows
x = data.columns[1]
x = data[x].dtype
#list of touples to hold amount of 1s and the column names
ones = [(i,sum(data[i])) for i in data if data[i].dtype == x]
my_dict = {}
#create dictionary with column names and percent
for x in ones:
percent = x[1]/float(size)
my_dict[x[0]] = percent
return my_dict
now if you want to get the percent of ones in any column, this is what you do:
percentages = one_percentage(df)
column_name = 'any_column_name'
print percentages[column_name]
now if you want to have it do every single column, then you can grab all of the column names and loop through them:
columns = [name for name in percentages]
for name in columns:
print str(percentages[name]) + "% of 1 in column " + name
let me know if you need anything else!
Related
I have two dataframes: one comprising a large data set, allprice_df, with time price series for all stocks; and the other, init_df, comprising selective stocks and trade entry dates. I am trying to find the highest price for each ticker symbol and its associated date.
The following code works but it is time consuming, and I am wondering if there is a better, more Pythonic way to accomplish this.
# Initial call
init_df = init_df.assign(HighestHigh = lambda x:
highestHigh(x['DateIdentified'], x['Ticker'], allprice_df))
# HighestHigh function in lambda call
def highestHigh(date1,ticker,allp_df):
if date1.size == ticker.size:
temp_df = pd.DataFrame(columns = ['DateIdentified','Ticker'])
temp_df['DateIdentified'] = date1
temp_df['Ticker'] = ticker
else:
print("dates and tickers size mismatching")
sys.exit(1)
counter = itertools.count(0)
high_list = [getHigh(x,y,allp_df, next(counter)) for x, y in zip(temp_df['DateIdentified'],temp_df['Ticker'])]
return high_list
# Getting high for each ticker
def getHigh(dateidentified,ticker,allp_df, count):
print("trade %s" % count)
currDate = datetime.datetime.now().date()
allpm_df = allp_df.loc[((allp_df['Ticker']==ticker)&(allp_df['date']>dateidentified)&(allp_df['date']<=currDate)),['high','date']]
hh = allpm_df.iloc[:,0].max()
hd = allpm_df.loc[(allpm_df['high']==hh),'date']
hh = round(hh,2)
h_list = [hh,hd]
return h_list
# Split the list in to 2 columns one with price and the other with the corresponding date
init_df = split_columns(init_df,"HighestHigh")
# The function to split the list elements in to different columns
def split_columns(orig_df,col):
split_df = pd.DataFrame(orig_df[col].tolist(),columns=[col+"Mod", col+"Date"])
split_df[col+"Date"] = split_df[col+"Date"].apply(lambda x: x.squeeze())
orig_df = pd.concat([orig_df,split_df], axis=1)
orig_df = orig_df.drop(col,axis=1)
orig_df = orig_df.rename(columns={col+"Mod": col})
return orig_df
There are a couple of obvious solutions that would help reduce your runtime.
First, in your getHigh function, instead of using loc to get the date associated with the maximum value for high, use idxmax to get the index of the row associated with the high and then access that row:
hh, hd = allpm_df[allpm_df['high'].idxmax()]
This will replace two O(N) operations (finding the maximum in a list, and doing a list lookup using a comparison) with one O(N) operation and one O(1) operation.
Edit
In light of your information on the size of your dataframes, my best guess is that this line is probably where most of your time is being consumed:
allpm_df = allp_df.loc[((allp_df['Ticker']==ticker)&(allp_df['date']>dateidentified)&(allp_df['date']<=currDate)),['high','date']]
In order to make this faster, I would setup your data frame to include a multi-index when you first create the data frame:
index = pd.MultiIndex.from_arrays(arrays = [ticker_symbols, dates], names = ['Symbol', 'Date'])
allp_df = pd.Dataframe(data, index = index)
allp_df.index.sortlevel(level = 0, sort_remaining = True)
This should create a dataframe with a sorted, multi-level index associated with your ticker symbol and date. Doing this will reduce your search time tremendously. Once you do that, you should be able to access all the data associated with a ticker symbol and a given date-range by doing this:
allp_df[ticker, (dateidentified: currDate)]
which should return your data much more quickly. For more information on multi-indexing, check out this helpful Pandas tutorial.
I have a very large spatial dataset stored in a dataframe. I am taking a slice of that dataframe into a new smaller subset to run further calculations.
The data has x, y and z coordinates with a number of additional columns, some of which are text and some are numeric. The x and y coordinates are on a defined grid and have a known separation.
Data looks like this
x,y,z,text1,text2,text3,float1,float2
75000,45000,120,aa,bbb,ii,12,0.2
75000,45000,110,bb,bbb,jj,22,0.9
75000,45100,120,aa,bbb,ii,11,1.8
75000,45100,110,bb,bbb,jj,45,2.4
75000,45100,100,bb,ccc,ii,13.6,1
75100,45000,120,bb,ddd,jj,8.2,2.1
75100,45000,110,bb,ddd,ii,12,0.6
For each x and y pair I want to iterate over a two series of text values and do three things in the z direction.
Calculate the average of one numeric value for all the values with a third specific text value
Sum another numeric value for all the values with the same text value
Write the a resultant table of 'x, y, average, sum' to a csv.
My code does part three (albeit very slowly) but doesn't calculate 1 or 2 or at least I don't appear to get the average and sum calculations in my output.
What have I done wrong and how can I speed it up?
for text1 in text_list1:
for text2 in text_list2:
# Get the data into smaller dataframe
df = data.loc[ (data["textfield1"] == text1) & (data["textfield2"] == text2 ) ]
#Get the minimum and maximum x and y
minXw = df['x'].min()
maxXw = df['x'].max()
minYw = df['y'].min()
maxYw = df['y'].max()
# dictionary for quicker printing
dict_out = {}
rows_list = []
# Make output filename
filenameOut = text1+"_"+text2+"_Values.csv"
# Start looping through x values
for x in np.arange(minXw, maxXw, x_inc):
xcount += 1
# Start looping through y values
for y in np.arange(minYw, maxYw, y_inc):
ycount += 1
# calculate average and sum
ave_val = df.loc[df['textfield3'] == 'text3', 'float1'].mean()
sum_val = df.loc[df['textfield3'] == 'text3', 'float2'].sum()
# Make Dictionary of output values
dict_out = dict([('text1', text1),
('text2', text2),
('text3', df['text3']),
('x' , x-x_inc),
('y' , y-y_inc),
('ave' , ave_val),
('sum' , sum_val)])
rows_list_c.append(dict_out)
# Write csv
columns = ['text1','text2','text3','x','y','ave','sum']
with open(filenameOut, 'w') as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=columns)
writer.writeheader()
for data in dict_out:
writer.writerow(data)
My resultant csv gives me:
text1,text2,text3,x,y,ave,sum
text1,text2,,74737.5,43887.5,nan,0.0
text1,text2,,74737.5,43912.5,nan,0.0
text1,text2,,74737.5,43937.5,nan,0.0
text1,text2,,74737.5,43962.5,nan,0.0
Not really clear what you're trying to do. But here is a starting point
If you only need to process rows with a specific text3value, start by filtering out the other rows:
df = df[df.text3=="my_value"]
If at this point, you do not need text3 anymore, you can also drop it
df = df.drop(columns="text3")
Then you process several sub dataframes, and write each of them to their own csv file. groupby is the perfect tool for that:
for (text1, text2), sub_df in df.groupby(["text1", "text2"]):
filenameOut = text1+"_"+text2+"_Values.csv"
# Process sub df
output_df = process(sub_df)
# Write sub df
output_df.to_csv(filenameOut)
Note that if you keep your data as a DataFrame instead of converting it to a dict, you can use the DataFrame to_csv method to simply write the output csv.
Now let's have a look at the process function (Note that you dont really need to make it a separate function, you could as well dump the function body in the for loop).
At this point, if I understand correctly, you want to compute the sum and the average of every rows that have the same x and y coordinates. Here again you can use groupby and the agg function to compute the mean and the sum of the group.
def process(sub_df):
# drop the text1 and text2 columns since they are in the filename anyway
out = sub_df.drop(columns=["text1","text2"])
# Compute mean and max
return out.groupby(["x", "y"]).agg(ave=("float1", "mean"), sum=("float2", "sum"))
And that's preety much it.
Bonus: 2-liner version (but don't do that...)
for (text1, text2), sub_df in df[df.text3=="my_value"].drop(columns="text3").groupby(["text1", "text2"]):
sub_df.drop(columns=["text1","text2"]).groupby(["x", "y"]).agg(ave=("float1", "mean"), sum=("float2", "sum")).to_csv(text1+"_"+text2+"_Values.csv")
To do this in an efficient way in pandas you will need to use groupby, agg and the in-built to_csv method rather than using for loops to construct lists of data and writing each one with the csv module. Something like this:
groups = data[data["text1"].isin(text_list1) & data["text2"].isin(text_list2)] \
.groupby(["text1", "text2"])
for (text1, text2), group in groups:
group.groupby("text3") \
.agg({"float1": np.mean, "float2": sum}) \
.to_csv(f"{text1}_{text2}_Values.csv")
It's not clear exactly what you're trying to do with the incrementing of x and y values, which is also what makes your current code very slow. To present sums and averages of the floating point columns by intervals of x and y, you could make bin columns and group by those too.
data["x_bin"] = (data["x"] - data["x"].min()) // x_inc
data["y_bin"] = (data["y"] - data["y"].min()) // y_inc
groups = data[data["text1"].isin(text_list1) & data["text2"].isin(text_list2)] \
.groupby(["text1", "text2"])
for (text1, text2), group in groups:
group.groupby(["text3", "x_bin", "y_bin"]) \
.agg({"x": "first", "y": "first", "float1": np.mean, "float2": sum}) \
.to_csv(f"{text1}_{text2}_Values.csv")
So I have a dataframe called reactions_drugs
and I want to create a table called new_r_d where I keep track of how often a see a symptom for a given medication like
Here is the code I have but I am running into errors such as "Unable to coerce to Series, length must be 3 given 0"
new_r_d = pd.DataFrame(columns = ['drugname', 'reaction', 'count']
for i in range(len(reactions_drugs)):
name = reactions_drugs.drugname[i]
drug_rec_act = reactions_drugs.drug_rec_act[i]
for rec in drug_rec_act:
row = new_r_d.loc[(new_r_d['drugname'] == name) & (new_r_d['reaction'] == rec)]
if row == []:
# create new row
new_r_d.append({'drugname': name, 'reaction': rec, 'count': 1})
else:
new_r_d.at[row,'count'] += 1
Assuming the rows in your current reactions (drug_rec_act) column contain one string enclosed in a list, you can convert the values in that column to lists of strings (by splitting each string on the comma delimiter) and then utilize the explode() function and value_counts() to get your desired result:
df['drug_rec_act'] = df['drug_rec_act'].apply(lambda x: x[0].split(','))
df_long = df.explode('drug_rec_act')
result = df_long.groupby('drugname')['drug_rec_act'].value_counts().reset_index(name='count')
I have a data frame in pandas, one of the columns contains time intervals presented as strings like 'P1Y4M1D'.
The example of the whole CSV:
oci,citing,cited,creation,timespan,journal_sc,author_sc
0200100000236252421370109080537010700020300040001-020010000073609070863016304060103630305070563074902,"10.1002/pol.1985.170230401","10.1007/978-1-4613-3575-7_2",1985-04,P2Y,no,no
...
I created a parsing function, that takes that string 'P1Y4M1D' and returns an integer number.
I am wondering how is it possible to change all the column values to parsed values using that function?
def do_process_citation_data(f_path):
global my_ocan
my_ocan = pd.read_csv("citations.csv",
names=['oci', 'citing', 'cited', 'creation', 'timespan', 'journal_sc', 'author_sc'],
parse_dates=['creation', 'timespan'])
my_ocan = my_ocan.iloc[1:] # to remove the first row iloc - to select data by row numbers
my_ocan['creation'] = pd.to_datetime(my_ocan['creation'], format="%Y-%m-%d", yearfirst=True)
return my_ocan
def parse():
mydict = dict()
mydict2 = dict()
i = 1
r = 1
for x in my_ocan['oci']:
mydict[x] = str(my_ocan['timespan'][i])
i +=1
print(mydict)
for key, value in mydict.items():
is_negative = value.startswith('-')
if is_negative:
date_info = re.findall(r"P(?:(\d+)Y)?(?:(\d+)M)?(?:(\d+)D)?$", value[1:])
else:
date_info = re.findall(r"P(?:(\d+)Y)?(?:(\d+)M)?(?:(\d+)D)?$", value)
year, month, day = [int(num) if num else 0 for num in date_info[0]] if date_info else [0,0,0]
daystotal = (year * 365) + (month * 30) + day
if not is_negative:
#mydict2[key] = daystotal
return daystotal
else:
#mydict2[key] = -daystotal
return -daystotal
#print(mydict2)
#return mydict2
Probably I do not even need to change the whole column with new parsed values, the final goal is to write a new function that returns average time of ['timespan'] of docs created in a particular year. Since I need parsed values, I thought it would be easier to change the whole column and manipulate a new data frame.
Also, I am curious what could be a way to apply the parsing function on each ['timespan'] row without modifying a data frame, I can only assume It could be smth like this, but I don't have a full understanding of how to do that:
for x in my_ocan['timespan']:
x = parse(str(my_ocan['timespan'])
How can I get a column with new values? Thank you! Peace :)
A df['timespan'].apply(parse) (as mentioned by #Dan) should work. You would need to modify only the parse function in order to receive the string as an argument and return the parsed string at the end. Something like this:
import pandas as pd
def parse_postal_code(postal_code):
# Splitting postal code and getting first letters
letters = postal_code.split('_')[0]
return letters
# Example dataframe with three columns and three rows
df = pd.DataFrame({'Age': [20, 21, 22], 'Name': ['John', 'Joe', 'Carla'], 'Postal Code': ['FF_222', 'AA_555', 'BB_111']})
# This returns a new pd.Series
print(df['Postal Code'].apply(parse_postal_code))
# Can also be assigned to another column
df['Postal Code Letter'] = df['Postal Code'].apply(parse_postal_code)
print(df['Postal Code Letter'])
I know that a few posts have been made regarding how to output the unique values of a dataframe without reordering the data.
I have tried many times to implement these methods, however, I believe that the problem relates to how the dataframe in question has been defined.
Basically, I want to look into the dataframe named "C", and output the unique values into a new dataframe named "C1", without changing the order in which they are stored at the moment.
The line that I use currently is:
C1 = pd.DataFrame(np.unique(C))
However, this returns an ascending order list (while, I simply want the list order preserved only with duplicates removed).
Once again, I apologise to the advanced users who will look at my code and shake their heads -- I'm still learning! And, yes, I have tried numerous methods to solve this problem (redefining the C dataframe, converting the output to be a list etc), to no avail unfortunately, so this is my cry for help to the Python gods. I defined both C and C1 as dataframes, as I understand that these are pretty much the best datastructures to house data in, such that they can be recalled and used later, plus it is quite useful to name the columns without affecting the data contained in the dataframe).
Once again, your help would be much appreciated.
F0 = ('08/02/2018','08/02/2018',50)
F1 = ('08/02/2018','09/02/2018',52)
F2 = ('10/02/2018','11/02/2018',46)
F3 = ('12/02/2018','16/02/2018',55)
F4 = ('09/02/2018','28/02/2018',48)
F_mat = [[F0,F1,F2,F3,F4]]
F_test = pd.DataFrame(np.array(F_mat).reshape(5,3),columns=('startdate','enddate','price'))
#convert string dates into DateTime data type
F_test['startdate'] = pd.to_datetime(F_test['startdate'])
F_test['enddate'] = pd.to_datetime(F_test['enddate'])
#convert datetype to be datetime type for columns startdate and enddate
F['startdate'] = pd.to_datetime(F['startdate'])
F['enddate'] = pd.to_datetime(F['enddate'])
#create contract duration column
F['duration'] = (F['enddate'] - F['startdate']).dt.days + 1
#re-order the F matrix by column 'duration', ensure that the bootstrapping
#prioritises the shorter term contracts
F.sort_values(by=['duration'], ascending=[True])
# create prices P
P = pd.DataFrame()
for index, row in F.iterrows():
new_P_row = pd.Series()
for date in pd.date_range(row['startdate'], row['enddate']):
new_P_row[date] = row['price']
P = P.append(new_P_row, ignore_index=True)
P.fillna(0, inplace=True)
#create C matrix, which records the unique day prices across the observation interval
C = pd.DataFrame(np.zeros((1, intNbCalendarDays)))
C.columns = tempDateRange
#create the Repatriation matrix, which records the order in which contracts will be
#stored in the A matrix, which means that once results are generated
#from the linear solver, we know exactly which CalendarDays map to
#which columns in the results array
#this array contains numbers from 1 to NbContracts
R = pd.DataFrame(np.zeros((1, intNbCalendarDays)))
R.columns = tempDateRange
#define a zero filled matrix, P1, which will house the dominant daily prices
P1 = pd.DataFrame(np.zeros((intNbContracts, intNbCalendarDays)))
#rename columns of P1 to be the dates contained in matrix array D
P1.columns = tempDateRange
#create prices in correct rows in P
for i in list(range(0, intNbContracts)):
for j in list(range(0, intNbCalendarDays)):
if (P.iloc[i, j] != 0 and C.iloc[0,j] == 0) :
flUniqueCalendarMarker = P.iloc[i, j]
C.iloc[0,j] = flUniqueCalendarMarker
P1.iloc[i,j] = flUniqueCalendarMarker
R.iloc[0,j] = i
for k in list(range(j+1,intNbCalendarDays)):
if (C.iloc[0,k] == 0 and P.iloc[i,k] != 0):
C.iloc[0,k] = flUniqueCalendarMarker
P1.iloc[i,k] = flUniqueCalendarMarker
R.iloc[0,k] = i
elif (C.iloc[0,j] != 0 and P.iloc[i,j] != 0):
P1.iloc[i,j] = C.iloc[0,j]
#convert C dataframe into C_list, in prepataion for converting C_list
#into a unique, order preserved list
C_list = C.values.tolist()
#create C1 matrix, which records the unique day prices across unique days in the observation period
C1 = pd.DataFrame(np.unique(C))
Use DataFrame.duplicated() to check if your data-frame contains any duplicate or not.
If yes then you can try DataFrame.drop_duplicate() .