Python / Scipy - implementing optimize.curve_fit 's sigma into optimize.leastsq - python

I am fitting data points using a logistic model. As I sometimes have data with a ydata error, I first used curve_fit and its sigma argument to include my individual standard deviations in the fit.
Now I switched to leastsq, because I needed also some Goodness of Fit estimation that curve_fit could not provide. Everything works well, but now I miss the possibility to weigh the least sqares as "sigma" does with curve_fit.
Has someone some code example as to how I could weight the least squares also in leastsq?
Thanks, Woodpicker

I just found that it is possible to combine the best of both worlds, and to have the full leastsq() output also from curve_fit(), using the option full_output:
popt, pcov, infodict, errmsg, ier = curve_fit(func, xdata, ydata, sigma = SD, full_output = True)
This gives me infodict that I can use to calculate all my Goodness of Fit stuff, and lets me use curve_fit's sigma option at the same time...

Assuming your data are in arrays x, y with yerr, and the model is f(p, x), just define the error function to be minimized as (y-f(p,x))/yerr.

The scipy.optimize.curve_fit docs say:
pcov : 2d array
The estimated covariance of popt. The diagonals provide the variance of the parameter estimate. To compute one standard deviation errors on the parameters use perr = np.sqrt(np.diag(pcov)). How the sigma parameter affects the estimated covariance depends on absolute_sigma argument, as described above.
And the section on
absolute_sigma : bool, optional
If True, sigma is used in an absolute sense and the estimated parameter covariance pcov reflects these absolute values.
If False, only the relative magnitudes of the sigma values matter. The returned parameter covariance matrix pcov is based on scaling sigma by a constant factor. This constant is set by demanding that the reduced chisq for the optimal parameters popt when using the scaled sigma equals unity. In other words, sigma is scaled to match the sample variance of the residuals after the fit. Mathematically, pcov(absolute_sigma=False) = pcov(absolute_sigma=True) * chisq(popt)/(M-N)
So, you could just leave absolute_sigma to the default value (False) and then use
perr = np.sqrt(np.diag(pcov))
fitStdErr0 = perr[0]
fitStdErr1 = perr[1]
...
to get the standard deviation error of each fit parameter (as a 1D numpy array). Now you can just pick the useful members (and combine them in a way that is most representative of your data).

Related

Gaussian fitting of a sharply peaked curve

I have data points distributed in this manner:
Now, I want to fit a smooth Gaussian over it. Can anyone tell me what would be the best way to fit a smooth Gaussian for these data points
There can't be. It is obviously not a gaussian at all.
You have to find another model. For example, a constant + a gaussian.
In that case, you could, for example, imitate Gaussian fit for Python . Except that in this example, the model is a Gaussian, when in your case it is not.
So what you want to fit with curve_fit looks more like
def GaussPlusConst(x, c, a, x0, sigma):
return c + a * np.exp(-(x - x0)**2 / (2 * sigma**2))
Then, since you have an extra parameter (the constant), you need to call curve_fit with that extra parameter
popt,pcov = curve_fit(Gauss, x, y, p0=[min(y), max(y)-min(y), mean, sigma])
I used a rough adaptation of the initial guess (anyway, it is just an initial guess). Constant is the minimum, since, gaussian is so sharp that it is practically 0 on large part of the chart.
Then amplitude of the gaussian is not just max(y) but max-min (it is the amplitude of what is added to this constant).
Then estimates for mean and sigma should also be adjusted to concern only the gaussian part (what is over the constant)
mean = sum(x*(y-min(y)))/n
sigma = sum((y-min(y))*(x-mean)**2)/n
But that is just an example (my estimate of the constant is very rough. Plus, you may want to change the model. Even that constant+gaussian is not that realistic)

How do you include x errors in a weighted curve fit using scipy.optimize.curve_fit?

I need to use scipy.optimize.curve_fit to fit a curve to experimental data and extract the parameters. My data has both x and y uncertainties.
The documentation explains how to include the y-uncertainties as follows:
sigma : None or M-length sequence, optional
If not None, the uncertainties in the ydata array. These are used as weights in the least-squares problem i.e. minimising np.sum( ((f(xdata, *popt) - ydata) / sigma)**2 ) If None, the uncertainties are assumed to be 1.
However it is not clear how I should include the x uncertainties. Please explain how I could do this?

How to obtain the chi squared value as an output of scipy.optimize.curve_fit?

Is it possible to obtain the value of the chi squared as a direct output of scipy.optimize.curve_fit()?
Usually, it is easy to compute it after the fit by squaring the difference between the model and the data, weighting by the uncertainties and summing all up. However, it is not as direct when the parameter sigma is passed a 2D matrix (the covariance matrix of the data) instead of a simple 1D array.
Are really the best-fit parameters and its covariance matrix the only two outputs that can be extracted from curve_fit()?
It is not possible to obtain the value of chi^2 from scipy.optimize.curve_fit directly without manual calculations. It is possible to get additional output from curve_fit besides popt and pcov by providing the argument full_output=True, but the additional output does not contain the value of chi^2. (The additional output is documented e.g. at leastsq here).
In the case where sigma is a MxM array, the definition of the chi^2 function minimized by curve_fit is slightly different.
In this case, curve_fit minimizes the function r.T # inv(sigma) # r, where r = ydata - f(xdata, *popt), instead of chisq = sum((r / sigma) ** 2) in the case of one dimensional sigma, see the documentation of the parameter sigma.
So you should also be able to calculate chi^2 in your case by using r.T # inv(sigma) # r with your optimized parameters.
An alternative would be to use another package, for example lmfit, where the value of chi square can be directly obtained from the fit result:
from lmfit.models import GaussianModel
model = GaussianModel()
# create parameters with initial guesses:
params = model.make_params(center=9, amplitude=40, sigma=1)
result = model.fit(n, params, x=centers)
print(result.chisqr)

Gaussian fit in Python - parameters estimation

I want to fit an array of data (in the program called "data", of size "n") with a Gaussian function and I want to get the estimations for the parameters of the curve, namely the mean and the sigma. Is the following code, which I found on the Web, a fast way to do that? If so, how can I actually get the estimated values of the parameters?
import pylab as plb
from scipy.optimize import curve_fit
from scipy import asarray as ar,exp
x = ar(range(n))
y = data
n = len(x) #the number of data
mean = sum(x*y)/n #note this correction
sigma = sum(y*(x-mean)**2)/n #note this correction
def gaus(x,a,x0,sigma,c):
return a*exp(-(x-x0)**2/(sigma**2))+c
popt,pcov = curve_fit(gaus,x,y,p0=[1,mean,sigma,0.0])
print popt
print pcov
plt.plot(x,y,'b+:',label='data')
plt.plot(x,gaus(x,*popt),'ro:',label='fit')
plt.legend()
plt.title('Fig. 3 - Fit')
plt.xlabel('q')
plt.ylabel('data')
plt.show()
To answer your first question, "Is the following code, which I found on the Web, a fast way to do that?"
The code that you have is in fact the right way to proceed with fitting your data, when you believe is Gaussian and know the fitting function (except change the return function to
a*exp(-(x-x0)**2/(sigma**2)).
I believe for a Gaussian function you don't need the constant c parameter.
A common use of least-squares minimization is curve fitting, where one has a parametrized model function meant to explain some phenomena and wants to adjust the numerical values for the model to most closely match some data. With scipy, such problems are commonly solved with scipy.optimize.curve_fit.
To answer your second question, "If so, how can I actually get the estimated values of the parameters?"
You can go to the link provided for scipy.optimize.curve_fit and find that the best fit parameters reside in your popt variable. In your example, popt will contain the mean and sigma of your data. In addition to the best fit parameters, pcov will contain the covariance matrix, which will have the errors of your mean and sigma. To obtain 1sigma standard deviations, you can simply use np.sqrt(pcov) and obtain the same.

Linear fit including all errors with NumPy/SciPy

I have a lot of x-y data points with errors on y that I need to fit non-linear functions to. Those functions can be linear in some cases, but are more usually exponential decay, gauss curves and so on. SciPy supports this kind of fitting with scipy.optimize.curve_fit, and I can also specify the weight of each point. This gives me weighted non-linear fitting which is great. From the results, I can extract the parameters and their respective errors.
There is just one caveat: The errors are only used as weights, but not included in the error. If I double the errors on all of my data points, I would expect that the uncertainty of the result increases as well. So I built a test case (source code) to test this.
Fit with scipy.optimize.curve_fit gives me:
Parameters: [ 1.99900756 2.99695535]
Errors: [ 0.00424833 0.00943236]
Same but with 2 * y_err:
Parameters: [ 1.99900756 2.99695535]
Errors: [ 0.00424833 0.00943236]
Same but with 2 * y_err:
So you can see that the values are identical. This tells me that the algorithm does not take those into account, but I think the values should be different.
I read about another fit method here as well, so I tried to fit with scipy.odr as well:
Beta: [ 2.00538124 2.95000413]
Beta Std Error: [ 0.00652719 0.03870884]
Same but with 20 * y_err:
Beta: [ 2.00517894 2.9489472 ]
Beta Std Error: [ 0.00642428 0.03647149]
The values are slightly different, but I do think that this accounts for the increase in the error at all. I think that this is just rounding errors or a little different weighting.
Is there some package that allows me to fit the data and get the actual errors? I have the formulas here in a book, but I do not want to implement this myself if I do not have to.
I have now read about linfit.py in another question. This handles what I have in mind quite well. It supports both modes, and the first one is what I need.
Fit with linfit:
Parameters: [ 2.02600849 2.91759066]
Errors: [ 0.00772283 0.04449971]
Same but with 20 * y_err:
Parameters: [ 2.02600849 2.91759066]
Errors: [ 0.15445662 0.88999413]
Fit with linfit(relsigma=True):
Parameters: [ 2.02600849 2.91759066]
Errors: [ 0.00622595 0.03587451]
Same but with 20 * y_err:
Parameters: [ 2.02600849 2.91759066]
Errors: [ 0.00622595 0.03587451]
Should I answer my question or just close/delete it now?
One way that works well and actually gives a better result is the bootstrap method. When data points with errors are given, one uses a parametric bootstrap and let each x and y value describe a Gaussian distribution. Then one will draw a point from each of those distributions and obtains a new bootstrapped sample. Performing a simple unweighted fit gives one value for the parameters.
This process is repeated some 300 to a couple thousand times. One will end up with a distribution of the fit parameters where one can take mean and standard deviation to obtain value and error.
Another neat thing is that one does not obtain a single fit curve as a result, but lots of them. For each interpolated x value one can again take mean and standard deviation of the many values f(x, param) and obtain an error band:
Further steps in the analysis are then performed again hundreds of times with the various fit parameters. This will then also take into account the correlation of the fit parameters as one can see clearly in the plot above: Although a symmetric function was fitted to the data, the error band is asymmetric. This will mean that interpolated values on the left have a larger uncertainty than on the right.
Please note that, from the documentation of curvefit:
sigma : None or N-length sequence
If not None, this vector will be used as relative weights in the
least-squares problem.
The key point here is as relative weights, therefore, yerr in line 53 and 2*yerr in 57 should give you similar, if not the same result.
When you increase the actually residue error, you will see the values in the covariance matrix grow large. Say if we change the y += random to y += 5*random in function generate_data():
Fit with scipy.optimize.curve_fit:
('Parameters:', array([ 1.92810458, 3.97843448]))
('Errors: ', array([ 0.09617346, 0.64127574]))
Compares to the original result:
Fit with scipy.optimize.curve_fit:
('Parameters:', array([ 2.00760386, 2.97817514]))
('Errors: ', array([ 0.00782591, 0.02983339]))
Also notice that the parameter estimate is now further off from (2,3), as we would expect from increased residue error and larger confidence interval of parameter estimates.
Short answer
For absolute values that include uncertainty in y (and in x for odr case):
In the scipy.odr case use stddev = numpy.sqrt(numpy.diag(cov))
where the cov is the covariance matrix odr gives in the output.
In the scipy.optimize.curve_fit case use absolute_sigma=True
flag.
For relative values (excludes uncertainty):
In the scipy.odr case use the sd value from the output.
In the scipy.optimize.curve_fit case use absolute_sigma=False flag.
Use numpy.polyfit like this:
p, cov = numpy.polyfit(x, y, 1,cov = True)
errorbars = numpy.sqrt(numpy.diag(cov))
Long answer
There is some undocumented behavior in all of the functions. My guess is that the functions mixing relative and absolute values. At the end this answer is the code that either gives what you want (or doesn't) based on how you process the output (there is a bug?). Also, curve_fit might have gotten the 'absolute_sigma' flag recently?
My point is in the output. It seems that odr calculates the standard deviation as there is no uncertainties, similar to polyfit, but if the standard deviation is calculated from the covariance matrix, the uncertainties are there. The curve_fit does this with absolute_sigma=True flag. Below is the output containing
diagonal elements of the covariance matrix cov(0,0) and
cov(1,1),
wrong way for standard deviation from the outputs for slope and
wrong way for the constant, and
right way for standard deviation from the outputs for slope and
right way for the constant
odr: 1.739631e-06 0.02302262 [ 0.00014863 0.0170987 ] [ 0.00131895 0.15173207]
curve_fit: 2.209469e-08 0.00029239 [ 0.00014864 0.01709943] [ 0.0004899 0.05635713]
polyfit: 2.232016e-08 0.00029537 [ 0.0001494 0.01718643]
Notice that the odr and polyfit have exactly the same standard deviation. Polyfit does not get the uncertainties as an input so odr doesn't use uncertainties when calculating standard deviation. The covariance matrix uses them and if in the odr case the the standard deviation is calculated from the covariance matrix uncertainties are there and they change if the uncertainty is increased. Fiddling with dy in the code below will show it.
I am writing this here mostly because this is important to know when finding out error limits (and the fortran odrpack guide where scipy refers has some misleading information about this: standard deviation should be the square root of covariance matrix like the guide says but it is not).
import scipy.odr
import scipy.optimize
import numpy
x = numpy.arange(200)
y = x + 0.4*numpy.random.random(x.shape)
dy = 0.4
def stddev(cov): return numpy.sqrt(numpy.diag(cov))
def f(B, x): return B[0]*x + B[1]
linear = scipy.odr.Model(f)
mydata = scipy.odr.RealData(x, y, sy = dy)
myodr = scipy.odr.ODR(mydata, linear, beta0 = [1.0, 1.0], sstol = 1e-20, job=00000)
myoutput = myodr.run()
cov = myoutput.cov_beta
sd = myoutput.sd_beta
p = myoutput.beta
print 'odr: ', cov[0,0], cov[1,1], sd, stddev(cov)
p2, cov2 = scipy.optimize.curve_fit(lambda x, a, b:a*x+b,
x, y, [1,1],
sigma = dy,
absolute_sigma = False,
xtol = 1e-20)
p3, cov3 = scipy.optimize.curve_fit(lambda x, a, b:a*x+b,
x, y, [1,1],
sigma = dy,
absolute_sigma = True,
xtol = 1e-20)
print 'curve_fit: ', cov2[0,0], cov2[1,1], stddev(cov2), stddev(cov3)
p, cov4 = numpy.polyfit(x, y, 1,cov = True)
print 'polyfit: ', cov4[0,0], cov4[1,1], stddev(cov4)

Categories