Partially initializing base class - python

Couldn't think of a better question title. Feel free to edit. I have a base class which is inherited by many classes (which in turn may have more sub-classes). For each class, I have a sequence of operations I need to perform post-initialization. The sequence is encapsulated in a function runme() which performs a series of object method calls
class myBase(object):
def __init__(self,neg,op,value):
self.neg = neg
self.op = op
self.value = value
#Process
self.runme()
def runme(self):
self.preprocess()
self.evaluate()
self.postprocess()
def preprocess(self):
pass
def evaluate(self):
pass
def postprocess(self):
pass
The sub-classes have to accept the same attributes as base (and any additional attributes). All of them will over-ride the three functions - preprocess, evaluate and postprocess
class childA(myBase):
def __init__(self,neg,op,value,ad1):
super(childA,self).__init__(neg,op,value)
self.ad1 = ad1
#Must call runme() here again??
runme()
def evaluate():
#Something using self.ad1
blah = self.ad1+self.value
The way I see it, it creates a problem - childA calls the base __init__ first, which calls runme(), which in turn will call evaluate. Since child over-rides evaluate, the child's definition of evaluate is executed, but as self.ad1 has not yet been instantiated, this throws an AttributeError
I can remove self.runme() from myBase and the problem will probably be gone, but I can further sublcass childA into childAA
class childAA(childA):
def __init__(self,neg,op,value,ad1):
super(childAA,self).__init__(neg,op,value,ad1)
self.runme()
And the problem can manifest all over again. I can't remove runme() from childA's __init__ because objects of both childA and childAA can be formed (and will need processing)
Currently, as a workaround, I do not call runme() in the __init__, instead call it from the calling program after initialization.
obja=childA(foo,bar,baz,ad1)
obja.runme()
A simpler alternative is to call super() at the end of child's __init__, but that does not appear to be right
Another way is - Tell the base class to defer calling of runme() to the child class. Is this possible? Say in myBase, I do
def __init__(self,neg,op,value):
self.neg = neg
self.op = op
self.value = value
#Process
if some_condition which checks if this is being called by a derived class:
self.runme()
Which if these is the best way to solve it? Alternatively, is this a common problem and what are other suggested solutions?
EDIT
Two answers were posted (and deleted) which concurred the best way seems to be to leave runme() call in the base-class and then call the super() at the end of child's __init__
class myBase(object):
def __init__(self,neg,op,value):
self.neg = neg
self.op = op
self.value = value
#Process
self.runme()
class childA(myBase):
def __init__(self,neg,op,value,ad1):
self.ad1 = ad1
super(childA,self).__init__(neg,op,value)
In the case where you need values that depend on existing values,
class childA(myBase):
def __init__(self,neg,op,value,ad1):
self.ad1 = ad1
self.internal_value = self.value #Not yet initialized!!
super(childA,self).__init__(neg,op,value)
this code can be put in the preprocess() or some other function that gets called first in runme()
def preprocess(self):
self.internal_value = value
#Rest of the stuff

If the children's __init__ require partially initialized objects to proceed, calling super() at the end will not work indeed. If that's the case, you could call runme form __new__ in myBase:
class myBase(object):
def __new__(cls, *args, **kwargs):
obj = super(myBase, cls).__new__(cls)
obj.__init__(*args, **kwargs)
obj.runme()
def __init__(self, a):
print 'myBase init'
self.list = ['myBase', a]
def runme(self):
print 'myBase:', self.list
class ChildA(myBase):
def __init__(self, a, b):
print 'ChildA init'
super(ChildA, self).__init__(a)
self.list.extend(['ChildA', b])
def runme(self):
print 'ChildA:', self.list
class ChildAA(ChildA):
def __init__(self, a, b, c):
print 'ChildAA init'
super(ChildAA, self).__init__(a, b)
self.list.extend(['ChildAA', c])
def runme(self):
print 'ChildAA:', self.list
You can order the code inside the various __init__ functions as required by the initialisation process, and the proper runme function will always be called after __init__ completes:
>>> ChildA(1, 2)
ChildA init
myBase init
ChildA: ['myBase', 1, 'ChildA', 2]
>>> ChildAA(1, 2, 3)
ChildAA init
ChildA init
myBase init
ChildAA: ['myBase', 1, 'ChildA', 2, 'ChildAA', 3]

Related

How to write factory functions for subclasses?

Suppose there is a class A and a factory function make_A
class A():
...
def make_A(*args, **kwars):
# returns an object of type A
both defined in some_package.
Suppose also that I want to expand the functionality of A, by subclassing it,
without overriding the constructor:
from some_package import A, make_A
class B(A):
def extra_method(self, ...):
# adds extra functionality
What I also need is to write a new factory function make_B for subclass B.
The solution I have found so far is
def make_B(*args, **kwargs):
"""
same as make_A except that it returns an object of type B
"""
out = make_A(*args, **kwargs)
out.__class__ = B
return out
This seems to work, but I am a bit worried about directly modifying the
__class__ attribute, as it feels to me like a hack. I am also worried about
unexpected side-effects this modification may have. Is this the recommended
solution or is there a "cleaner" pattern to achieve the same result?
I guess I finally found something not verbose yet still working. For this you need to replace inheritance with composition, this will allow to consume an object A by doing self.a = ....
To mimic the methods of A you can use __getattr__ overload to delegate those methods (and fields) to self.a
The next snippet works for me
class A:
def __init__(self, val):
self.val = val
def method(self):
print(f"A={self.val}")
def make_A():
return A(42)
class B:
def __init__(self, *args, consume_A = None, **kwargs):
if consume_A is None:
self.a = A(*args, **kwargs)
else:
self.a = consume_A
def __getattr__(self, name):
return getattr(self.a, name)
def my_extension(self):
print(f"B={self.val * 100}")
def make_B(*args, **kwargs):
return B(consume_A=make_A(*args, **kwargs))
b = make_B()
b.method() # A=42
b.my_extension() # B=4200
What makes this approach superior to yours is that modifying __class__ is probably not harmless. On the other hand __getattr__ and __getattribute__ are specifically provided as the mechanisms to resolve attributes search in an object. For more details, see this tutorial.
Make your original factory function more general by accepting a class as parameter: remember, everything is an object in Python, even classes.
def make(class_type, *args, **kwargs):
return class_type(*args, **kwargs)
a = make(A)
b = make(B)
Since B has the same parameters as A, you don't need to make an A and then turn it into B: B inherits from A, so it "is an A" and will have the same functionality, plus the extra method that you added.

Access attribute of outer class from nested class [duplicate]

I have a situation like so...
class Outer(object):
def some_method(self):
# do something
class Inner(object):
def __init__(self):
self.Outer.some_method() # <-- this is the line in question
How can I access the Outer class's method from the Inner class?
You're trying to access Outer's class instance, from inner class instance. So just use factory-method to build Inner instance and pass Outer instance to it.
class Outer(object):
def createInner(self):
return Outer.Inner(self)
class Inner(object):
def __init__(self, outer_instance):
self.outer_instance = outer_instance
self.outer_instance.somemethod()
def inner_method(self):
self.outer_instance.anothermethod()
The methods of a nested class cannot directly access the instance attributes of the outer class.
Note that it is not necessarily the case that an instance of the outer class exists even when you have created an instance of the inner class.
In fact, it is often recommended against using nested classes, since the nesting does not imply any particular relationship between the inner and outer classes.
maybe I'm mad but this seems very easy indeed - the thing is to make your inner class inside a method of the outer class...
def do_sthg(self):
...
def mess_around(self):
outer_class_self = self
class Mooble():
def do_sthg_different(self):
...
outer_class_self.do_sthg()
Plus... "self" is only used by convention, so you could do this:
def do_sthg(self):
...
def mess_around(outer_class_self):
class Mooble():
def do_sthg_different(self):
...
outer_class_self.do_sthg()
It might be objected that you can't then create this inner class from outside the outer class... but this ain't true:
class Bumblebee():
def do_sthg(self):
print "sthg"
def give_me_an_inner_class(outer_class_self):
class Mooble():
def do_sthg_different(self):
print "something diff\n"
outer_class_self.do_sthg()
return Mooble
then, somewhere miles away:
blob = Bumblebee().give_me_an_inner_class()()
blob.do_sthg_different()
even push the boat out a bit and extend this inner class (NB to get super() to work you have to change the class signature of Mooble to class Mooble(object)).
class InnerBumblebeeWithAddedBounce(Bumblebee().give_me_an_inner_class()):
def bounce(self):
print "bounce"
def do_sthg_different(self):
super(InnerBumblebeeWithAddedBounce, self).do_sthg_different()
print "and more different"
ibwab = InnerBumblebeeWithAddedBounce()
ibwab.bounce()
ibwab.do_sthg_different()
later
mrh1997 raised an interesting point about the non-common inheritance of inner classes delivered using this technique. But it seems that the solution is pretty straightforward:
class Fatty():
def do_sthg(self):
pass
class InnerFatty(object):
pass
def give_me_an_inner_fatty_class(self):
class ExtendedInnerFatty(Fatty.InnerFatty):
pass
return ExtendedInnerFatty
fatty1 = Fatty()
fatty2 = Fatty()
innerFattyClass1 = fatty1.give_me_an_inner_fatty_class()
innerFattyClass2 = fatty2.give_me_an_inner_fatty_class()
print (issubclass(innerFattyClass1, Fatty.InnerFatty))
print (issubclass(innerFattyClass2, Fatty.InnerFatty))
I found this.
Tweaked to suite your question:
class Outer(object):
def some_method(self):
# do something
class _Inner(object):
def __init__(self, outer):
outer.some_method()
def Inner(self):
return _Inner(self)
I’m sure you can somehow write a decorator for this or something
related: What is the purpose of python's inner classes?
A few years late to the party.... but to expand on #mike rodent's wonderful answer, I've provided my own example below that shows just how flexible his solution is, and why it should be (or should have been) the accepted answer.
Python 3.7
class Parent():
def __init__(self, name):
self.name = name
self.children = []
class Inner(object):
pass
def Child(self, name):
parent = self
class Child(Parent.Inner):
def __init__(self, name):
self.name = name
self.parent = parent
parent.children.append(self)
return Child(name)
parent = Parent('Bar')
child1 = parent.Child('Foo')
child2 = parent.Child('World')
print(
# Getting its first childs name
child1.name, # From itself
parent.children[0].name, # From its parent
# Also works with the second child
child2.name,
parent.children[1].name,
# Go nuts if you want
child2.parent.children[0].name,
child1.parent.children[1].name
)
print(
# Getting the parents name
parent.name, # From itself
child1.parent.name, # From its children
child2.parent.name,
# Go nuts again if you want
parent.children[0].parent.name,
parent.children[1].parent.name,
# Or insane
child2.parent.children[0].parent.children[1].parent.name,
child1.parent.children[1].parent.children[0].parent.name
)
# Second parent? No problem
parent2 = Parent('John')
child3 = parent2.Child('Doe')
child4 = parent2.Child('Appleseed')
print(
child3.name, parent2.children[0].name,
child4.name, parent2.children[1].name,
parent2.name # ....
)
Output:
Foo Foo World World Foo World
Bar Bar Bar Bar Bar Bar Bar
Doe Doe Appleseed Appleseed John
Again, a wonderful answer, props to you mike!
You can easily access to outer class using metaclass: after creation of outer class check it's attribute dict for any classes (or apply any logic you need - mine is just trivial example) and set corresponding values:
import six
import inspect
# helper method from `peewee` project to add metaclass
_METACLASS_ = '_metaclass_helper_'
def with_metaclass(meta, base=object):
return meta(_METACLASS_, (base,), {})
class OuterMeta(type):
def __new__(mcs, name, parents, dct):
cls = super(OuterMeta, mcs).__new__(mcs, name, parents, dct)
for klass in dct.values():
if inspect.isclass(klass):
print("Setting outer of '%s' to '%s'" % (klass, cls))
klass.outer = cls
return cls
# #six.add_metaclass(OuterMeta) -- this is alternative to `with_metaclass`
class Outer(with_metaclass(OuterMeta)):
def foo(self):
return "I'm outer class!"
class Inner(object):
outer = None # <-- by default it's None
def bar(self):
return "I'm inner class"
print(Outer.Inner.outer)
>>> <class '__main__.Outer'>
assert isinstance(Outer.Inner.outer(), Outer)
print(Outer().foo())
>>> I'm outer class!
print(Outer.Inner.outer().foo())
>>> I'm outer class!
print(Outer.Inner().outer().foo())
>>> I'm outer class!
print(Outer.Inner().bar())
>>> I'm inner class!
Using this approach, you can easily bind and refer two classes between each other.
I've created some Python code to use an outer class from its inner class, based on a good idea from another answer for this question. I think it's short, simple and easy to understand.
class higher_level__unknown_irrelevant_name__class:
def __init__(self, ...args...):
...other code...
# Important lines to access sub-classes.
subclasses = self._subclass_container()
self.some_subclass = subclasses["some_subclass"]
del subclasses # Free up variable for other use.
def sub_function(self, ...args...):
...other code...
def _subclass_container(self):
_parent_class = self # Create access to parent class.
class some_subclass:
def __init__(self):
self._parent_class = _parent_class # Easy access from self.
# Optional line, clears variable space, but SHOULD NOT BE USED
# IF THERE ARE MULTIPLE SUBCLASSES as would stop their parent access.
# del _parent_class
class subclass_2:
def __init__(self):
self._parent_class = _parent_class
# Return reference(s) to the subclass(es).
return {"some_subclass": some_subclass, "subclass_2": subclass_2}
The main code, "production ready" (without comments, etc.). Remember to replace all of each value in angle brackets (e.g. <x>) with the desired value.
class <higher_level_class>:
def __init__(self):
subclasses = self._subclass_container()
self.<sub_class> = subclasses[<sub_class, type string>]
del subclasses
def _subclass_container(self):
_parent_class = self
class <sub_class>:
def __init__(self):
self._parent_class = _parent_class
return {<sub_class, type string>: <sub_class>}
Explanation of how this method works (the basic steps):
Create a function named _subclass_container to act as a wrapper to access the variable self, a reference to the higher level class (from code running inside the function).
Create a variable named _parent_class which is a reference to the variable self of this function, that the sub-classes of _subclass_container can access (avoids name conflicts with other self variables in subclasses).
Return the sub-class/sub-classes as a dictionary/list so code calling the _subclass_container function can access the sub-classes inside.
In the __init__ function inside the higher level class (or wherever else needed), receive the returned sub-classes from the function _subclass_container into the variable subclasses.
Assign sub-classes stored in the subclasses variable to attributes of the higher level class.
A few tips to make scenarios easier:
Making the code to assign the sub classes to the higher level class easier to copy and be used in classes derived from the higher level class that have their __init__ function changed:
Insert before line 12 in the main code:
def _subclass_init(self):
Then insert into this function lines 5-6 (of the main code) and replace lines 4-7 with the following code:
self._subclass_init(self)
Making subclass assigning to the higher level class possible when there are many/unknown quantities of subclasses.
Replace line 6 with the following code:
for subclass_name in list(subclasses.keys()):
setattr(self, subclass_name, subclasses[subclass_name])
Example scenario of where this solution would be useful and where the higher level class name should be impossible to get:
A class, named "a" (class a:) is created. It has subclasses that need to access it (the parent). One subclass is called "x1". In this subclass, the code a.run_func() is run.
Then another class, named "b" is created, derived from class "a" (class b(a):). After that, some code runs b.x1() (calling the sub function "x1" of b, a derived sub-class). This function runs a.run_func(), calling the function "run_func" of class "a", not the function "run_func" of its parent, "b" (as it should), because the function which was defined in class "a" is set to refer to the function of class "a", as that was its parent.
This would cause problems (e.g. if function a.run_func has been deleted) and the only solution without rewriting the code in class a.x1 would be to redefine the sub-class x1 with updated code for all classes derived from class "a" which would obviously be difficult and not worth it.
Do you mean to use inheritance, rather than nesting classes like this? What you're doing doesn't make a heap of sense in Python.
You can access the Outer's some_method by just referencing Outer.some_method within the inner class's methods, but it's not going to work as you expect it will. For example, if you try this:
class Outer(object):
def some_method(self):
# do something
class Inner(object):
def __init__(self):
Outer.some_method()
...you'll get a TypeError when initialising an Inner object, because Outer.some_method expects to receive an Outer instance as its first argument. (In the example above, you're basically trying to call some_method as a class method of Outer.)
Another possibility:
class _Outer (object):
# Define your static methods here, e.g.
#staticmethod
def subclassRef ():
return Outer
class Outer (_Outer):
class Inner (object):
def outer (self):
return _Outer
def doSomething (self):
outer = self.outer ()
# Call your static mehthods.
cls = outer.subclassRef ()
return cls ()
What we can do is pass the self variable of Outer Class inside the Inner Class as Class Argument and Under Outer init initialise the Inner Class with Outer self passed into Inner
class Outer:
def __init__(self):
self.somevalue=91
self.Inner=self.Inner(self)
def SomeMethod(self):
print('This is Something from Outer Class')
class Inner:
def __init__(self,Outer)
self.SomeMethod=Outer.SomeMethod
self.somevalue=Outer.somevalue
def SomeAnotherMethod(self):
print(self.somevalue)
self.SomeMethod()
>>>f=Outer()
>>>f.Inner.SomeAnotherMethod()
91
This is Something from Outer Class
Now After running this function it Works
Expanding on #tsnorri's cogent thinking, that the outer method may be a static method:
class Outer(object):
#staticmethod
def some_static_method(self):
# do something
class Inner(object):
def __init__(self):
self.some_static_method() # <-- this will work later
Inner.some_static_method = some_static_method
Now the line in question should work by the time it is actually called.
The last line in the above code gives the Inner class a static method that's a clone of the Outer static method.
This takes advantage of two Python features, that functions are objects, and scope is textual.
Usually, the local scope references the local names of the (textually) current function.
...or current class in our case. So objects "local" to the definition of the Outer class (Inner and some_static_method) may be referred to directly within that definition.
You may create a class, to decorate inner classes. In this case #inner.
Since this a decorator: Outer.A = inner(Outer.A). Once your code requires Outer.A it will be executed inner.__get__ method, which returns the original class (A) with a new attribute set on it: A.owner = Outer.
A classmethod in class A, in this case def add(cls, y=3), may use new attribute owner at return cls.owner.x + y + 1.
The line setattr(owner, name, self.inner), breaks the descriptor because owner.name => Outer.A => A is no longer an instance of the class inner.
Hope this helps.
class inner:
def __init__(self, inner):
self.inner = inner
def __get__(self, instance, owner):
print('__get__ method executed, only once... ')
name = self.inner.__name__
setattr(self.inner, 'owner', owner)
setattr(owner, name, self.inner) # breaks descriptor
return self.inner #returns Inner
class Outer:
x = 1
#inner
class A:
#classmethod
def add(cls, y=3):
return cls.owner.x + y + 1
print(Outer.A.add(0)) # First time executes inner.__get__ method
print(Outer.A.add(0)) # Second time not necessary.
>> __get__ method executed, only once...
>> 2
>> 2
It can be done by parsing the outer class object into inner class.
class Outer():
def __init__(self,userinput):
self.userinput = userinput
def outer_function(self):
self.a = self.userinput + 2
class Inner():
def inner_function(self):
self.b = self.a + 10
after defining this, it need to run the function
m = Outer(3)
m.outer_function()
print (m.a)
#this will output 5
Now it has the variable of outer class.
and then, it need to run inner class functions.
m.Inner.inner_function(m)
The object m of outer class is parsed into the function of inner class (inside the brackets)
Now, the inner class function is accessing self.a from the outer class.
print (m.b)
#this will output 15
It is too simple:
Input:
class A:
def __init__(self):
pass
def func1(self):
print('class A func1')
class B:
def __init__(self):
a1 = A()
a1.func1()
def func1(self):
print('class B func1')
b = A.B()
b.func1()
Output
class A func1
class B func1

multiple python class inheritance

I am trying to understand python's class inheritance methods and I have some troubles figuring out how to do the following:
How can I inherit a method from a class conditional on the child's input?
I have tried the following code below without much success.
class A(object):
def __init__(self, path):
self.path = path
def something(self):
print("Function %s" % self.path)
class B(object):
def __init__(self, path):
self.path = path
self.c = 'something'
def something(self):
print('%s function with %s' % (self.path, self.c))
class C(A, B):
def __init__(self, path):
# super(C, self).__init__(path)
if path=='A':
A.__init__(self, path)
if path=='B':
B.__init__(self, path)
print('class: %s' % self.path)
if __name__ == '__main__':
C('A')
out = C('B')
out.something()
I get the following output:
class: A
class: B
Function B
While I would like to see:
class: A
class: B
B function with something
I guess the reason why A.something() is used (instead of B.something()) has to do with the python's MRO.
Calling __init__ on either parent class does not change the inheritance structure of your classes, no. You are only changing what initialiser method is run in addition to C.__init__ when an instance is created. C inherits from both A and B, and all methods of B are shadowed by those on A due to the order of inheritance.
If you need to alter class inheritance based on a value in the constructor, create two separate classes, with different structures. Then provide a different callable as the API to create an instance:
class CA(A):
# just inherit __init__, no need to override
class CB(B):
# just inherit __init__, no need to override
def C(path):
# create an instance of a class based on the value of path
class_map = {'A': CA, 'B': CB}
return class_map[path](path)
The user of your API still has name C() to call; C('A') produces an instance of a different class from C('B'), but they both implement the same interface so this doesn't matter to the caller.
If you have to have a common 'C' class to use in isinstance() or issubclass() tests, you could mix one in, and use the __new__ method to override what subclass is returned:
class C:
def __new__(cls, path):
if cls is not C:
# for inherited classes, not C itself
return super().__new__(cls)
class_map = {'A': CA, 'B': CB}
cls = class_map[path]
# this is a subclass of C, so __init__ will be called on it
return cls.__new__(cls, path)
class CA(C, A):
# just inherit __init__, no need to override
pass
class CB(C, B):
# just inherit __init__, no need to override
pass
__new__ is called to construct the new instance object; if the __new__ method returns an instance of the class (or a subclass thereof) then __init__ will automatically be called on that new instance object. This is why C.__new__() returns the result of CA.__new__() or CB.__new__(); __init__ is going to be called for you.
Demo of the latter:
>>> C('A').something()
Function A
>>> C('B').something()
B function with something
>>> isinstance(C('A'), C)
True
>>> isinstance(C('B'), C)
True
>>> isinstance(C('A'), A)
True
>>> isinstance(C('A'), B)
False
If neither of these options are workable for your specific usecase, you'd have to add more routing in a new somemethod() implementation on C, which then calls either A.something(self) or B.something(self) based on self.path. This becomes cumbersome really quickly when you have to do this for every single method, but a decorator could help there:
from functools import wraps
def pathrouted(f):
#wraps
def wrapped(self, *args, **kwargs):
# call the wrapped version first, ignore return value, in case this
# sets self.path or has other side effects
f(self, *args, **kwargs)
# then pick the class from the MRO as named by path, and call the
# original version
cls = next(c for c in type(self).__mro__ if c.__name__ == self.path)
return getattr(cls, f.__name__)(self, *args, **kwargs)
return wrapped
then use that on empty methods on your class:
class C(A, B):
#pathrouted
def __init__(self, path):
self.path = path
# either A.__init__ or B.__init__ will be called next
#pathrouted
def something(self):
pass # doesn't matter, A.something or B.something is called too
This is, however, becoming very unpythonic and ugly.
While Martijn's answer is (as usual) close to perfect, I'd just like to point out that from a design POV, inheritance is the wrong tool here.
Remember that implementation inheritance is actually a static and somehow restricted kind of composition/delegation, so as soon as you want something more dynamic the proper design is to eschew inheritance and go for full composition/delegation, canonical examples being the State and the Strategy patterns. Applied to your example, this might look something like:
class C(object):
def __init__(self, strategy):
self.strategy = strategy
def something(self):
return self.strategy.something(self)
class AStrategy(object):
def something(self, owner):
print("Function A")
class BStrategy(object):
def __init__(self):
self.c = "something"
def something(self, owner):
print("B function with %s" % self.c)
if __name__ == '__main__':
a = C(AStrategy())
a.something()
b = C(BStrategy())
b.something()
Then if you need to allow the user to specify the strategy by name (as string), you can add the factory pattern to the solution
STRATEGIES = {
"A": AStrategy,
"B": BStrategy,
}
def cfactory(strategy_name):
try:
strategy_class = STRATEGIES[strategy_name]
except KeyError:
raise ValueError("'%s' is not a valid strategy" % strategy_name)
return C(strategy_class())
if __name__ == '__main__':
a = cfactory("A")
a.something()
b = cfactory("B")
b.something()
Martijn's answer explained how to choose an object inheriting from one of two classes. Python also allows to easily forward a method to a different class:
>>> class C:
parents = { 'A': A, 'B': B }
def __init__(self, path):
self.parent = C.parents[path]
self.parent.__init__(self, path) # forward object initialization
def something(self):
self.parent.something(self) # forward something method
>>> ca = C('A')
>>> cb = C('B')
>>> ca.something()
Function A
>>> cb.something()
B function with something
>>> ca.path
'A'
>>> cb.path
'B'
>>> cb.c
'something'
>>> ca.c
Traceback (most recent call last):
File "<pyshell#46>", line 1, in <module>
ca.c
AttributeError: 'C' object has no attribute 'c'
>>>
But here class C does not inherit from A or B:
>>> C.__mro__
(<class '__main__.C'>, <class 'object'>)
Below is my original solution using monkey patching:
>>> class C:
parents = { 'A': A, 'B': B }
def __init__(self, path):
parent = C.parents[path]
parent.__init__(self, path) # forward object initialization
self.something = lambda : parent.something(self) # "borrow" something method
it avoids the parent attribute in C class, but is less readable...

How To Call A Class Function From A Variable

I need a class router (for lack of a better word). The router needs to instantiate a class & call a function of that class instance based on variables passed to it.
How do I properly define the class function?
How do I properly call the class function?
Example code:
class ClassWorker1:
def function_1(self):
print('1a')
def function_2(self):
print('2a')
def function_3(self):
print('3a')
class ClassWorker2:
def function_1(self):
print('1b')
def function_2(self):
print('2b')
def function_3(self):
print('3b')
class ClassRouter(object):
def __init__(self, class_name, class_function):
self.class_instance = class_name()
self.class_function = class_function
self.main()
def main(self):
# how should I call the class function here?
self.class_instance.class_function()
return
a = 1
b = 1
if a == 1:
class_name = ClassWorker1
else:
class_name = ClassWorker1
if b == 1:
# Strings won't work as class function definition
# I won't know the class at this point. I will only know
# the shared function name at this point.
# how could this class function be defined directly?
class_function = 'function_1'
elif b == 2:
class_function = 'function_2'
else:
class_function = 'function_3'
ClassRouter(class_name, class_function)
I need a class router (for lack of a better word).
Are you sure you need a class for this ?
The router needs to instantiate a class & call a function of that class instance
When it belongs to a class or instance, a function is usually named a "method". Not really important but it makes things clearer. Also, an "instance" is obviously always, by definition, an instance of a class ;)
How do I properly define the class function?
How do I properly call the class function?
Does the router really have to be a class ? But anyway...
There are a couple distinct issues here (I of course assume you need something that's generic enough).
The first one is that your class (the one that will be instanciated by the "router") constructor may need some args - position or named or both. If it's the router's duty to instanciate the class (but should it be ?), you'll have to pass those args (both position and named) to the router. And since your router has to be generic (else it's useless) you cannot explicitely name these args in your router's constructor.
Hopefully, Python has a way to "unpack" tuples (for position args) and dicts (for named args) when calling a function, using respectively the * and ** operators at call time, ie:
def somefunc(arg1, arg2, arg3="foo", arg4=None):
print arg1, arg2, arg3, arg4
args = ("one", "two", "three")
kwargs = {"arg4": "four"}
somefunc(*args, **kwargs)
This let you pass arguments to a function in a generic way.
So if you want your router to be in charge of instanciating the "target" class, you'll have to support this:
class Router(object):
def __init__(self, cls, clsargs=None, clskwargs=None):
if clsargs is None:
clsargs = ()
if clskwargs is None:
clskwargs = {}
self._obj = cls(*clsargs, **clskwargs)
class Worker(object):
def __init__(self, name):
self.name = name
print self.name
r = Router(Worker, clsargs=("foo",))
# or
r = Router(Worker, clskwargs={"name":"foo"})
Now note that at this point you really don't gain anything (except for more code) from having the router instanciating the Worker - since you need to have the Worker class and it's constructor's args to instanciate the router, you could as well just instanciate the Worker yourself and pass the Worker instance to the router:
Since you must have a reference to the class passed to the router (else you can't pass it ), you could as well
class Router(object):
def __init__(self, obj):
self._obj = obj
class Worker(object):
def __init__(self, name):
self.name = name
print self.name
r = Router(Worker("foo"))
# or
r = Router(Worker(name="foo"))
The cases where it would make sense to have the router instanciate the worker are:
1/ if the Worker's constructor arguments are not known when the router is instanciated and are to be passed later (which requires a distinct router method to pass those args)
2/ if the Worker's instanciation is very costly and you're not even sure you'll really need it, in which case you want to wait until the router's "main" method is called to instanciate the worker.
The second issue is "how do I get the worker's method by name". This one has already been answered by Lukas: you use getattr(obj, attrname).
The third issue is "if my worker method needs arguments, how do I pass them". This is the same problem as with the worker's constructor arguments, so the solution is obviously the same. Depending on the concrete use case, you'll have to pass those args either when instanciating the router or when calling it's "main" method.
wrt/ this "main" method, remember that you can define your own callable types by implementing the __call__ method, ie
class NotAFunc(object):
def __init__(self, wot):
self.wot = wot
def __call__(self, count):
print self.wot * count
notafunc = NotAFunc("wot ? ")
notafunc(42)
So it might make sense to use this as your router's "main" method
Now do you really need a router class at all ? Python functions are object on their own (so a function can take a function and/or return a function), and moreover act as closures (a closure is a function that "captures" part of the environment where it's been defined):
def route(instance, methodname, methargs=None, methkwargs=None):
method = getattr(instance, methodname)
if methargs is None:
methargs = ()
if methkwargs is None:
methkwargs = {}
def func():
return method(*methargs, **methkwargs)
return func
class Worker(object):
def __init__(self, name):
self.name = name
def work(self, count):
return [self.name for i in range(count)]
r = route(Worker("foo"), "work", (42,))
print r()
Note that while I kept your "router" term, most of what I described above are known patterns. You may want to search for "proxy", "proxy method", and (for the last exemple) "partial evaluation".
You are looking for dynamic attribute lookup.
class C:
def c1(self, x):
return 2*x
instance = C()
method_name = 'c1'
method = getattr(instance, method_name)
print(method(1)) # call method and print result
You'll need to override the __new__ method of your (new-style!) class.
class ClassRouter(object):
def __new__(self, class_name, *args):
if arg=="Class1":
new_instance = ClassWorker1(*args)
new_instance.method()
return new_instance
elif arg=="Class2":
return ClassWorker2(*args)

How to access outer class from an inner class?

I have a situation like so...
class Outer(object):
def some_method(self):
# do something
class Inner(object):
def __init__(self):
self.Outer.some_method() # <-- this is the line in question
How can I access the Outer class's method from the Inner class?
You're trying to access Outer's class instance, from inner class instance. So just use factory-method to build Inner instance and pass Outer instance to it.
class Outer(object):
def createInner(self):
return Outer.Inner(self)
class Inner(object):
def __init__(self, outer_instance):
self.outer_instance = outer_instance
self.outer_instance.somemethod()
def inner_method(self):
self.outer_instance.anothermethod()
The methods of a nested class cannot directly access the instance attributes of the outer class.
Note that it is not necessarily the case that an instance of the outer class exists even when you have created an instance of the inner class.
In fact, it is often recommended against using nested classes, since the nesting does not imply any particular relationship between the inner and outer classes.
maybe I'm mad but this seems very easy indeed - the thing is to make your inner class inside a method of the outer class...
def do_sthg(self):
...
def mess_around(self):
outer_class_self = self
class Mooble():
def do_sthg_different(self):
...
outer_class_self.do_sthg()
Plus... "self" is only used by convention, so you could do this:
def do_sthg(self):
...
def mess_around(outer_class_self):
class Mooble():
def do_sthg_different(self):
...
outer_class_self.do_sthg()
It might be objected that you can't then create this inner class from outside the outer class... but this ain't true:
class Bumblebee():
def do_sthg(self):
print "sthg"
def give_me_an_inner_class(outer_class_self):
class Mooble():
def do_sthg_different(self):
print "something diff\n"
outer_class_self.do_sthg()
return Mooble
then, somewhere miles away:
blob = Bumblebee().give_me_an_inner_class()()
blob.do_sthg_different()
even push the boat out a bit and extend this inner class (NB to get super() to work you have to change the class signature of Mooble to class Mooble(object)).
class InnerBumblebeeWithAddedBounce(Bumblebee().give_me_an_inner_class()):
def bounce(self):
print "bounce"
def do_sthg_different(self):
super(InnerBumblebeeWithAddedBounce, self).do_sthg_different()
print "and more different"
ibwab = InnerBumblebeeWithAddedBounce()
ibwab.bounce()
ibwab.do_sthg_different()
later
mrh1997 raised an interesting point about the non-common inheritance of inner classes delivered using this technique. But it seems that the solution is pretty straightforward:
class Fatty():
def do_sthg(self):
pass
class InnerFatty(object):
pass
def give_me_an_inner_fatty_class(self):
class ExtendedInnerFatty(Fatty.InnerFatty):
pass
return ExtendedInnerFatty
fatty1 = Fatty()
fatty2 = Fatty()
innerFattyClass1 = fatty1.give_me_an_inner_fatty_class()
innerFattyClass2 = fatty2.give_me_an_inner_fatty_class()
print (issubclass(innerFattyClass1, Fatty.InnerFatty))
print (issubclass(innerFattyClass2, Fatty.InnerFatty))
I found this.
Tweaked to suite your question:
class Outer(object):
def some_method(self):
# do something
class _Inner(object):
def __init__(self, outer):
outer.some_method()
def Inner(self):
return _Inner(self)
I’m sure you can somehow write a decorator for this or something
related: What is the purpose of python's inner classes?
A few years late to the party.... but to expand on #mike rodent's wonderful answer, I've provided my own example below that shows just how flexible his solution is, and why it should be (or should have been) the accepted answer.
Python 3.7
class Parent():
def __init__(self, name):
self.name = name
self.children = []
class Inner(object):
pass
def Child(self, name):
parent = self
class Child(Parent.Inner):
def __init__(self, name):
self.name = name
self.parent = parent
parent.children.append(self)
return Child(name)
parent = Parent('Bar')
child1 = parent.Child('Foo')
child2 = parent.Child('World')
print(
# Getting its first childs name
child1.name, # From itself
parent.children[0].name, # From its parent
# Also works with the second child
child2.name,
parent.children[1].name,
# Go nuts if you want
child2.parent.children[0].name,
child1.parent.children[1].name
)
print(
# Getting the parents name
parent.name, # From itself
child1.parent.name, # From its children
child2.parent.name,
# Go nuts again if you want
parent.children[0].parent.name,
parent.children[1].parent.name,
# Or insane
child2.parent.children[0].parent.children[1].parent.name,
child1.parent.children[1].parent.children[0].parent.name
)
# Second parent? No problem
parent2 = Parent('John')
child3 = parent2.Child('Doe')
child4 = parent2.Child('Appleseed')
print(
child3.name, parent2.children[0].name,
child4.name, parent2.children[1].name,
parent2.name # ....
)
Output:
Foo Foo World World Foo World
Bar Bar Bar Bar Bar Bar Bar
Doe Doe Appleseed Appleseed John
Again, a wonderful answer, props to you mike!
You can easily access to outer class using metaclass: after creation of outer class check it's attribute dict for any classes (or apply any logic you need - mine is just trivial example) and set corresponding values:
import six
import inspect
# helper method from `peewee` project to add metaclass
_METACLASS_ = '_metaclass_helper_'
def with_metaclass(meta, base=object):
return meta(_METACLASS_, (base,), {})
class OuterMeta(type):
def __new__(mcs, name, parents, dct):
cls = super(OuterMeta, mcs).__new__(mcs, name, parents, dct)
for klass in dct.values():
if inspect.isclass(klass):
print("Setting outer of '%s' to '%s'" % (klass, cls))
klass.outer = cls
return cls
# #six.add_metaclass(OuterMeta) -- this is alternative to `with_metaclass`
class Outer(with_metaclass(OuterMeta)):
def foo(self):
return "I'm outer class!"
class Inner(object):
outer = None # <-- by default it's None
def bar(self):
return "I'm inner class"
print(Outer.Inner.outer)
>>> <class '__main__.Outer'>
assert isinstance(Outer.Inner.outer(), Outer)
print(Outer().foo())
>>> I'm outer class!
print(Outer.Inner.outer().foo())
>>> I'm outer class!
print(Outer.Inner().outer().foo())
>>> I'm outer class!
print(Outer.Inner().bar())
>>> I'm inner class!
Using this approach, you can easily bind and refer two classes between each other.
I've created some Python code to use an outer class from its inner class, based on a good idea from another answer for this question. I think it's short, simple and easy to understand.
class higher_level__unknown_irrelevant_name__class:
def __init__(self, ...args...):
...other code...
# Important lines to access sub-classes.
subclasses = self._subclass_container()
self.some_subclass = subclasses["some_subclass"]
del subclasses # Free up variable for other use.
def sub_function(self, ...args...):
...other code...
def _subclass_container(self):
_parent_class = self # Create access to parent class.
class some_subclass:
def __init__(self):
self._parent_class = _parent_class # Easy access from self.
# Optional line, clears variable space, but SHOULD NOT BE USED
# IF THERE ARE MULTIPLE SUBCLASSES as would stop their parent access.
# del _parent_class
class subclass_2:
def __init__(self):
self._parent_class = _parent_class
# Return reference(s) to the subclass(es).
return {"some_subclass": some_subclass, "subclass_2": subclass_2}
The main code, "production ready" (without comments, etc.). Remember to replace all of each value in angle brackets (e.g. <x>) with the desired value.
class <higher_level_class>:
def __init__(self):
subclasses = self._subclass_container()
self.<sub_class> = subclasses[<sub_class, type string>]
del subclasses
def _subclass_container(self):
_parent_class = self
class <sub_class>:
def __init__(self):
self._parent_class = _parent_class
return {<sub_class, type string>: <sub_class>}
Explanation of how this method works (the basic steps):
Create a function named _subclass_container to act as a wrapper to access the variable self, a reference to the higher level class (from code running inside the function).
Create a variable named _parent_class which is a reference to the variable self of this function, that the sub-classes of _subclass_container can access (avoids name conflicts with other self variables in subclasses).
Return the sub-class/sub-classes as a dictionary/list so code calling the _subclass_container function can access the sub-classes inside.
In the __init__ function inside the higher level class (or wherever else needed), receive the returned sub-classes from the function _subclass_container into the variable subclasses.
Assign sub-classes stored in the subclasses variable to attributes of the higher level class.
A few tips to make scenarios easier:
Making the code to assign the sub classes to the higher level class easier to copy and be used in classes derived from the higher level class that have their __init__ function changed:
Insert before line 12 in the main code:
def _subclass_init(self):
Then insert into this function lines 5-6 (of the main code) and replace lines 4-7 with the following code:
self._subclass_init(self)
Making subclass assigning to the higher level class possible when there are many/unknown quantities of subclasses.
Replace line 6 with the following code:
for subclass_name in list(subclasses.keys()):
setattr(self, subclass_name, subclasses[subclass_name])
Example scenario of where this solution would be useful and where the higher level class name should be impossible to get:
A class, named "a" (class a:) is created. It has subclasses that need to access it (the parent). One subclass is called "x1". In this subclass, the code a.run_func() is run.
Then another class, named "b" is created, derived from class "a" (class b(a):). After that, some code runs b.x1() (calling the sub function "x1" of b, a derived sub-class). This function runs a.run_func(), calling the function "run_func" of class "a", not the function "run_func" of its parent, "b" (as it should), because the function which was defined in class "a" is set to refer to the function of class "a", as that was its parent.
This would cause problems (e.g. if function a.run_func has been deleted) and the only solution without rewriting the code in class a.x1 would be to redefine the sub-class x1 with updated code for all classes derived from class "a" which would obviously be difficult and not worth it.
Do you mean to use inheritance, rather than nesting classes like this? What you're doing doesn't make a heap of sense in Python.
You can access the Outer's some_method by just referencing Outer.some_method within the inner class's methods, but it's not going to work as you expect it will. For example, if you try this:
class Outer(object):
def some_method(self):
# do something
class Inner(object):
def __init__(self):
Outer.some_method()
...you'll get a TypeError when initialising an Inner object, because Outer.some_method expects to receive an Outer instance as its first argument. (In the example above, you're basically trying to call some_method as a class method of Outer.)
Another possibility:
class _Outer (object):
# Define your static methods here, e.g.
#staticmethod
def subclassRef ():
return Outer
class Outer (_Outer):
class Inner (object):
def outer (self):
return _Outer
def doSomething (self):
outer = self.outer ()
# Call your static mehthods.
cls = outer.subclassRef ()
return cls ()
What we can do is pass the self variable of Outer Class inside the Inner Class as Class Argument and Under Outer init initialise the Inner Class with Outer self passed into Inner
class Outer:
def __init__(self):
self.somevalue=91
self.Inner=self.Inner(self)
def SomeMethod(self):
print('This is Something from Outer Class')
class Inner:
def __init__(self,Outer)
self.SomeMethod=Outer.SomeMethod
self.somevalue=Outer.somevalue
def SomeAnotherMethod(self):
print(self.somevalue)
self.SomeMethod()
>>>f=Outer()
>>>f.Inner.SomeAnotherMethod()
91
This is Something from Outer Class
Now After running this function it Works
Expanding on #tsnorri's cogent thinking, that the outer method may be a static method:
class Outer(object):
#staticmethod
def some_static_method(self):
# do something
class Inner(object):
def __init__(self):
self.some_static_method() # <-- this will work later
Inner.some_static_method = some_static_method
Now the line in question should work by the time it is actually called.
The last line in the above code gives the Inner class a static method that's a clone of the Outer static method.
This takes advantage of two Python features, that functions are objects, and scope is textual.
Usually, the local scope references the local names of the (textually) current function.
...or current class in our case. So objects "local" to the definition of the Outer class (Inner and some_static_method) may be referred to directly within that definition.
You may create a class, to decorate inner classes. In this case #inner.
Since this a decorator: Outer.A = inner(Outer.A). Once your code requires Outer.A it will be executed inner.__get__ method, which returns the original class (A) with a new attribute set on it: A.owner = Outer.
A classmethod in class A, in this case def add(cls, y=3), may use new attribute owner at return cls.owner.x + y + 1.
The line setattr(owner, name, self.inner), breaks the descriptor because owner.name => Outer.A => A is no longer an instance of the class inner.
Hope this helps.
class inner:
def __init__(self, inner):
self.inner = inner
def __get__(self, instance, owner):
print('__get__ method executed, only once... ')
name = self.inner.__name__
setattr(self.inner, 'owner', owner)
setattr(owner, name, self.inner) # breaks descriptor
return self.inner #returns Inner
class Outer:
x = 1
#inner
class A:
#classmethod
def add(cls, y=3):
return cls.owner.x + y + 1
print(Outer.A.add(0)) # First time executes inner.__get__ method
print(Outer.A.add(0)) # Second time not necessary.
>> __get__ method executed, only once...
>> 2
>> 2
It can be done by parsing the outer class object into inner class.
class Outer():
def __init__(self,userinput):
self.userinput = userinput
def outer_function(self):
self.a = self.userinput + 2
class Inner():
def inner_function(self):
self.b = self.a + 10
after defining this, it need to run the function
m = Outer(3)
m.outer_function()
print (m.a)
#this will output 5
Now it has the variable of outer class.
and then, it need to run inner class functions.
m.Inner.inner_function(m)
The object m of outer class is parsed into the function of inner class (inside the brackets)
Now, the inner class function is accessing self.a from the outer class.
print (m.b)
#this will output 15
It is too simple:
Input:
class A:
def __init__(self):
pass
def func1(self):
print('class A func1')
class B:
def __init__(self):
a1 = A()
a1.func1()
def func1(self):
print('class B func1')
b = A.B()
b.func1()
Output
class A func1
class B func1

Categories