Related
I want a to be rounded to 13.95. I tried using round, but I get:
>>> a
13.949999999999999
>>> round(a, 2)
13.949999999999999
For the analogous issue with the standard library Decimal class, see How can I format a decimal to always show 2 decimal places?.
You are running into the old problem with floating point numbers that not all numbers can be represented exactly. The command line is just showing you the full floating point form from memory.
With floating point representation, your rounded version is the same number. Since computers are binary, they store floating point numbers as an integer and then divide it by a power of two so 13.95 will be represented in a similar fashion to 125650429603636838/(2**53).
Double precision numbers have 53 bits (16 digits) of precision and regular floats have 24 bits (8 digits) of precision. The floating point type in Python uses double precision to store the values.
For example,
>>> 125650429603636838/(2**53)
13.949999999999999
>>> 234042163/(2**24)
13.949999988079071
>>> a = 13.946
>>> print(a)
13.946
>>> print("%.2f" % a)
13.95
>>> round(a,2)
13.949999999999999
>>> print("%.2f" % round(a, 2))
13.95
>>> print("{:.2f}".format(a))
13.95
>>> print("{:.2f}".format(round(a, 2)))
13.95
>>> print("{:.15f}".format(round(a, 2)))
13.949999999999999
If you are after only two decimal places (to display a currency value, for example), then you have a couple of better choices:
Use integers and store values in cents, not dollars and then divide by 100 to convert to dollars.
Or use a fixed point number like decimal.
There are new format specifications, String Format Specification Mini-Language:
You can do the same as:
"{:.2f}".format(13.949999999999999)
Note 1: the above returns a string. In order to get as float, simply wrap with float(...):
float("{:.2f}".format(13.949999999999999))
Note 2: wrapping with float() doesn't change anything:
>>> x = 13.949999999999999999
>>> x
13.95
>>> g = float("{:.2f}".format(x))
>>> g
13.95
>>> x == g
True
>>> h = round(x, 2)
>>> h
13.95
>>> x == h
True
The built-in round() works just fine in Python 2.7 or later.
Example:
>>> round(14.22222223, 2)
14.22
Check out the documentation.
Let me give an example in Python 3.6's f-string/template-string format, which I think is beautifully neat:
>>> f'{a:.2f}'
It works well with longer examples too, with operators and not needing parentheses:
>>> print(f'Completed in {time.time() - start:.2f}s')
I feel that the simplest approach is to use the format() function.
For example:
a = 13.949999999999999
format(a, '.2f')
13.95
This produces a float number as a string rounded to two decimal points.
Most numbers cannot be exactly represented in floats. If you want to round the number because that's what your mathematical formula or algorithm requires, then you want to use round. If you just want to restrict the display to a certain precision, then don't even use round and just format it as that string. (If you want to display it with some alternate rounding method, and there are tons, then you need to mix the two approaches.)
>>> "%.2f" % 3.14159
'3.14'
>>> "%.2f" % 13.9499999
'13.95'
And lastly, though perhaps most importantly, if you want exact math then you don't want floats at all. The usual example is dealing with money and to store 'cents' as an integer.
Use
print"{:.2f}".format(a)
instead of
print"{0:.2f}".format(a)
Because the latter may lead to output errors when trying to output multiple variables (see comments).
Try the code below:
>>> a = 0.99334
>>> a = int((a * 100) + 0.5) / 100.0 # Adding 0.5 rounds it up
>>> print a
0.99
TLDR ;)
The rounding problem of input and output has been solved definitively by Python 3.1 and the fix is backported also to Python 2.7.0.
Rounded numbers can be reversibly converted between float and string back and forth:
str -> float() -> repr() -> float() ... or Decimal -> float -> str -> Decimal
>>> 0.3
0.3
>>> float(repr(0.3)) == 0.3
True
A Decimal type is not necessary for storage anymore.
Results of arithmetic operations must be rounded again because rounding errors could accumulate more inaccuracy than that is possible after parsing one number. That is not fixed by the improved repr() algorithm (Python >= 3.1, >= 2.7.0):
>>> 0.1 + 0.2
0.30000000000000004
>>> 0.1, 0.2, 0.3
(0.1, 0.2, 0.3)
The output string function str(float(...)) was rounded to 12 valid digits in Python < 2.7x and < 3.1, to prevent excessive invalid digits similar to unfixed repr() output. That was still insufficientl after subtraction of very similar numbers and it was too much rounded after other operations. Python 2.7 and 3.1 use the same length of str() although the repr() is fixed. Some old versions of Numpy had also excessive invalid digits, even with fixed Python. The current Numpy is fixed. Python versions >= 3.2 have the same results of str() and repr() function and also output of similar functions in Numpy.
Test
import random
from decimal import Decimal
for _ in range(1000000):
x = random.random()
assert x == float(repr(x)) == float(Decimal(repr(x))) # Reversible repr()
assert str(x) == repr(x)
assert len(repr(round(x, 12))) <= 14 # no excessive decimal places.
Documentation
See the Release notes Python 2.7 - Other Language Changes the fourth paragraph:
Conversions between floating-point numbers and strings are now correctly rounded on most platforms. These conversions occur in many different places: str() on floats and complex numbers; the float and complex constructors; numeric formatting; serializing and de-serializing floats and complex numbers using the marshal, pickle and json modules; parsing of float and imaginary literals in Python code; and Decimal-to-float conversion.
Related to this, the repr() of a floating-point number x now returns a result based on the shortest decimal string that’s guaranteed to round back to x under correct rounding (with round-half-to-even rounding mode). Previously it gave a string based on rounding x to 17 decimal digits.
The related issue
More information: The formatting of float before Python 2.7 was similar to the current numpy.float64. Both types use the same 64 bit IEEE 754 double precision with 52 bit mantissa. A big difference is that np.float64.__repr__ is formatted frequently with an excessive decimal number so that no bit can be lost, but no valid IEEE 754 number exists between 13.949999999999999 and 13.950000000000001. The result is not nice and the conversion repr(float(number_as_string)) is not reversible with numpy. On the other hand: float.__repr__ is formatted so that every digit is important; the sequence is without gaps and the conversion is reversible. Simply: If you perhaps have a numpy.float64 number, convert it to normal float in order to be formatted for humans, not for numeric processors, otherwise nothing more is necessary with Python 2.7+.
Use:
float_number = 12.234325335563
round(float_number, 2)
This will return;
12.23
Explanation:
The round function takes two arguments;
The number to be rounded and the number of decimal places to be returned. Here I returned two decimal places.
You can modify the output format:
>>> a = 13.95
>>> a
13.949999999999999
>>> print "%.2f" % a
13.95
With Python < 3 (e.g. 2.6 or 2.7), there are two ways to do so.
# Option one
older_method_string = "%.9f" % numvar
# Option two (note ':' before the '.9f')
newer_method_string = "{:.9f}".format(numvar)
But note that for Python versions above 3 (e.g. 3.2 or 3.3), option two is preferred.
For more information on option two, I suggest this link on string formatting from the Python documentation.
And for more information on option one, this link will suffice and has information on the various flags.
Reference: Convert floating point number to a certain precision, and then copy to string
You can use format operator for rounding the value up to two decimal places in Python:
print(format(14.4499923, '.2f')) // The output is 14.45
As Matt pointed out, Python 3.6 provides f-strings, and they can also use nested parameters:
value = 2.34558
precision = 2
width = 4
print(f'result: {value:{width}.{precision}f}')
which will display result: 2.35
In Python 2.7:
a = 13.949999999999999
output = float("%0.2f"%a)
print output
We multiple options to do that:
Option 1:
x = 1.090675765757
g = float("{:.2f}".format(x))
print(g)
Option 2:
The built-in round() supports Python 2.7 or later.
x = 1.090675765757
g = round(x, 2)
print(g)
The Python tutorial has an appendix called Floating Point Arithmetic: Issues and Limitations. Read it. It explains what is happening and why Python is doing its best. It has even an example that matches yours. Let me quote a bit:
>>> 0.1
0.10000000000000001
you may be tempted to use the round()
function to chop it back to the single
digit you expect. But that makes no
difference:
>>> round(0.1, 1)
0.10000000000000001
The problem is that the binary
floating-point value stored for “0.1”
was already the best possible binary
approximation to 1/10, so trying to
round it again can’t make it better:
it was already as good as it gets.
Another consequence is that since 0.1
is not exactly 1/10, summing ten
values of 0.1 may not yield exactly
1.0, either:
>>> sum = 0.0
>>> for i in range(10):
... sum += 0.1
...
>>> sum
0.99999999999999989
One alternative and solution to your problems would be using the decimal module.
Use combination of Decimal object and round() method.
Python 3.7.3
>>> from decimal import Decimal
>>> d1 = Decimal (13.949999999999999) # define a Decimal
>>> d1
Decimal('13.949999999999999289457264239899814128875732421875')
>>> d2 = round(d1, 2) # round to 2 decimals
>>> d2
Decimal('13.95')
It's doing exactly what you told it to do and is working correctly. Read more about floating point confusion and maybe try decimal objects instead.
from decimal import Decimal
def round_float(v, ndigits=2, rt_str=False):
d = Decimal(v)
v_str = ("{0:.%sf}" % ndigits).format(round(d, ndigits))
if rt_str:
return v_str
return Decimal(v_str)
Results:
Python 3.6.1 (default, Dec 11 2018, 17:41:10)
>>> round_float(3.1415926)
Decimal('3.14')
>>> round_float(3.1445926)
Decimal('3.14')
>>> round_float(3.1455926)
Decimal('3.15')
>>> round_float(3.1455926, rt_str=True)
'3.15'
>>> str(round_float(3.1455926))
'3.15'
The simple solution is here
value = 5.34343
rounded_value = round(value, 2) # 5.34
Use a lambda function like this:
arred = lambda x,n : x*(10**n)//1/(10**n)
This way you could just do:
arred(3.141591657, 2)
and get
3.14
orig_float = 232569 / 16000.0
14.5355625
short_float = float("{:.2f}".format(orig_float))
14.54
For fixing the floating point in type-dynamic languages such as Python and JavaScript, I use this technique
# For example:
a = 70000
b = 0.14
c = a * b
print c # Prints 980.0000000002
# Try to fix
c = int(c * 10000)/100000
print c # Prints 980
You can also use Decimal as following:
from decimal import *
getcontext().prec = 6
Decimal(1) / Decimal(7)
# Results in 6 precision -> Decimal('0.142857')
getcontext().prec = 28
Decimal(1) / Decimal(7)
# Results in 28 precision -> Decimal('0.1428571428571428571428571429')
It's simple like:
use decimal module for fast correctly-rounded decimal floating point arithmetic:
d = Decimal(10000000.0000009)
to achieve rounding:
d.quantize(Decimal('0.01'))
will result with Decimal('10000000.00')
make the above DRY:
def round_decimal(number, exponent='0.01'):
decimal_value = Decimal(number)
return decimal_value.quantize(Decimal(exponent))
or
def round_decimal(number, decimal_places=2):
decimal_value = Decimal(number)
return decimal_value.quantize(Decimal(10) ** -decimal_places)
PS: critique of others: formatting is not rounding.
Here is the simple solution using the format function.
float(format(num, '.2f'))
Note: We are converting numbers to float, because the format method is returning a string.
If you want to handle money, use the Python decimal module:
from decimal import Decimal, ROUND_HALF_UP
# 'amount' can be integer, string, tuple, float, or another Decimal object
def to_money(amount) -> Decimal:
money = Decimal(amount).quantize(Decimal('.00'), rounding=ROUND_HALF_UP)
return money
lambda x, n:int(x*10^n + 0.5)/10^n
has worked for me for many years in many languages.
To round a number to a resolution, the best way is the following one, which can work with any resolution (0.01 for two decimals or even other steps):
>>> import numpy as np
>>> value = 13.949999999999999
>>> resolution = 0.01
>>> newValue = int(np.round(value/resolution))*resolution
>>> print newValue
13.95
>>> resolution = 0.5
>>> newValue = int(np.round(value/resolution))*resolution
>>> print newValue
14.0
The answers I saw didn't work with the float(52.15) case. After some tests, there is the solution that I'm using:
import decimal
def value_to_decimal(value, decimal_places):
decimal.getcontext().rounding = decimal.ROUND_HALF_UP # define rounding method
return decimal.Decimal(str(float(value))).quantize(decimal.Decimal('1e-{}'.format(decimal_places)))
(The conversion of the 'value' to float and then string is very important, that way, 'value' can be of the type float, decimal, integer or string!)
Hope this helps anyone.
def show(x):
return "{:.50f}".format(x)
>>> show((9/50)/(1/50))
'9.00000000000000000000000000000000000000000000000000'
>>> show((9/50)//(1/50))
'8.00000000000000000000000000000000000000000000000000'
Why does this happen? How is the floordiv function implemented to yield this result?
This is the hangup:
>>> math.fmod(9/50, 1/50)
0.01999999999999999
That is, the remainder is not 0 when computed to infinite precision. Remember that things like 1/50 are represented internally as binary approximations to the decimal values. Operations like // and fmod() see the approximations.
A consequence:
>>> divmod(9/50, 1/50)
(8.0, 0.01999999999999999)
The first part of that tuple (8.0) is what // returns.
These are the exact values you're working with (every binary float can be represented exactly as a decimal float, but not always vice versa):
>>> import decimal
>>> decimal.getcontext().prec = 500
>>> a = decimal.Decimal(9 / 50)
>>> a
Decimal('0.179999999999999993338661852249060757458209991455078125')
>>> b = decimal.Decimal(1 / 50)
>>> b
Decimal('0.0200000000000000004163336342344337026588618755340576171875')
Then you can see that their quotient is very close to, but strictly less than, 9:
>>> a / b
Decimal('8.9999999999999994795829572069578825097785927606294264409785130112132181330918190728686667562468053202101562430796913250703133371819349483407279064891778548444542555094951793065257796799431977448531572173096496447578542537338521354220252562619824630430214685714904931305685046145118086722731059777831001898809747580797140817173965632373555310050843739628587610364851425663859425151431557846221951824825835845421021824148219867951326908196293925437792528353996177649543157087221511093517505990964829850')
That's why // returns 8. The remainder then is:
>>> a - 8*b
Decimal('0.0199999999999999900079927783735911361873149871826171875000')
>>> float(_)
0.01999999999999999
If you can't live with shallow surprises like this when working with conceptual decimal numbers, use the decimal module instead. The nature of binary floating-point isn't going to change ;-)
rounding errors in Python floor division
Please check this thread , using float as input to floor division should be done in a little tricky way
I want a to be rounded to 13.95. I tried using round, but I get:
>>> a
13.949999999999999
>>> round(a, 2)
13.949999999999999
For the analogous issue with the standard library Decimal class, see How can I format a decimal to always show 2 decimal places?.
You are running into the old problem with floating point numbers that not all numbers can be represented exactly. The command line is just showing you the full floating point form from memory.
With floating point representation, your rounded version is the same number. Since computers are binary, they store floating point numbers as an integer and then divide it by a power of two so 13.95 will be represented in a similar fashion to 125650429603636838/(2**53).
Double precision numbers have 53 bits (16 digits) of precision and regular floats have 24 bits (8 digits) of precision. The floating point type in Python uses double precision to store the values.
For example,
>>> 125650429603636838/(2**53)
13.949999999999999
>>> 234042163/(2**24)
13.949999988079071
>>> a = 13.946
>>> print(a)
13.946
>>> print("%.2f" % a)
13.95
>>> round(a,2)
13.949999999999999
>>> print("%.2f" % round(a, 2))
13.95
>>> print("{:.2f}".format(a))
13.95
>>> print("{:.2f}".format(round(a, 2)))
13.95
>>> print("{:.15f}".format(round(a, 2)))
13.949999999999999
If you are after only two decimal places (to display a currency value, for example), then you have a couple of better choices:
Use integers and store values in cents, not dollars and then divide by 100 to convert to dollars.
Or use a fixed point number like decimal.
There are new format specifications, String Format Specification Mini-Language:
You can do the same as:
"{:.2f}".format(13.949999999999999)
Note 1: the above returns a string. In order to get as float, simply wrap with float(...):
float("{:.2f}".format(13.949999999999999))
Note 2: wrapping with float() doesn't change anything:
>>> x = 13.949999999999999999
>>> x
13.95
>>> g = float("{:.2f}".format(x))
>>> g
13.95
>>> x == g
True
>>> h = round(x, 2)
>>> h
13.95
>>> x == h
True
The built-in round() works just fine in Python 2.7 or later.
Example:
>>> round(14.22222223, 2)
14.22
Check out the documentation.
Let me give an example in Python 3.6's f-string/template-string format, which I think is beautifully neat:
>>> f'{a:.2f}'
It works well with longer examples too, with operators and not needing parentheses:
>>> print(f'Completed in {time.time() - start:.2f}s')
I feel that the simplest approach is to use the format() function.
For example:
a = 13.949999999999999
format(a, '.2f')
13.95
This produces a float number as a string rounded to two decimal points.
Most numbers cannot be exactly represented in floats. If you want to round the number because that's what your mathematical formula or algorithm requires, then you want to use round. If you just want to restrict the display to a certain precision, then don't even use round and just format it as that string. (If you want to display it with some alternate rounding method, and there are tons, then you need to mix the two approaches.)
>>> "%.2f" % 3.14159
'3.14'
>>> "%.2f" % 13.9499999
'13.95'
And lastly, though perhaps most importantly, if you want exact math then you don't want floats at all. The usual example is dealing with money and to store 'cents' as an integer.
Use
print"{:.2f}".format(a)
instead of
print"{0:.2f}".format(a)
Because the latter may lead to output errors when trying to output multiple variables (see comments).
Try the code below:
>>> a = 0.99334
>>> a = int((a * 100) + 0.5) / 100.0 # Adding 0.5 rounds it up
>>> print a
0.99
TLDR ;)
The rounding problem of input and output has been solved definitively by Python 3.1 and the fix is backported also to Python 2.7.0.
Rounded numbers can be reversibly converted between float and string back and forth:
str -> float() -> repr() -> float() ... or Decimal -> float -> str -> Decimal
>>> 0.3
0.3
>>> float(repr(0.3)) == 0.3
True
A Decimal type is not necessary for storage anymore.
Results of arithmetic operations must be rounded again because rounding errors could accumulate more inaccuracy than that is possible after parsing one number. That is not fixed by the improved repr() algorithm (Python >= 3.1, >= 2.7.0):
>>> 0.1 + 0.2
0.30000000000000004
>>> 0.1, 0.2, 0.3
(0.1, 0.2, 0.3)
The output string function str(float(...)) was rounded to 12 valid digits in Python < 2.7x and < 3.1, to prevent excessive invalid digits similar to unfixed repr() output. That was still insufficientl after subtraction of very similar numbers and it was too much rounded after other operations. Python 2.7 and 3.1 use the same length of str() although the repr() is fixed. Some old versions of Numpy had also excessive invalid digits, even with fixed Python. The current Numpy is fixed. Python versions >= 3.2 have the same results of str() and repr() function and also output of similar functions in Numpy.
Test
import random
from decimal import Decimal
for _ in range(1000000):
x = random.random()
assert x == float(repr(x)) == float(Decimal(repr(x))) # Reversible repr()
assert str(x) == repr(x)
assert len(repr(round(x, 12))) <= 14 # no excessive decimal places.
Documentation
See the Release notes Python 2.7 - Other Language Changes the fourth paragraph:
Conversions between floating-point numbers and strings are now correctly rounded on most platforms. These conversions occur in many different places: str() on floats and complex numbers; the float and complex constructors; numeric formatting; serializing and de-serializing floats and complex numbers using the marshal, pickle and json modules; parsing of float and imaginary literals in Python code; and Decimal-to-float conversion.
Related to this, the repr() of a floating-point number x now returns a result based on the shortest decimal string that’s guaranteed to round back to x under correct rounding (with round-half-to-even rounding mode). Previously it gave a string based on rounding x to 17 decimal digits.
The related issue
More information: The formatting of float before Python 2.7 was similar to the current numpy.float64. Both types use the same 64 bit IEEE 754 double precision with 52 bit mantissa. A big difference is that np.float64.__repr__ is formatted frequently with an excessive decimal number so that no bit can be lost, but no valid IEEE 754 number exists between 13.949999999999999 and 13.950000000000001. The result is not nice and the conversion repr(float(number_as_string)) is not reversible with numpy. On the other hand: float.__repr__ is formatted so that every digit is important; the sequence is without gaps and the conversion is reversible. Simply: If you perhaps have a numpy.float64 number, convert it to normal float in order to be formatted for humans, not for numeric processors, otherwise nothing more is necessary with Python 2.7+.
Use:
float_number = 12.234325335563
round(float_number, 2)
This will return;
12.23
Explanation:
The round function takes two arguments;
The number to be rounded and the number of decimal places to be returned. Here I returned two decimal places.
You can modify the output format:
>>> a = 13.95
>>> a
13.949999999999999
>>> print "%.2f" % a
13.95
With Python < 3 (e.g. 2.6 or 2.7), there are two ways to do so.
# Option one
older_method_string = "%.9f" % numvar
# Option two (note ':' before the '.9f')
newer_method_string = "{:.9f}".format(numvar)
But note that for Python versions above 3 (e.g. 3.2 or 3.3), option two is preferred.
For more information on option two, I suggest this link on string formatting from the Python documentation.
And for more information on option one, this link will suffice and has information on the various flags.
Reference: Convert floating point number to a certain precision, and then copy to string
You can use format operator for rounding the value up to two decimal places in Python:
print(format(14.4499923, '.2f')) // The output is 14.45
As Matt pointed out, Python 3.6 provides f-strings, and they can also use nested parameters:
value = 2.34558
precision = 2
width = 4
print(f'result: {value:{width}.{precision}f}')
which will display result: 2.35
In Python 2.7:
a = 13.949999999999999
output = float("%0.2f"%a)
print output
We multiple options to do that:
Option 1:
x = 1.090675765757
g = float("{:.2f}".format(x))
print(g)
Option 2:
The built-in round() supports Python 2.7 or later.
x = 1.090675765757
g = round(x, 2)
print(g)
The Python tutorial has an appendix called Floating Point Arithmetic: Issues and Limitations. Read it. It explains what is happening and why Python is doing its best. It has even an example that matches yours. Let me quote a bit:
>>> 0.1
0.10000000000000001
you may be tempted to use the round()
function to chop it back to the single
digit you expect. But that makes no
difference:
>>> round(0.1, 1)
0.10000000000000001
The problem is that the binary
floating-point value stored for “0.1”
was already the best possible binary
approximation to 1/10, so trying to
round it again can’t make it better:
it was already as good as it gets.
Another consequence is that since 0.1
is not exactly 1/10, summing ten
values of 0.1 may not yield exactly
1.0, either:
>>> sum = 0.0
>>> for i in range(10):
... sum += 0.1
...
>>> sum
0.99999999999999989
One alternative and solution to your problems would be using the decimal module.
Use combination of Decimal object and round() method.
Python 3.7.3
>>> from decimal import Decimal
>>> d1 = Decimal (13.949999999999999) # define a Decimal
>>> d1
Decimal('13.949999999999999289457264239899814128875732421875')
>>> d2 = round(d1, 2) # round to 2 decimals
>>> d2
Decimal('13.95')
It's doing exactly what you told it to do and is working correctly. Read more about floating point confusion and maybe try decimal objects instead.
from decimal import Decimal
def round_float(v, ndigits=2, rt_str=False):
d = Decimal(v)
v_str = ("{0:.%sf}" % ndigits).format(round(d, ndigits))
if rt_str:
return v_str
return Decimal(v_str)
Results:
Python 3.6.1 (default, Dec 11 2018, 17:41:10)
>>> round_float(3.1415926)
Decimal('3.14')
>>> round_float(3.1445926)
Decimal('3.14')
>>> round_float(3.1455926)
Decimal('3.15')
>>> round_float(3.1455926, rt_str=True)
'3.15'
>>> str(round_float(3.1455926))
'3.15'
The simple solution is here
value = 5.34343
rounded_value = round(value, 2) # 5.34
Use a lambda function like this:
arred = lambda x,n : x*(10**n)//1/(10**n)
This way you could just do:
arred(3.141591657, 2)
and get
3.14
orig_float = 232569 / 16000.0
14.5355625
short_float = float("{:.2f}".format(orig_float))
14.54
For fixing the floating point in type-dynamic languages such as Python and JavaScript, I use this technique
# For example:
a = 70000
b = 0.14
c = a * b
print c # Prints 980.0000000002
# Try to fix
c = int(c * 10000)/100000
print c # Prints 980
You can also use Decimal as following:
from decimal import *
getcontext().prec = 6
Decimal(1) / Decimal(7)
# Results in 6 precision -> Decimal('0.142857')
getcontext().prec = 28
Decimal(1) / Decimal(7)
# Results in 28 precision -> Decimal('0.1428571428571428571428571429')
It's simple like:
use decimal module for fast correctly-rounded decimal floating point arithmetic:
d = Decimal(10000000.0000009)
to achieve rounding:
d.quantize(Decimal('0.01'))
will result with Decimal('10000000.00')
make the above DRY:
def round_decimal(number, exponent='0.01'):
decimal_value = Decimal(number)
return decimal_value.quantize(Decimal(exponent))
or
def round_decimal(number, decimal_places=2):
decimal_value = Decimal(number)
return decimal_value.quantize(Decimal(10) ** -decimal_places)
PS: critique of others: formatting is not rounding.
Here is the simple solution using the format function.
float(format(num, '.2f'))
Note: We are converting numbers to float, because the format method is returning a string.
If you want to handle money, use the Python decimal module:
from decimal import Decimal, ROUND_HALF_UP
# 'amount' can be integer, string, tuple, float, or another Decimal object
def to_money(amount) -> Decimal:
money = Decimal(amount).quantize(Decimal('.00'), rounding=ROUND_HALF_UP)
return money
lambda x, n:int(x*10^n + 0.5)/10^n
has worked for me for many years in many languages.
To round a number to a resolution, the best way is the following one, which can work with any resolution (0.01 for two decimals or even other steps):
>>> import numpy as np
>>> value = 13.949999999999999
>>> resolution = 0.01
>>> newValue = int(np.round(value/resolution))*resolution
>>> print newValue
13.95
>>> resolution = 0.5
>>> newValue = int(np.round(value/resolution))*resolution
>>> print newValue
14.0
The answers I saw didn't work with the float(52.15) case. After some tests, there is the solution that I'm using:
import decimal
def value_to_decimal(value, decimal_places):
decimal.getcontext().rounding = decimal.ROUND_HALF_UP # define rounding method
return decimal.Decimal(str(float(value))).quantize(decimal.Decimal('1e-{}'.format(decimal_places)))
(The conversion of the 'value' to float and then string is very important, that way, 'value' can be of the type float, decimal, integer or string!)
Hope this helps anyone.
I'm working with floating point numbers. If I do:
import numpy as np
np.round(100.045, 2)
I get:
Out[15]: 100.04
Obviously, this should be 100.05. I know about the existence of IEEE 754 and that the way that floating point numbers are stored is the cause of this rounding error.
My question is: how can I avoid this error?
You are partly right, often the cause of this "incorrect rounding" is because of the way floating point numbers are stored. Some float literals can be represented exactly as floating point numbers while others cannot.
>>> a = 100.045
>>> a.as_integer_ratio() # not exact
(7040041011254395, 70368744177664)
>>> a = 0.25
>>> a.as_integer_ratio() # exact
(1, 4)
It's also important to know that there is no way you can restore the literal you used (100.045) from the resulting floating point number. So the only thing you can do is to use an arbitrary precision data type instead of the literal. For example you could use Fraction or Decimal (just to mention two built-in types).
I mentioned that you cannot restore the literal once it is parsed as float - so you have to input it as string or something else that represents the number exactly and is supported by these data types:
>>> from fractions import Fraction
>>> f = Fraction(100045, 100)
>>> f
Fraction(20009, 20)
>>> f = Fraction("100.045")
>>> f
Fraction(20009, 20)
>>> from decimal import Decimal
>>> Decimal("100.045")
Decimal('100.045')
However these don't work well with NumPy and even if you get it to work at all - it will almost certainly be very slow compared to basic floating point operations.
>>> import numpy as np
>>> a = np.array([Decimal("100.045") for _ in range(1000)])
>>> np.round(a)
AttributeError: 'decimal.Decimal' object has no attribute 'rint'
In the beginning I said that you're are only partly right. There is another twist!
You mentioned that rounding 100.045 will obviously give 100.05. But that's not obvious at all, in your case it is even wrong (in the context of floating point math in programming - it would be true for "normal calculations"). In many programming languages a "half" value (where the number after the decimal you're rounding is 5) isn't always rounded up - for example Python (and NumPy) use a "round half to even" approach because it's less biased. For example 0.5 will be rounded to 0 while 1.5 will be rounded to 2.
So even if 100.045 could be represented exactly as float - it would still round to 100.04 because of that rounding rule!
>>> round(Fraction("100.045"), 1)
Fraction(5002, 5)
>>> 5002 / 5
1000.4
>>> d = Decimal("100.045")
>>> round(d, 2)
Decimal('100.04')
This is even mentioned in the NumPy docs for numpy.around:
Notes
For values exactly halfway between rounded decimal values, NumPy rounds to the nearest even value. Thus 1.5 and 2.5 round to 2.0, -0.5 and 0.5 round to 0.0, etc. Results may also be surprising due to the inexact representation of decimal fractions in the IEEE floating point standard [R1011] and errors introduced when scaling by powers of ten.
(Emphasis mine.)
The only (at least that I know) numeric type in Python that allows setting the rounding rule manually is Decimal - via ROUND_HALF_UP:
>>> from decimal import Decimal, getcontext, ROUND_HALF_UP
>>> dc = getcontext()
>>> dc.rounding = ROUND_HALF_UP
>>> d = Decimal("100.045")
>>> round(d, 2)
Decimal('100.05')
Summary
So to avoid the "error" you have to:
Prevent Python from parsing it as floating point value and
use a data type that can represent it exactly
then you have to manually override the default rounding mode so that you will get rounding up for "halves".
(abandon NumPy because it doesn't have arbitrary precision data types)
Basically there is no general solution for this problem IMO, unless you have a general rule for all the different cases (see Floating Point Arithmetic: Issues and Limitation). However, in this case you can round the decimal part separately:
In [24]: dec, integ = np.modf(100.045)
In [25]: integ + np.round(dec, 2)
Out[25]: 100.05
The reason for such behavior is not because separating integer from decimal part makes any difference on round()'s logic. It's because when you use fmod it gives you a more realistic version of the decimal part of the number which is actually a rounded representation.
In this case here is what dec is:
In [30]: dec
Out[30]: 0.045000000000001705
And you can check that round gives same result with 0.045:
In [31]: round(0.045, 2)
Out[31]: 0.04
Now if you try with another number like 100.0333, the decimal part is a slightly smaller version which as I mentioned, the result you want depends on your rounding policies.
In [37]: dec, i = np.modf(100.0333)
In [38]: dec
Out[38]: 0.033299999999997
There are also modules like fractions and decimal that provide support for fast correctly-rounded decimal floating point and rational arithmetic, that you can use in situations as such.
This is not a bug, but a feature )))
you can simple use this trick:
def myround(val):
"Fix pythons round"
d,v = math.modf(val)
if d==0.5:
val += 0.000000001
return round(val)
I want a to be rounded to 13.95. I tried using round, but I get:
>>> a
13.949999999999999
>>> round(a, 2)
13.949999999999999
For the analogous issue with the standard library Decimal class, see How can I format a decimal to always show 2 decimal places?.
You are running into the old problem with floating point numbers that not all numbers can be represented exactly. The command line is just showing you the full floating point form from memory.
With floating point representation, your rounded version is the same number. Since computers are binary, they store floating point numbers as an integer and then divide it by a power of two so 13.95 will be represented in a similar fashion to 125650429603636838/(2**53).
Double precision numbers have 53 bits (16 digits) of precision and regular floats have 24 bits (8 digits) of precision. The floating point type in Python uses double precision to store the values.
For example,
>>> 125650429603636838/(2**53)
13.949999999999999
>>> 234042163/(2**24)
13.949999988079071
>>> a = 13.946
>>> print(a)
13.946
>>> print("%.2f" % a)
13.95
>>> round(a,2)
13.949999999999999
>>> print("%.2f" % round(a, 2))
13.95
>>> print("{:.2f}".format(a))
13.95
>>> print("{:.2f}".format(round(a, 2)))
13.95
>>> print("{:.15f}".format(round(a, 2)))
13.949999999999999
If you are after only two decimal places (to display a currency value, for example), then you have a couple of better choices:
Use integers and store values in cents, not dollars and then divide by 100 to convert to dollars.
Or use a fixed point number like decimal.
There are new format specifications, String Format Specification Mini-Language:
You can do the same as:
"{:.2f}".format(13.949999999999999)
Note 1: the above returns a string. In order to get as float, simply wrap with float(...):
float("{:.2f}".format(13.949999999999999))
Note 2: wrapping with float() doesn't change anything:
>>> x = 13.949999999999999999
>>> x
13.95
>>> g = float("{:.2f}".format(x))
>>> g
13.95
>>> x == g
True
>>> h = round(x, 2)
>>> h
13.95
>>> x == h
True
The built-in round() works just fine in Python 2.7 or later.
Example:
>>> round(14.22222223, 2)
14.22
Check out the documentation.
Let me give an example in Python 3.6's f-string/template-string format, which I think is beautifully neat:
>>> f'{a:.2f}'
It works well with longer examples too, with operators and not needing parentheses:
>>> print(f'Completed in {time.time() - start:.2f}s')
I feel that the simplest approach is to use the format() function.
For example:
a = 13.949999999999999
format(a, '.2f')
13.95
This produces a float number as a string rounded to two decimal points.
Most numbers cannot be exactly represented in floats. If you want to round the number because that's what your mathematical formula or algorithm requires, then you want to use round. If you just want to restrict the display to a certain precision, then don't even use round and just format it as that string. (If you want to display it with some alternate rounding method, and there are tons, then you need to mix the two approaches.)
>>> "%.2f" % 3.14159
'3.14'
>>> "%.2f" % 13.9499999
'13.95'
And lastly, though perhaps most importantly, if you want exact math then you don't want floats at all. The usual example is dealing with money and to store 'cents' as an integer.
Use
print"{:.2f}".format(a)
instead of
print"{0:.2f}".format(a)
Because the latter may lead to output errors when trying to output multiple variables (see comments).
Try the code below:
>>> a = 0.99334
>>> a = int((a * 100) + 0.5) / 100.0 # Adding 0.5 rounds it up
>>> print a
0.99
TLDR ;)
The rounding problem of input and output has been solved definitively by Python 3.1 and the fix is backported also to Python 2.7.0.
Rounded numbers can be reversibly converted between float and string back and forth:
str -> float() -> repr() -> float() ... or Decimal -> float -> str -> Decimal
>>> 0.3
0.3
>>> float(repr(0.3)) == 0.3
True
A Decimal type is not necessary for storage anymore.
Results of arithmetic operations must be rounded again because rounding errors could accumulate more inaccuracy than that is possible after parsing one number. That is not fixed by the improved repr() algorithm (Python >= 3.1, >= 2.7.0):
>>> 0.1 + 0.2
0.30000000000000004
>>> 0.1, 0.2, 0.3
(0.1, 0.2, 0.3)
The output string function str(float(...)) was rounded to 12 valid digits in Python < 2.7x and < 3.1, to prevent excessive invalid digits similar to unfixed repr() output. That was still insufficientl after subtraction of very similar numbers and it was too much rounded after other operations. Python 2.7 and 3.1 use the same length of str() although the repr() is fixed. Some old versions of Numpy had also excessive invalid digits, even with fixed Python. The current Numpy is fixed. Python versions >= 3.2 have the same results of str() and repr() function and also output of similar functions in Numpy.
Test
import random
from decimal import Decimal
for _ in range(1000000):
x = random.random()
assert x == float(repr(x)) == float(Decimal(repr(x))) # Reversible repr()
assert str(x) == repr(x)
assert len(repr(round(x, 12))) <= 14 # no excessive decimal places.
Documentation
See the Release notes Python 2.7 - Other Language Changes the fourth paragraph:
Conversions between floating-point numbers and strings are now correctly rounded on most platforms. These conversions occur in many different places: str() on floats and complex numbers; the float and complex constructors; numeric formatting; serializing and de-serializing floats and complex numbers using the marshal, pickle and json modules; parsing of float and imaginary literals in Python code; and Decimal-to-float conversion.
Related to this, the repr() of a floating-point number x now returns a result based on the shortest decimal string that’s guaranteed to round back to x under correct rounding (with round-half-to-even rounding mode). Previously it gave a string based on rounding x to 17 decimal digits.
The related issue
More information: The formatting of float before Python 2.7 was similar to the current numpy.float64. Both types use the same 64 bit IEEE 754 double precision with 52 bit mantissa. A big difference is that np.float64.__repr__ is formatted frequently with an excessive decimal number so that no bit can be lost, but no valid IEEE 754 number exists between 13.949999999999999 and 13.950000000000001. The result is not nice and the conversion repr(float(number_as_string)) is not reversible with numpy. On the other hand: float.__repr__ is formatted so that every digit is important; the sequence is without gaps and the conversion is reversible. Simply: If you perhaps have a numpy.float64 number, convert it to normal float in order to be formatted for humans, not for numeric processors, otherwise nothing more is necessary with Python 2.7+.
Use:
float_number = 12.234325335563
round(float_number, 2)
This will return;
12.23
Explanation:
The round function takes two arguments;
The number to be rounded and the number of decimal places to be returned. Here I returned two decimal places.
You can modify the output format:
>>> a = 13.95
>>> a
13.949999999999999
>>> print "%.2f" % a
13.95
With Python < 3 (e.g. 2.6 or 2.7), there are two ways to do so.
# Option one
older_method_string = "%.9f" % numvar
# Option two (note ':' before the '.9f')
newer_method_string = "{:.9f}".format(numvar)
But note that for Python versions above 3 (e.g. 3.2 or 3.3), option two is preferred.
For more information on option two, I suggest this link on string formatting from the Python documentation.
And for more information on option one, this link will suffice and has information on the various flags.
Reference: Convert floating point number to a certain precision, and then copy to string
You can use format operator for rounding the value up to two decimal places in Python:
print(format(14.4499923, '.2f')) // The output is 14.45
As Matt pointed out, Python 3.6 provides f-strings, and they can also use nested parameters:
value = 2.34558
precision = 2
width = 4
print(f'result: {value:{width}.{precision}f}')
which will display result: 2.35
In Python 2.7:
a = 13.949999999999999
output = float("%0.2f"%a)
print output
We multiple options to do that:
Option 1:
x = 1.090675765757
g = float("{:.2f}".format(x))
print(g)
Option 2:
The built-in round() supports Python 2.7 or later.
x = 1.090675765757
g = round(x, 2)
print(g)
The Python tutorial has an appendix called Floating Point Arithmetic: Issues and Limitations. Read it. It explains what is happening and why Python is doing its best. It has even an example that matches yours. Let me quote a bit:
>>> 0.1
0.10000000000000001
you may be tempted to use the round()
function to chop it back to the single
digit you expect. But that makes no
difference:
>>> round(0.1, 1)
0.10000000000000001
The problem is that the binary
floating-point value stored for “0.1”
was already the best possible binary
approximation to 1/10, so trying to
round it again can’t make it better:
it was already as good as it gets.
Another consequence is that since 0.1
is not exactly 1/10, summing ten
values of 0.1 may not yield exactly
1.0, either:
>>> sum = 0.0
>>> for i in range(10):
... sum += 0.1
...
>>> sum
0.99999999999999989
One alternative and solution to your problems would be using the decimal module.
Use combination of Decimal object and round() method.
Python 3.7.3
>>> from decimal import Decimal
>>> d1 = Decimal (13.949999999999999) # define a Decimal
>>> d1
Decimal('13.949999999999999289457264239899814128875732421875')
>>> d2 = round(d1, 2) # round to 2 decimals
>>> d2
Decimal('13.95')
It's doing exactly what you told it to do and is working correctly. Read more about floating point confusion and maybe try decimal objects instead.
from decimal import Decimal
def round_float(v, ndigits=2, rt_str=False):
d = Decimal(v)
v_str = ("{0:.%sf}" % ndigits).format(round(d, ndigits))
if rt_str:
return v_str
return Decimal(v_str)
Results:
Python 3.6.1 (default, Dec 11 2018, 17:41:10)
>>> round_float(3.1415926)
Decimal('3.14')
>>> round_float(3.1445926)
Decimal('3.14')
>>> round_float(3.1455926)
Decimal('3.15')
>>> round_float(3.1455926, rt_str=True)
'3.15'
>>> str(round_float(3.1455926))
'3.15'
The simple solution is here
value = 5.34343
rounded_value = round(value, 2) # 5.34
Use a lambda function like this:
arred = lambda x,n : x*(10**n)//1/(10**n)
This way you could just do:
arred(3.141591657, 2)
and get
3.14
It's simple like:
use decimal module for fast correctly-rounded decimal floating point arithmetic:
d = Decimal(10000000.0000009)
to achieve rounding:
d.quantize(Decimal('0.01'))
will result with Decimal('10000000.00')
make the above DRY:
def round_decimal(number, exponent='0.01'):
decimal_value = Decimal(number)
return decimal_value.quantize(Decimal(exponent))
or
def round_decimal(number, decimal_places=2):
decimal_value = Decimal(number)
return decimal_value.quantize(Decimal(10) ** -decimal_places)
PS: critique of others: formatting is not rounding.
orig_float = 232569 / 16000.0
14.5355625
short_float = float("{:.2f}".format(orig_float))
14.54
For fixing the floating point in type-dynamic languages such as Python and JavaScript, I use this technique
# For example:
a = 70000
b = 0.14
c = a * b
print c # Prints 980.0000000002
# Try to fix
c = int(c * 10000)/100000
print c # Prints 980
You can also use Decimal as following:
from decimal import *
getcontext().prec = 6
Decimal(1) / Decimal(7)
# Results in 6 precision -> Decimal('0.142857')
getcontext().prec = 28
Decimal(1) / Decimal(7)
# Results in 28 precision -> Decimal('0.1428571428571428571428571429')
Here is the simple solution using the format function.
float(format(num, '.2f'))
Note: We are converting numbers to float, because the format method is returning a string.
If you want to handle money, use the Python decimal module:
from decimal import Decimal, ROUND_HALF_UP
# 'amount' can be integer, string, tuple, float, or another Decimal object
def to_money(amount) -> Decimal:
money = Decimal(amount).quantize(Decimal('.00'), rounding=ROUND_HALF_UP)
return money
lambda x, n:int(x*10^n + 0.5)/10^n
has worked for me for many years in many languages.
To round a number to a resolution, the best way is the following one, which can work with any resolution (0.01 for two decimals or even other steps):
>>> import numpy as np
>>> value = 13.949999999999999
>>> resolution = 0.01
>>> newValue = int(np.round(value/resolution))*resolution
>>> print newValue
13.95
>>> resolution = 0.5
>>> newValue = int(np.round(value/resolution))*resolution
>>> print newValue
14.0
The answers I saw didn't work with the float(52.15) case. After some tests, there is the solution that I'm using:
import decimal
def value_to_decimal(value, decimal_places):
decimal.getcontext().rounding = decimal.ROUND_HALF_UP # define rounding method
return decimal.Decimal(str(float(value))).quantize(decimal.Decimal('1e-{}'.format(decimal_places)))
(The conversion of the 'value' to float and then string is very important, that way, 'value' can be of the type float, decimal, integer or string!)
Hope this helps anyone.