Simultaneously diagonalize matrices with numpy - python

I have a m × n × n numpy.ndarray of m simultaneously diagonalizable square matrices and would like to use numpy to obtain their simultaneous eigenvalues.
For example, if I had
from numpy import einsum, diag, array, linalg, random
U = linalg.svd(random.random((3,3)))[2]
M = einsum(
"ij, ajk, lk",
U, [diag([2,2,0]), diag([1,-1,1])], U)
the two matrices in M are simultaneously diagonalizable, and I am looking for a way to obtain the array
array([[2., 1.],
[2., -1.],
[0., 1.]])
(up to permutation of the lines) from M. Is there a built-in or easy way to get this?

There is a fairly simple and very elegant simultaneous diagonalization algorithm based on Givens rotation that was published by Cardoso and Soulomiac in 1996:
Cardoso, J., & Souloumiac, A. (1996). Jacobi Angles for Simultaneous Diagonalization. SIAM Journal on Matrix Analysis and Applications, 17(1), 161–164. doi:10.1137/S0895479893259546
I've attached a numpy implementation of the algorithm at the end of this response. Caveat: It turns out simultaneous diagonalization is a bit of a tricky numerical problem, with no algorithm (to the best of my knowledge) that guarantees global convergence. However, the cases in which it does not work (see the paper) are degenerate and in practice I have never had the Jacobi angles algorithm fail on me.
#!/usr/bin/env python2.7
# -*- coding: utf-8 -*-
"""
Routines for simultaneous diagonalization
Arun Chaganty <arunchaganty#gmail.com>
"""
import numpy as np
from numpy import zeros, eye, diag
from numpy.linalg import norm
def givens_rotate( A, i, j, c, s ):
"""
Rotate A along axis (i,j) by c and s
"""
Ai, Aj = A[i,:], A[j,:]
A[i,:], A[j,:] = c * Ai + s * Aj, c * Aj - s * Ai
return A
def givens_double_rotate( A, i, j, c, s ):
"""
Rotate A along axis (i,j) by c and s
"""
Ai, Aj = A[i,:], A[j,:]
A[i,:], A[j,:] = c * Ai + s * Aj, c * Aj - s * Ai
A_i, A_j = A[:,i], A[:,j]
A[:,i], A[:,j] = c * A_i + s * A_j, c * A_j - s * A_i
return A
def jacobi_angles( *Ms, **kwargs ):
r"""
Simultaneously diagonalize using Jacobi angles
#article{SC-siam,
HTML = "ftp://sig.enst.fr/pub/jfc/Papers/siam_note.ps.gz",
author = "Jean-Fran\c{c}ois Cardoso and Antoine Souloumiac",
journal = "{SIAM} J. Mat. Anal. Appl.",
title = "Jacobi angles for simultaneous diagonalization",
pages = "161--164",
volume = "17",
number = "1",
month = jan,
year = {1995}}
(a) Compute Givens rotations for every pair of indices (i,j) i < j
- from eigenvectors of G = gg'; g = A_ij - A_ji, A_ij + A_ji
- Compute c, s as \sqrt{x+r/2r}, y/\sqrt{2r(x+r)}
(b) Update matrices by multiplying by the givens rotation R(i,j,c,s)
(c) Repeat (a) until stopping criterion: sin theta < threshold for all ij pairs
"""
assert len(Ms) > 0
m, n = Ms[0].shape
assert m == n
sweeps = kwargs.get('sweeps', 500)
threshold = kwargs.get('eps', 1e-8)
rank = kwargs.get('rank', m)
R = eye(m)
for _ in xrange(sweeps):
done = True
for i in xrange(rank):
for j in xrange(i+1, m):
G = zeros((2,2))
for M in Ms:
g = np.array([ M[i,i] - M[j,j], M[i,j] + M[j,i] ])
G += np.outer(g,g) / len(Ms)
# Compute the eigenvector directly
t_on, t_off = G[0,0] - G[1,1], G[0,1] + G[1,0]
theta = 0.5 * np.arctan2( t_off, t_on + np.sqrt( t_on*t_on + t_off * t_off) )
c, s = np.cos(theta), np.sin(theta)
if abs(s) > threshold:
done = False
# Update the matrices and V
for M in Ms:
givens_double_rotate(M, i, j, c, s)
#assert M[i,i] > M[j, j]
R = givens_rotate(R, i, j, c, s)
if done:
break
R = R.T
L = np.zeros((m, len(Ms)))
err = 0
for i, M in enumerate(Ms):
# The off-diagonal elements of M should be 0
L[:,i] = diag(M)
err += norm(M - diag(diag(M)))
return R, L, err

I am not aware of any direct solution. But why not just getting the eigenvalues and the eigenvectors of the first matrix, and using the eigenvectors to transform all other matrices to the diagonal form? Something like:
eigvals, eigvecs = np.linalg.eig(matrix1)
eigvals2 = np.diagonal(np.dot(np.dot(transpose(eigvecs), matrix2), eigvecs))
You can the add the columns to an array via hstack if you like.
UPDATE: As pointed out below, this is only valid if no degenerate eigenvalues occur. Otherwise one would have to check first for the degenerate eigenvalues, then transform the 2nd matrix to a blockdiagonal form, and diagonalize eventual blocks bigger than 1x1 separately.

I am sure there is significant room for improvement in my solution, but I have come up with the following set of three functions doing the calculation for me in a semi-robust way.
def clusters(array,
orig_indices = None,
start = 0,
rtol=numpy.allclose.__defaults__[0],
atol=numpy.allclose.__defaults__[1]):
"""For an array, return a permutation that sorts the numbers and the sizes of the resulting blocks of identical numbers."""
array = numpy.asarray(array)
if not len(array):
return numpy.array([]),[]
if orig_indices is None:
orig_indices = numpy.arange(len(array))
x = array[0]
close = abs(array-x) <= (atol + rtol*abs(x))
first = sum(close)
r_perm, r_sizes = clusters(
array[~close],
orig_indices[~close],
start+first,
rtol, atol)
r_sizes.insert(0, first)
return numpy.concatenate((orig_indices[close], r_perm)), r_sizes
def permutation_matrix(permutation, dtype=dtype):
n = len(permutation)
P = numpy.zeros((n,n), dtype)
for i,j in enumerate(permutation):
P[j,i]=1
return P
def simultaneously_diagonalize(tensor, atol=numpy.allclose.__defaults__[1]):
tensor = numpy.asarray(tensor)
old_shape = tensor.shape
size = old_shape[-1]
tensor = tensor.reshape((-1, size, size))
diag_mask = 1-numpy.eye(size)
eigvalues, diagonalizer = numpy.linalg.eig(tensor[0])
diagonalization = numpy.dot(
numpy.dot(
matrix.linalg.inv(diagonalizer),
tensor).swapaxes(0,-2),
diagonalizer)
if numpy.allclose(diag_mask*diagonalization, 0):
return diagonalization.diagonal(axis1=-2, axis2=-1).reshape(old_shape[:-1])
else:
perm, cluster_sizes = clusters(diagonalization[0].diagonal())
perm_matrix = permutation_matrix(perm)
diagonalization = numpy.dot(
numpy.dot(
perm_matrix.T,
diagonalization).swapaxes(0,-2),
perm_matrix)
mask = 1-scipy.linalg.block_diag(
*list(
numpy.ones((blocksize, blocksize))
for blocksize in cluster_sizes))
print(diagonalization)
assert(numpy.allclose(
diagonalization*mask,
0)) # Assert that the matrices are co-diagonalizable
blocks = numpy.cumsum(cluster_sizes)
start = 0
other_part = []
for block in blocks:
other_part.append(
simultaneously_diagonalize(
diagonalization[1:, start:block, start:block]))
start = block
return numpy.vstack(
(diagonalization[0].diagonal(axis1=-2, axis2=-1),
numpy.hstack(other_part)))

If you know something about the size of the eigenvalues of the two matrices in advance, you can diagonalize a linear combination of the two matrices, with coefficients chosen to break the degeneracy. For example, if the eigenvalues of both lie between -10 and 10, you could diagonalize 100*M1 + M2. There's a slight loss of precision, but for many purposes it's good enough--and quick and easy!

Related

how to implement least square polynomial with no built in methods using python?

currently running into a problem solving this.
The objective of the exercise given is to find a polynom of certian degree (the degree is given) from a dataset of points (that can be noist) and to best fit it using least sqaure method.
I don't understand the steps that lead to solving the linear equations?
what are the steps or should anyone provide such a python program that lead to the matrix that I put as an argument in my decomposition program?
Note:I have a python program for cubic splines ,LU decomposition/Guassian decomposition.
Thanks.
I tried to apply guassin / LU decomposition straight away on the dataset but I understand there are more steps to the solution...
I donwt understand how cubic splines add to the mix either..
Edit:
guassian elimintaion :
import numpy as np
import math
def swapRows(v,i,j):
if len(v.shape) == 1:
v[i],v[j] = v[j],v[i]
else:
v[[i,j],:] = v[[j,i],:]
def swapCols(v,i,j):
v[:,[i,j]] = v[:,[j,i]]
def gaussPivot(a,b,tol=1.0e-12):
n = len(b)
# Set up scale factors
s = np.zeros(n)
for i in range(n):
s[i] = max(np.abs(a[i,:]))
for k in range(0,n-1):
# Row interchange, if needed
p = np.argmax(np.abs(a[k:n,k])/s[k:n]) + k
if abs(a[p,k]) < tol: error.err('Matrix is singular')
if p != k:
swapRows(b,k,p)
swapRows(s,k,p)
swapRows(a,k,p)
# Elimination
for i in range(k+1,n):
if a[i,k] != 0.0:
lam = a[i,k]/a[k,k]
a[i,k+1:n] = a[i,k+1:n] - lam*a[k,k+1:n]
b[i] = b[i] - lam*b[k]
if abs(a[n-1,n-1]) < tol: error.err('Matrix is singular')
# Back substitution
b[n-1] = b[n-1]/a[n-1,n-1]
for k in range(n-2,-1,-1):
b[k] = (b[k] - np.dot(a[k,k+1:n],b[k+1:n]))/a[k,k]
return b
def polyFit(xData,yData,m):
a = np.zeros((m+1,m+1))
b = np.zeros(m+1)
s = np.zeros(2*m+1)
for i in range(len(xData)):
temp = yData[i]
for j in range(m+1):
b[j] = b[j] + temp
temp = temp*xData[i]
temp = 1.0
for j in range(2*m+1):
s[j] = s[j] + temp
temp = temp*xData[i]
for i in range(m+1):
for j in range(m+1):
a[i,j] = s[i+j]
return gaussPivot(a,b)
degree = 10 # can be any degree
polyFit(xData,yData,degree)
I was under the impression the code above gets a dataset of points and a degree. The output should be coeefients of a polynom that fits those points but I have a grader that was provided by my proffesor , and after checking the grading the polynom that returns has a lrage error.
After that I tried the following LU decomposition instead:
import numpy as np
def swapRows(v,i,j):
if len(v.shape) == 1:
v[i],v[j] = v[j],v[i]
else:
v[[i,j],:] = v[[j,i],:]
def swapCols(v,i,j):
v[:,[i,j]] = v[:,[j,i]]
def LUdecomp(a,tol=1.0e-9):
n = len(a)
seq = np.array(range(n))
# Set up scale factors
s = np.zeros((n))
for i in range(n):
s[i] = max(abs(a[i,:]))
for k in range(0,n-1):
# Row interchange, if needed
p = np.argmax(np.abs(a[k:n,k])/s[k:n]) + k
if abs(a[p,k]) < tol: error.err('Matrix is singular')
if p != k:
swapRows(s,k,p)
swapRows(a,k,p)
swapRows(seq,k,p)
# Elimination
for i in range(k+1,n):
if a[i,k] != 0.0:
lam = a[i,k]/a[k,k]
a[i,k+1:n] = a[i,k+1:n] - lam*a[k,k+1:n]
a[i,k] = lam
return a,seq
def LUsolve(a,b,seq):
n = len(a)
# Rearrange constant vector; store it in [x]
x = b.copy()
for i in range(n):
x[i] = b[seq[i]]
# Solution
for k in range(1,n):
x[k] = x[k] - np.dot(a[k,0:k],x[0:k])
x[n-1] = x[n-1]/a[n-1,n-1]
for k in range(n-2,-1,-1):
x[k] = (x[k] - np.dot(a[k,k+1:n],x[k+1:n]))/a[k,k]
return x
the results were a bit better but nowhere near what it should be
Edit 2:
I tried the chebyshev method suggested in the comments and came up with:
import numpy as np
def chebyshev_transform(x, n):
"""
Transforms x-coordinates to Chebyshev coordinates
"""
return np.cos(n * np.arccos(x))
def chebyshev_design_matrix(x, n):
"""
Constructs the Chebyshev design matrix
"""
x_cheb = chebyshev_transform(x, n)
T = np.zeros((len(x), n+1))
T[:,0] = 1
T[:,1] = x_cheb
for i in range(2, n+1):
T[:,i] = 2 * x_cheb * T[:,i-1] - T[:,i-2]
return T
degree =10
f = lambda x: np.cos(X)
xdata = np.linspace(-1,1,num=100)
ydata = np.array([f(i) for i in xdata])
M = chebyshev_design_matrix(xdata,degree)
D_x ,D_y = np.linalg.qr(M)
D_x, seq = LUdecomp(D_x)
A = LUsolve(D_x,D_y,seq)
I can't use linalg.qr in my program , it was just for checking how it works.In addition , I didn't get the 'slow way' of the formula that were in the comment.
The program cant get an x point that is not between -1 and 1 , is there any way around it , any normalizition?
Thanks a lot.
Hints:
You are probably asked for an unsophisticated method. If the degree of the polynomial remains low, you can use the straightforward approach below. For the sake of the explanation, I'll use a cubic model.
Assume that you want to fit your data to this polynomial, by observing that it seems to follow a cubic behavior:
ax³ + bx² + cx + d ~ y
[All x and y should be understood with an index i which is omitted for notational convenience.]
If there are more than four data points, you get an overdetermined system of equations, usually with no solution. The trick is to consider the error on the individual equations, e = ax³ + bx² + cx + d - y, and to minimize the total error. As the error is a signed number, negative errors would make minimization impossible. Instead, we minimize the sum of squared errors. (The sum of absolute errors is another option but it unfortunately leads to a much harder problem.)
Min(a, b, c, d) Σ(ax³ + bx² + cx + d - y)²
As the unknown parameters are unconstrained, it suffices to look for a stationary point, i.e. cancel the gradient of the total error. By differentiation on the unknowns a, b, c and d, we obtain
2Σ(ax³x³ + bx²x³ + cxx³ + dx³ - yx³) = 0
2Σ(ax³x² + bx²x² + cxx² + dx² - yx²) = 0
2Σ(ax³x + bx²x + cxx + dx - yx ) = 0
2Σ(ax³ + bx² + cx + d - y ) = 0
As you can recognize, this is a square linear system of equations.

Translating from Matlab: New problems (complex ginzburg landau equation

Thank you for all of your constructive criticisim on my last post. I have made some changes, but alas my code is still not working and I can't figure out why. What happens when I run this version is that I get a runtime warning about invalid errors encountered in matmul.
My code is given as
from __future__ import division
import numpy as np
from scipy.linalg import eig
from scipy.linalg import toeplitz
def poldif(*arg):
"""
Calculate differentiation matrices on arbitrary nodes.
Returns the differentiation matrices D1, D2, .. DM corresponding to the
M-th derivative of the function f at arbitrarily specified nodes. The
differentiation matrices can be computed with unit weights or
with specified weights.
Parameters
----------
x : ndarray
vector of N distinct nodes
M : int
maximum order of the derivative, 0 < M <= N - 1
OR (when computing with specified weights)
x : ndarray
vector of N distinct nodes
alpha : ndarray
vector of weight values alpha(x), evaluated at x = x_j.
B : int
matrix of size M x N, where M is the highest derivative required.
It should contain the quantities B[l,j] = beta_{l,j} =
l-th derivative of log(alpha(x)), evaluated at x = x_j.
Returns
-------
DM : ndarray
M x N x N array of differentiation matrices
Notes
-----
This function returns M differentiation matrices corresponding to the
1st, 2nd, ... M-th derivates on arbitrary nodes specified in the array
x. The nodes must be distinct but are, otherwise, arbitrary. The
matrices are constructed by differentiating N-th order Lagrange
interpolating polynomial that passes through the speficied points.
The M-th derivative of the grid function f is obtained by the matrix-
vector multiplication
.. math::
f^{(m)}_i = D^{(m)}_{ij}f_j
This function is based on code by Rex Fuzzle
https://github.com/RexFuzzle/Python-Library
References
----------
..[1] B. Fornberg, Generation of Finite Difference Formulas on Arbitrarily
Spaced Grids, Mathematics of Computation 51, no. 184 (1988): 699-706.
..[2] J. A. C. Weidemann and S. C. Reddy, A MATLAB Differentiation Matrix
Suite, ACM Transactions on Mathematical Software, 26, (2000) : 465-519
"""
if len(arg) > 3:
raise Exception('number of arguments is either two OR three')
if len(arg) == 2:
# unit weight function : arguments are nodes and derivative order
x, M = arg[0], arg[1]
N = np.size(x)
# assert M<N, "Derivative order cannot be larger or equal to number of points"
if M >= N:
raise Exception("Derivative order cannot be larger or equal to number of points")
alpha = np.ones(N)
B = np.zeros((M, N))
elif len(arg) == 3:
# specified weight function : arguments are nodes, weights and B matrix
x, alpha, B = arg[0], arg[1], arg[2]
N = np.size(x)
M = B.shape[0]
I = np.eye(N) # identity matrix
L = np.logical_or(I, np.zeros(N)) # logical identity matrix
XX = np.transpose(np.array([x, ] * N))
DX = XX - np.transpose(XX) # DX contains entries x(k)-x(j)
DX[L] = np.ones(N) # put 1's one the main diagonal
c = alpha * np.prod(DX, 1) # quantities c(j)
C = np.transpose(np.array([c, ] * N))
C = C / np.transpose(C) # matrix with entries c(k)/c(j).
Z = 1 / DX # Z contains entries 1/(x(k)-x(j)
Z[L] = 0 # eye(N)*ZZ; # with zeros on the diagonal.
X = np.transpose(np.copy(Z)) # X is same as Z', but with ...
Xnew = X
for i in range(0, N):
Xnew[i:N - 1, i] = X[i + 1:N, i]
X = Xnew[0:N - 1, :] # ... diagonal entries removed
Y = np.ones([N - 1, N]) # initialize Y and D matrices.
D = np.eye(N) # Y is matrix of cumulative sums
DM = np.empty((M, N, N)) # differentiation matrices
for ell in range(1, M + 1):
Y = np.cumsum(np.vstack((B[ell - 1, :], ell * (Y[0:N - 1, :]) * X)), 0) # diags
D = ell * Z * (C * np.transpose(np.tile(np.diag(D), (N, 1))) - D) # off-diags
D[L] = Y[N - 1, :]
DM[ell - 1, :, :] = D
return DM
def herdif(N, M, b=1):
"""
Calculate differentiation matrices using Hermite collocation.
Returns the differentiation matrices D1, D2, .. DM corresponding to the
M-th derivative of the function f, at the N Chebyshev nodes in the
interval [-1,1].
Parameters
----------
N : int
number of grid points
M : int
maximum order of the derivative, 0 < M < N
b : float, optional
scale parameter, real and positive
Returns
-------
x : ndarray
N x 1 array of Hermite nodes which are zeros of the N-th degree
Hermite polynomial, scaled by b
DM : ndarray
M x N x N array of differentiation matrices
Notes
-----
This function returns M differentiation matrices corresponding to the
1st, 2nd, ... M-th derivates on a Hermite grid of N points. The
matrices are constructed by differentiating N-th order Hermite
interpolants.
The M-th derivative of the grid function f is obtained by the matrix-
vector multiplication
.. math::
f^{(m)}_i = D^{(m)}_{ij}f_j
References
----------
..[1] B. Fornberg, Generation of Finite Difference Formulas on Arbitrarily
Spaced Grids, Mathematics of Computation 51, no. 184 (1988): 699-706.
..[2] J. A. C. Weidemann and S. C. Reddy, A MATLAB Differentiation Matrix
Suite, ACM Transactions on Mathematical Software, 26, (2000) : 465-519
..[3] R. Baltensperger and M. R. Trummer, Spectral Differencing With A
Twist, SIAM Journal on Scientific Computing 24, (2002) : 1465-1487
"""
if M >= N - 1:
raise Exception('number of nodes must be greater than M - 1')
if M <= 0:
raise Exception('derivative order must be at least 1')
x = herroots(N) # compute Hermite nodes
alpha = np.exp(-x * x / 2) # compute Hermite weights.
beta = np.zeros([M + 1, N])
# construct beta(l,j) = d^l/dx^l (alpha(x)/alpha'(x))|x=x_j recursively
beta[0, :] = np.ones(N)
beta[1, :] = -x
for ell in range(2, M + 1):
beta[ell, :] = -x * beta[ell - 1, :] - (ell - 1) * beta[ell - 2, :]
# remove initialising row from beta
beta = np.delete(beta, 0, 0)
# compute differentiation matrix (b=1)
DM = poldif(x, alpha, beta)
# scale nodes by the factor b
x = x / b
# scale the matrix by the factor b
for ell in range(M):
DM[ell, :, :] = (b ** (ell + 1)) * DM[ell, :, :]
return x, DM
def herroots(N):
"""
Compute roots of the Hermite polynomial of degree N
Parameters
----------
N : int
degree of the Hermite polynomial
Returns
-------
x : ndarray
N x 1 array of Hermite roots
"""
# Jacobi matrix
d = np.sqrt(np.arange(1, N))
J = np.diag(d, 1) + np.diag(d, -1)
# compute eigenvalues
mu = eig(J)[0]
# return sorted, normalised eigenvalues
# real part only since all roots must be real.
return np.real(np.sort(mu) / np.sqrt(2))
a = 1-1j
b = 2+0.2j
c1 = 0.34
c2 = 0.005
alpha1 = (4*c2/a)**0.25
alpha2 = b/2*a
Nx = 220;
# hermite differentiation matrices
[x,D] = herdif(Nx, 2, np.real(alpha1))
D1 = D[0,:]
D2 = D[1,:]
# integration weights
diff = np.diff(x)
#print(len(diff))
p = np.concatenate([np.zeros(1), diff])
q = np.concatenate([diff, np.zeros(1)])
w = (p + q)/2
Q = np.diag(w)
#Discretised operator
const = c1*np.diag(np.ones(len(x)))-c2*(np.diag(x)*np.diag(x))
#print(const)
A = a*D2 - b*D1 + const
##### Timestepping
tmax = 200
tmin = 0
dt = 1
n = (tmax - tmin)/dt
tvec = np.linspace(0,tmax,n, endpoint = True)
#(len(tvec))
q = np.zeros((Nx, len(tvec)),dtype=complex)
f = np.zeros((Nx, len(tvec)),dtype=complex)
q0 = np.ones(Nx)*10**4
q[:,0] = q0
#print(q[:,0])
#print(q0)
# qnew - qold = dt*Aqold + dt*N(qold,qold,qold)
# qnew - qold = dt*Aqnew - dt*N(qold,qold,qold)
# therefore qnew - qold = 0.5*dtAqold + 0.5*dt*Aqnew + dtN(qold,qold,qold)
# rearranging to give qnew( 1- 0.5Adt) = (1 + 0.5Adt) + dt N(qold,qold,qold)
from numpy.linalg import inv
inverted = inv(np.eye(Nx)-0.5*A*dt)
forqold = (np.eye(Nx) + 0.5*A*dt)
firstterm = np.matmul(inverted,forqold)
for t in range(0, len(tvec)-1):
nl = abs(np.square(q[:,t]))*q[:,t]
q[:,t+1] = np.matmul(firstterm,q[:,t]) - dt*np.matmul(inverted,nl)
where the hermitedifferentiation matrices can be found online and are in a different file. This code blows up after five interations, which I cannot understand as I don't see how it differs in the matlab found here https://www.bagherigroup.com/research/open-source-codes/
I would really appreciate any help.
Error in:
q[:,t+1] = inverted*forgold*np.array(q[:,t]) + inverted*dt*np.array(nl)
q[:, t+1] indexes a 2d array (probably not a np.matrix which is more MATLAB like). This indexing reduces the number of dimensions by 1, hence the (220,) shape in the error message.
The error message says the RHS is (220,220). That shape probably comes from inverted and forgold. np.array(q[:,t]) is 1d. Multiplying a (220,220) by a (220,) is ok, but you can't put that square array into a 1d slot.
Both uses of np.array in the error line are superfluous. Their arguments are already ndarray.
As for the loop, it may be necessary. It looks like q[:,t+1] is a function of q[:,t], a serial, rather than parallel operation. Those are harder to render as 'vectorized' (unless you can usecumsum` like operations).
Note that in numpy * is elementwise multiplication, the .* of MATLAB. np.dot and # are used for matrix multiplication.
q[:,t+1]= invert#q[:,t]
would work

How to create an array that can be accessed according to its indices in Numpy?

I am trying to solve the following problem via a Finite Difference Approximation in Python using NumPy:
$u_t = k \, u_{xx}$, on $0 < x < L$ and $t > 0$;
$u(0,t) = u(L,t) = 0$;
$u(x,0) = f(x)$.
I take $u(x,0) = f(x) = x^2$ for my problem.
Programming is not my forte so I need help with the implementation of my code. Here is my code (I'm sorry it is a bit messy, but not too bad I hope):
## This program is to implement a Finite Difference method approximation
## to solve the Heat Equation, u_t = k * u_xx,
## in 1D w/out sources & on a finite interval 0 < x < L. The PDE
## is subject to B.C: u(0,t) = u(L,t) = 0,
## and the I.C: u(x,0) = f(x).
import numpy as np
import matplotlib.pyplot as plt
# definition of initial condition function
def f(x):
return x^2
# parameters
L = 1
T = 10
N = 10
M = 100
s = 0.25
# uniform mesh
x_init = 0
x_end = L
dx = float(x_end - x_init) / N
#x = np.zeros(N+1)
x = np.arange(x_init, x_end, dx)
x[0] = x_init
# time discretization
t_init = 0
t_end = T
dt = float(t_end - t_init) / M
#t = np.zeros(M+1)
t = np.arange(t_init, t_end, dt)
t[0] = t_init
# Boundary Conditions
for m in xrange(0, M):
t[m] = m * dt
# Initial Conditions
for j in xrange(0, N):
x[j] = j * dx
# definition of solution to u_t = k * u_xx
u = np.zeros((N+1, M+1)) # NxM array to store values of the solution
# finite difference scheme
for j in xrange(0, N-1):
u[j][0] = x**2 #initial condition
for m in xrange(0, M):
for j in xrange(1, N-1):
if j == 1:
u[j-1][m] = 0 # Boundary condition
else:
u[j][m+1] = u[j][m] + s * ( u[j+1][m] - #FDM scheme
2 * u[j][m] + u[j-1][m] )
else:
if j == N-1:
u[j+1][m] = 0 # Boundary Condition
print u, t, x
#plt.plot(t, u)
#plt.show()
So the first issue I am having is I am trying to create an array/matrix to store values for the solution. I wanted it to be an NxM matrix, but in my code I made the matrix (N+1)x(M+1) because I kept getting an error that the index was going out of bounds. Anyways how can I make such a matrix using numpy.array so as not to needlessly take up memory by creating a (N+1)x(M+1) matrix filled with zeros?
Second, how can I "access" such an array? The real solution u(x,t) is approximated by u(x[j], t[m]) were j is the jth spatial value, and m is the mth time value. The finite difference scheme is given by:
u(x[j],t[m+1]) = u(x[j],t[m]) + s * ( u(x[j+1],t[m]) - 2 * u(x[j],t[m]) + u(x[j-1],t[m]) )
(See here for the formulation)
I want to be able to implement the Initial Condition u(x[j],t[0]) = x**2 for all values of j = 0,...,N-1. I also need to implement Boundary Conditions u(x[0],t[m]) = 0 = u(x[N],t[m]) for all values of t = 0,...,M. Is the nested loop I created the best way to do this? Originally I tried implementing the I.C. and B.C. under two different for loops which I used to calculate values of the matrices x and t (in my code I still have comments placed where I tried to do this)
I think I am just not using the right notation but I cannot find anywhere in the documentation for NumPy how to "call" such an array so at to iterate through each value in the proposed scheme. Can anyone shed some light on what I am doing wrong?
Any help is very greatly appreciated. This is not homework but rather to understand how to program FDM for Heat Equation because later I will use similar methods to solve the Black-Scholes PDE.
EDIT: So when I run my code on line 60 (the last "else" that I use) I get an error that says invalid syntax, and on line 51 (u[j][0] = x**2 #initial condition) I get an error that reads "setting an array element with a sequence." What does that mean?

Optimize A*x = B solution for a tridiagonal coefficient matrix

I have a system of equations in the form of A*x = B where [A] is a tridiagonal coefficient matrix. Using the Numpy solver numpy.linalg.solve I can solve the system of equations for x.
See example below of how I develop the tridiagonal [A] martix. the {B} vector, and solve for x:
# Solve system of equations with a tridiagonal coefficient matrix
# uses numpy.linalg.solve
# use Python 3 print function
from __future__ import print_function
from __future__ import division
# modules
import numpy as np
import time
ti = time.clock()
#---- Build [A] array and {B} column vector
m = 1000 # size of array, make this 8000 to see time benefits
A = np.zeros((m, m)) # pre-allocate [A] array
B = np.zeros((m, 1)) # pre-allocate {B} column vector
A[0, 0] = 1
A[0, 1] = 2
B[0, 0] = 1
for i in range(1, m-1):
A[i, i-1] = 7 # node-1
A[i, i] = 8 # node
A[i, i+1] = 9 # node+1
B[i, 0] = 2
A[m-1, m-2] = 3
A[m-1, m-1] = 4
B[m-1, 0] = 3
print('A \n', A)
print('B \n', B)
#---- Solve using numpy.linalg.solve
x = np.linalg.solve(A, B) # solve A*x = B for x
print('x \n', x)
#---- Elapsed time for each approach
print('NUMPY time', time.clock()-ti, 'seconds')
So my question relates to two sections of the above example:
Since I am dealing with a tridiagonal matrix for [A], also called a banded matrix, is there a more efficient way to solve the system of equations instead of using numpy.linalg.solve?
Also, is there a better way to create the tridiagonal matrix instead of using a for-loop?
The above example runs on Linux in about 0.08 seconds according to the time.clock() function.
The numpy.linalg.solve function works fine, but I'm trying to find an approach that takes advantage of the tridiagonal form of [A] in hopes of speeding up the solution even further and then apply that approach to a more complicated example.
There are two immediate performance improvements (1) do not use a loop, (2) use scipy.linalg.solve_banded().
I would write the code something more like
import scipy.linalg as la
# Create arrays and set values
ab = np.zeros((3,m))
b = 2*ones(m)
ab[0] = 9
ab[1] = 8
ab[2] = 7
# Fix end points
ab[0,1] = 2
ab[1,0] = 1
ab[1,-1] = 4
ab[2,-2] = 3
b[0] = 1
b[-1] = 3
return la.solve_banded ((1,1),ab,b)
There may be more elegant ways to construct the matrix, but this works.
Using %timeit in ipython the original code took 112 ms for m=1000. This code takes 2.94 ms for m=10,000, an order of magnitude larger problem yet still almost two orders of magnitude faster! I did not have the patience to wait on the original code for m=10,000. Most of the time in the original may be in constructing the array, I did not test this. Regardless, for large arrays it is much more efficient to only store the non-zero values of the matrix.
There is a scipy.sparse matrix type called scipy.sparse.dia_matrix which captures the structure of your matrix well (it will store 3 arrays, in "positions" 0 (diagonal), 1 (above) and -1 (below)). Using this type of matrix you can try scipy.sparse.linalg.lsqr for solving. If your problem has an exact solution, it will be found, otherwise it will find the solution in least squares sense.
from scipy import sparse
A_sparse = sparse.dia_matrix(A)
ret_values = sparse.linalg.lsqr(A_sparse, C)
x = ret_values[0]
However, this may not be completely optimal in terms of exploiting the triadiagonal structure, there may be a theoretical way of making this faster. What this conversion does do for you is cut down the matrix multiplication expenses to the essential: Only the 3 bands are used. This, in combination with the iterative solver lsqr should already yield a speedup.
Note: I am not proposing scipy.sparse.linalg.spsolve, because it converts your matrix to csr format. However, replacing lsqr with spsolve is worth a try, especially because spsolve can bind UMFPACK, see relevant doc on spsolve. Also, it may be of interest to take a look at this stackoverflow question and answer relating to UMFPACK
You could use scipy.linalg.solveh_banded.
EDIT: You CANNOT used the above as your matrix is not symmetric and I thought it was. However, as was mentioned above in the comment, the Thomas algorithm is great for this
a = [7] * ( m - 2 ) + [3]
b = [1] + [8] * ( m - 2 ) + [4]
c = [2] + [9] * ( m - 2 )
d = [1] + [2] * ( m - 2 ) + [3]
# This is taken directly from the Wikipedia page also cited above
# this overwrites b and d
def TDMASolve(a, b, c, d):
n = len(d) # n is the numbers of rows, a and c has length n-1
for i in xrange(n-1):
d[i+1] -= 1. * d[i] * a[i] / b[i]
b[i+1] -= 1. * c[i] * a[i] / b[i]
for i in reversed(xrange(n-1)):
d[i] -= d[i+1] * c[i] / b[i+1]
return [d[i] / b[i] for i in xrange(n)]
This code is not optimize nor does it use np, but if I (or any of the other fine folks here) have time, I will edit it so that it does those thing. It currently times at ~10 ms for m=10000.
This probably will help
There is a function creates_tridiagonal which will create tridiagonal matrix. There is another function which converts a matrix into diagonal ordered form as requested by SciPy solve_banded function.
import numpy as np
def lu_decomp3(a):
"""
c,d,e = lu_decomp3(a).
LU decomposition of tridiagonal matrix a = [c\d\e]. On output
{c},{d} and {e} are the diagonals of the decomposed matrix a.
"""
n = np.diagonal(a).size
assert(np.all(a.shape ==(n,n))) # check if square matrix
d = np.copy(np.diagonal(a)) # without copy (assignment destination is read-only) error is raised
e = np.copy(np.diagonal(a, 1))
c = np.copy(np.diagonal(a, -1))
for k in range(1,n):
lam = c[k-1]/d[k-1]
d[k] = d[k] - lam*e[k-1]
c[k-1] = lam
return c,d,e
def lu_solve3(c,d,e,b):
"""
x = lu_solve(c,d,e,b).
Solves [c\d\e]{x} = {b}, where {c}, {d} and {e} are the
vectors returned from lu_decomp3.
"""
n = len(d)
y = np.zeros_like(b)
y[0] = b[0]
for k in range(1,n):
y[k] = b[k] - c[k-1]*y[k-1]
x = np.zeros_like(b)
x[n-1] = y[n-1]/d[n-1] # there is no x[n] out of range
for k in range(n-2,-1,-1):
x[k] = (y[k] - e[k]*x[k+1])/d[k]
return x
from scipy.sparse import diags
def create_tridiagonal(size = 4):
diag = np.random.randn(size)*100
diag_pos1 = np.random.randn(size-1)*10
diag_neg1 = np.random.randn(size-1)*10
a = diags([diag_neg1, diag, diag_pos1], offsets=[-1, 0, 1],shape=(size,size)).todense()
return a
a = create_tridiagonal(4)
b = np.random.randn(4)*10
print('matrix a is\n = {} \n\n and vector b is \n {}'.format(a, b))
c, d, e = lu_decomp3(a)
x = lu_solve3(c, d, e, b)
print("x from our function is {}".format(x))
print("check is answer correct ({})".format(np.allclose(np.dot(a, x), b)))
## Test Scipy
from scipy.linalg import solve_banded
def diagonal_form(a, upper = 1, lower= 1):
"""
a is a numpy square matrix
this function converts a square matrix to diagonal ordered form
returned matrix in ab shape which can be used directly for scipy.linalg.solve_banded
"""
n = a.shape[1]
assert(np.all(a.shape ==(n,n)))
ab = np.zeros((2*n-1, n))
for i in range(n):
ab[i,(n-1)-i:] = np.diagonal(a,(n-1)-i)
for i in range(n-1):
ab[(2*n-2)-i,:i+1] = np.diagonal(a,i-(n-1))
mid_row_inx = int(ab.shape[0]/2)
upper_rows = [mid_row_inx - i for i in range(1, upper+1)]
upper_rows.reverse()
upper_rows.append(mid_row_inx)
lower_rows = [mid_row_inx + i for i in range(1, lower+1)]
keep_rows = upper_rows+lower_rows
ab = ab[keep_rows,:]
return ab
ab = diagonal_form(a, upper=1, lower=1) # for tridiagonal matrix upper and lower = 1
x_sp = solve_banded((1,1), ab, b)
print("is our answer the same as scipy answer ({})".format(np.allclose(x, x_sp)))

Gradient Descent

So I am writing a program that handles gradient descent. Im using this method to solve equations of the form
Ax = b
where A is a random 10x10 matrix and b is a random 10x1 matrix
Here is my code:
import numpy as np
import math
import random
def steepestDistance(A,b,xO, e):
xPrev = xO
dPrev = -((A * xPrev) - b)
magdPrev = np.linalg.norm(dPrev)
danger = np.asscalar(((magdPrev * magdPrev)/(np.dot(dPrev.T,A * dPrev))))
xNext = xPrev + (danger * dPrev)
step = 1
while (np.linalg.norm((A * xNext) - b) >= e and np.linalg.norm((A * xNext) - b) < math.pow(10,4)):
xPrev = xNext
dPrev = -((A * xPrev) - b)
magdPrev = np.linalg.norm(dPrev)
danger = np.asscalar((math.pow(magdPrev,2))/(np.dot(dPrev.T,A * dPrev)))
xNext = xPrev + (danger * dPrev)
step = step + 1
return xNext
##print(steepestDistance(np.matrix([[5,2],[2,1]]),np.matrix([[1],[1]]),np.matrix([[0.5],[0]]), math.pow(10,-5)))
def chooseRandMatrix():
matrix = np.zeros(shape = (10,10))
for i in range(10):
for a in range(10):
matrix[i][a] = random.randint(0,100)
return matrix.T * matrix
def chooseRandColArray():
arra = np.zeros(shape = (10,1))
for i in range(10):
arra[i][0] = random.randint(0,100)
return arra
for i in range(4):
matrix = np.asmatrix(chooseRandMatrix())
array = np.asmatrix(chooseRandColArray())
print(steepestDistance(matrix, array, np.asmatrix(chooseRandColArray()),math.pow(10,-5)))
When I run the method steepestDistance on the random matrix and column, I keep getting an infinite loop. It works fine when simple 2x2 matrices are used for A, but it loops indefinitely for 10x10 matrices. The problem is in np.linalg.norm((A * xNext) - b); it keeps growing indefinitely. Thats why I put an upper bound on it; Im not supposed to do it for the algorithm however. Can someone tell me what the problem is?
Solving a linear system Ax=b with gradient descent means to minimize the quadratic function
f(x) = 0.5*x^t*A*x - b^t*x.
This only works if the matrix A is symmetric, A=A^t, since the derivative or gradient of f is
f'(x)^t = 0.5*(A+A^t)*x - b,
and additionally A must be positive definite. If there are negative eigenvalues,then the descent will proceed to minus infinity, there is no minimum to be found.
One work-around is to replace b by A^tb and A by a^t*A, that is to minimize the function
f(x) = 0.5*||A*x-b||^2
= 0.5*x^t*A^t*A*x - b^t*A*x + 0.5*b^t*b
with gradient
f'(x)^t = A^t*A*x - A^t*b
But for large matrices A this is not recommended since the condition number of A^t*A is about the square of the condition number of A.

Categories