I am fairly new in python, and I am trying to have a plot, based on data stored in a file. This file may be updated at any time, so I am trying to make the drawing updated every 3 seconds (so I don't use all the CPU). My problem is that the GUI freezes after the lunch.
#!/usr/bin/python
# _*_ coding: utf8 _*_
import matplotlib.pyplot as plt
import numpy as np
import time
plt.ion()
plt.figure()
i=0
while 1:
taille=0
fichier=np.loadtxt('data/US.SAVE')
fichier1=np.loadtxt('data/cond.SAVE')
taille1=np.size(fichier1[:,1])
taille=np.size(fichier[:,1])
min=min(fichier[0,0],fichier1[0,0]);
fichier[:,0]=fichier[:,0]-min
fichier1[:,0]=fichier1[:,0]-min
if (taille != taille1) :
printErrors("TAILLE DE FICHIERS DIFFERENTES")
nb_chunks=np.size(fichier1[1,:])
nb_inputs=np.size(fichier[1,:])
plt.subplot(3,1,1)
plt.bar(fichier[:,0],fichier[:,1],align='center',width=0.0001, facecolor='b', label="US")
x1,x2,y1,y2 = plt.axis()
x1=x1-0.0001
plt.axis([x1, x2, y1, 1.2])
plt.legend(ncol=3,prop={'size':9})
plt.title("US ")
plt.ylabel('Activation')
plt.xlabel('Time')
plt.subplot(3,1,2)
plt.bar(fichier1[:,0],fichier1[:,1],align='center',width=0.0001, facecolor='b', label="response")
plt.axis([x1, x2, y1, 1.2])
plt.legend(ncol=3,prop={'size':9})
plt.title("Response ")
plt.ylabel('Activation')
plt.xlabel('Time')
plt.subplot(3,1,3)
plt.bar(fichier[:,0]-fichier1[:,0],fichier1[:,1],align='center',width=0.0001, facecolor='b', label="Error")
plt.axis([x1, x2, y1, 1.2])
plt.legend(ncol=3,prop={'size':9})
plt.title("Error")
plt.ylabel('Activation')
plt.xlabel('Time')
plt.draw()
name1='data/Conditionnement.eps'
plt.savefig(name1,dpi=256)
plt.draw()
del fichier,fichier1,min
i=i+1
time.sleep(3)
plt.show()
I did not find any other topic on a file based drawing.
You want to use the plt.pause(3) function instead of time.sleep(). pause includes the necessary calls to the gui main loop to cause the figure to re-draw.
also see: Python- 1 second plots continous presentation, matplotlib real-time linear line, pylab.ion() in python 2, matplotlib 1.1.1 and updating of the plot while the program runs,
On top of the answer of #tcaswell (that solve the problem), I suggest to rethink the script in a more OO way.
I have tried this:
plt.ion()
plt.figure()
plt.show()
while True:
x=np.arange(10)
y=np.random.rand(10)
plt.subplot(121)
plt.plot(x,y)
plt.subplot(122)
plt.plot(x,2*y)
plt.draw()
plt.pause(3)
but it does not work (it looks like it opens a gui at plt.figure and then at each loop.
A solution like this:
plt.ion()
fig, ax = plt.subplots(nrows=2, ncols=1)
plt.show()
while True:
x=np.arange(10)
y=np.random.rand(10)
ax[0].plot(x,y)
ax[1].plot(x,2*y)
plt.draw()
plt.pause(3)
is much more efficient (axes are created only once), neater (at the end matplotlib is OO) and potentially less prone to memory leaks.
Besides, from your most I gather that at each loop you read in the files again and then plot the new lines. If this is the case, you want to clear first the content of the axes before redrawing. In my simple case you can clear the axes with
for a in ax:
a.clear()
Related
I am using Matplotlib to plot a real time event in Anaconda prompt.
When I update plot by plt.draw() or plt.show(), I loose control of the thing I am doing. Plot window acts like its clicked and this blocks my other control on the command prompt.
I tried adding
plt.show(block=False)
but it didnt help.
The code is like below,
fig, ax = plt.subplots()
plt.ion()
plt.show(block=False)
while(True):
ax.plot(y_plt_points,x_plt_points,'ro')
plt.draw()
plt.pause(0.01)
This link has an example of real time plotting with matplotlib. I think the main takeaway is that you don't need to use plt.show() or plt.draw() on every call to plot. The example uses set_ydata instead. Simalarly set_xdata can be used to update your x_axis variables. Code below
import matplotlib.pyplot as plt
import numpy as np
# use ggplot style for more sophisticated visuals
plt.style.use('ggplot')
def live_plotter(x_vec,y1_data,line1,identifier='',pause_time=0.1):
if line1==[]:
# this is the call to matplotlib that allows dynamic plotting
plt.ion()
fig = plt.figure(figsize=(13,6))
ax = fig.add_subplot(111)
# create a variable for the line so we can later update it
line1, = ax.plot(x_vec,y1_data,'-o',alpha=0.8)
#update plot label/title
plt.ylabel('Y Label')
plt.title('Title: {}'.format(identifier))
plt.show()
# after the figure, axis, and line are created, we only need to update the y-data
line1.set_ydata(y1_data)
# adjust limits if new data goes beyond bounds
if np.min(y1_data)<=line1.axes.get_ylim()[0] or np.max(y1_data)>=line1.axes.get_ylim()[1]:
plt.ylim([np.min(y1_data)-np.std(y1_data),np.max(y1_data)+np.std(y1_data)])
# this pauses the data so the figure/axis can catch up - the amount of pause can be altered above
plt.pause(pause_time)
# return line so we can update it again in the next iteration
return line1
When I run this function on the example below I don't have any trouble using other applications on my computer
size = 100
x_vec = np.linspace(0,1,size+1)[0:-1]
y_vec = np.random.randn(len(x_vec))
line1 = []
i=0
while i<1000:
i=+1
rand_val = np.random.randn(1)
y_vec[-1] = rand_val
line1 = live_plotter(x_vec,y_vec,line1)
y_vec = np.append(y_vec[1:],0.0)
I think this is what you are looking for.
I had a similar issue, fixed it by replacing:
plt.pause(0.01)
with
fig.canvas.flush_events()
A more detailed explanation found here:
How to keep matplotlib (python) window in background?
I am trying to automatically update a scatter plot.
The source of my X and Y values is external, and the data is pushed automatically into my code in a non-predicted time intervals (rounds).
I have only managed to plot all the data when the whole process ended, whereas I am trying to constantly add and plot data into my canvas.
What I DO get (at the end of the whole run) is this:
Whereas, what I am after is this:
A simplified version of my code:
import matplotlib.pyplot as plt
def read_data():
#This function gets the values of xAxis and yAxis
xAxis = [some values] #these valuers change in each run
yAxis = [other values] #these valuers change in each run
plt.scatter(xAxis,yAxis, label = 'myPlot', color = 'k', s=50)
plt.xlabel('x')
plt.ylabel('y')
plt.show()
There are several ways to animate a matplotlib plot. In the following let's look at two minimal examples using a scatter plot.
(a) use interactive mode plt.ion()
For an animation to take place we need an event loop. One way of getting the event loop is to use plt.ion() ("interactive on"). One then needs to first draw the figure and can then update the plot in a loop. Inside the loop, we need to draw the canvas and introduce a little pause for the window to process other events (like the mouse interactions etc.). Without this pause the window would freeze. Finally we call plt.waitforbuttonpress() to let the window stay open even after the animation has finished.
import matplotlib.pyplot as plt
import numpy as np
plt.ion()
fig, ax = plt.subplots()
x, y = [],[]
sc = ax.scatter(x,y)
plt.xlim(0,10)
plt.ylim(0,10)
plt.draw()
for i in range(1000):
x.append(np.random.rand(1)*10)
y.append(np.random.rand(1)*10)
sc.set_offsets(np.c_[x,y])
fig.canvas.draw_idle()
plt.pause(0.1)
plt.waitforbuttonpress()
(b) using FuncAnimation
Much of the above can be automated using matplotlib.animation.FuncAnimation. The FuncAnimation will take care of the loop and the redrawing and will constantly call a function (in this case animate()) after a given time interval. The animation will only start once plt.show() is called, thereby automatically running in the plot window's event loop.
import matplotlib.pyplot as plt
import matplotlib.animation
import numpy as np
fig, ax = plt.subplots()
x, y = [],[]
sc = ax.scatter(x,y)
plt.xlim(0,10)
plt.ylim(0,10)
def animate(i):
x.append(np.random.rand(1)*10)
y.append(np.random.rand(1)*10)
sc.set_offsets(np.c_[x,y])
ani = matplotlib.animation.FuncAnimation(fig, animate,
frames=2, interval=100, repeat=True)
plt.show()
From what I understand, you want to update interactively your plot. If so, you can use plot instead of scatter plot and update the data of your plot like this.
import numpy
import matplotlib.pyplot as plt
fig = plt.figure()
axe = fig.add_subplot(111)
X,Y = [],[]
sp, = axe.plot([],[],label='toto',ms=10,color='k',marker='o',ls='')
fig.show()
for iter in range(5):
X.append(numpy.random.rand())
Y.append(numpy.random.rand())
sp.set_data(X,Y)
axe.set_xlim(min(X),max(X))
axe.set_ylim(min(Y),max(Y))
raw_input('...')
fig.canvas.draw()
If this is the behaviour your are looking for, you just need to create a function appending the data of sp, and get in that function the new points you want to plot (either with I/O management or whatever the communication process you're using).
I hope it helps.
I am trying to automatically update a scatter plot.
The source of my X and Y values is external, and the data is pushed automatically into my code in a non-predicted time intervals (rounds).
I have only managed to plot all the data when the whole process ended, whereas I am trying to constantly add and plot data into my canvas.
What I DO get (at the end of the whole run) is this:
Whereas, what I am after is this:
A simplified version of my code:
import matplotlib.pyplot as plt
def read_data():
#This function gets the values of xAxis and yAxis
xAxis = [some values] #these valuers change in each run
yAxis = [other values] #these valuers change in each run
plt.scatter(xAxis,yAxis, label = 'myPlot', color = 'k', s=50)
plt.xlabel('x')
plt.ylabel('y')
plt.show()
There are several ways to animate a matplotlib plot. In the following let's look at two minimal examples using a scatter plot.
(a) use interactive mode plt.ion()
For an animation to take place we need an event loop. One way of getting the event loop is to use plt.ion() ("interactive on"). One then needs to first draw the figure and can then update the plot in a loop. Inside the loop, we need to draw the canvas and introduce a little pause for the window to process other events (like the mouse interactions etc.). Without this pause the window would freeze. Finally we call plt.waitforbuttonpress() to let the window stay open even after the animation has finished.
import matplotlib.pyplot as plt
import numpy as np
plt.ion()
fig, ax = plt.subplots()
x, y = [],[]
sc = ax.scatter(x,y)
plt.xlim(0,10)
plt.ylim(0,10)
plt.draw()
for i in range(1000):
x.append(np.random.rand(1)*10)
y.append(np.random.rand(1)*10)
sc.set_offsets(np.c_[x,y])
fig.canvas.draw_idle()
plt.pause(0.1)
plt.waitforbuttonpress()
(b) using FuncAnimation
Much of the above can be automated using matplotlib.animation.FuncAnimation. The FuncAnimation will take care of the loop and the redrawing and will constantly call a function (in this case animate()) after a given time interval. The animation will only start once plt.show() is called, thereby automatically running in the plot window's event loop.
import matplotlib.pyplot as plt
import matplotlib.animation
import numpy as np
fig, ax = plt.subplots()
x, y = [],[]
sc = ax.scatter(x,y)
plt.xlim(0,10)
plt.ylim(0,10)
def animate(i):
x.append(np.random.rand(1)*10)
y.append(np.random.rand(1)*10)
sc.set_offsets(np.c_[x,y])
ani = matplotlib.animation.FuncAnimation(fig, animate,
frames=2, interval=100, repeat=True)
plt.show()
From what I understand, you want to update interactively your plot. If so, you can use plot instead of scatter plot and update the data of your plot like this.
import numpy
import matplotlib.pyplot as plt
fig = plt.figure()
axe = fig.add_subplot(111)
X,Y = [],[]
sp, = axe.plot([],[],label='toto',ms=10,color='k',marker='o',ls='')
fig.show()
for iter in range(5):
X.append(numpy.random.rand())
Y.append(numpy.random.rand())
sp.set_data(X,Y)
axe.set_xlim(min(X),max(X))
axe.set_ylim(min(Y),max(Y))
raw_input('...')
fig.canvas.draw()
If this is the behaviour your are looking for, you just need to create a function appending the data of sp, and get in that function the new points you want to plot (either with I/O management or whatever the communication process you're using).
I hope it helps.
I am trying to plot figures in real time using a for loop. I have the following simple code:
import matplotlib.pyplot as plt
plt.ion()
plt.figure()
for i in range(100):
plt.plot([i], [i], 'o')
plt.draw()
plt.pause(0.0001)
This code does not show the figure until it has finished computing, which I don't want. I want it to draw the figure after every loop. If I replace plt.draw() with plt.show, multiple figures are output in real time, but I want them all to appear in the same figure. Any ideas?
EDIT:
I downloaded PyCharm with Anaconda and everything works fine. I guess it's a problem with Spyder since I tried a few different versions of it without success. If anyone has any clue what is causing this problem in Spyder, let me know!
Adapted for your case from : Python realtime plotting
import matplotlib.pyplot as plt
import numpy as np
import time
fig = plt.figure()
ax = fig.add_subplot(111)
# some X and Y data
x = [0]
y = [0]
li, = ax.plot(x, y,'o')
# draw and show it
fig.canvas.draw()
plt.show(block=False)
# loop to update the data
for i in range(100):
try:
x.append(i)
y.append(i)
# set the new data
li.set_xdata(x)
li.set_ydata(y)
ax.relim()
ax.autoscale_view(True,True,True)
fig.canvas.draw()
time.sleep(0.01)
except KeyboardInterrupt:
plt.close('all')
break
This solution example has worked for me on multiple machines. Try adjusting plt.pause(...)
import matplotlib.pyplot as plt
import numpy as np
F = lambda x: np.sin(2*x)
plt.ion()
x = np.linspace(0, 1, 200)
plt.plot(x, F(x))
for i in range(100):
if 'ax' in globals(): ax.remove()
newx = np.random.choice(x, size = 10)
ax = plt.scatter(newx, F(newx))
plt.pause(0.05)
plt.ioff()
plt.show()
Hey I was having the same problem, I checked other questions and my issue was solved when I plugged a pause into my solution. Here's some example code that worked for me.
import matplotlib.pyplot as plt
import numpy as np
plt.ion()
x = np.arange(0, 4*np.pi, 0.1)
y = [np.sin(i) for i in x]
plt.plot(x, y, 'g-', linewidth=1.5, markersize=4)
plt.pause(0.0001)
plt.plot(x, [i**2 for i in y], 'g-', linewidth=1.5, markersize=4)
plt.pause(0.0001)
plt.plot(x, [i**2*i+0.25 for i in y], 'r-', linewidth=1.5, markersize=4)
plt.pause(0.0001)
The solution was posted here:
Matplotlib ion() and subprocesses
The problem - and the solution - is highly dependent on the plot.draw() function within the Python environment and back end, and may even vary in different product releases. It manifests itself in different ways depending on the environment. The problem shows up in many places on stackoverflow with some solutions working for some people and not for others.
The gold standard on my Windows laptop is running the Python from the command line - no IDE, just plain vanilla Python3. draw() as shown in the example always works fine there.
If I try it in Jupyter notebook on the same machine, no amount of draw(), plot.pause(), plot.show(), or any other suggestion works. I tried %matplotlib with notebook, widget and ipympl. Nothing gets drawn until complete end of cell code execution.
Some other sources on stackoverflow suggested using figure.canvas.flush_events(). I had some success with that and investigated further.
The best solution turned out to be to run the draw() at the figure.canvas level instead of the axes or plot level.
You can get the figure by creating your plot with command:
fig, graph, = plt.subplots()
or, if you've already created the plot, as in the code at the top of the ticket, put the following outside the loop:
fig = plt.gcf() #get current figure
Inside the loop, instead of plt.draw(), use
fig.canvas.draw()
It's proven reliable in my Jupyter Notebook environment even when running multiple axes/plots across multiple figures. I can drop in sleep() statements and everything appears when expected.
Your mileage may vary.
I have function that renders some plot and then saves it to png file. Simplified code:
def render_plot(self, parameter1, parameter2):
dates = get_my_dates()
values = get_my_values()
fig = plt.figure() # freezes here when calling render_plot for the 2nd or 3rd time!
ax = fig.add_subplot(111)
... # performing some calculations and drawing plots
ax.plot_date(dates, values, '-', marker='o')
plt.savefig("media/plot.png")
plt.cla()
plt.clf()
plt.close()
Function freezes at line "fig = plt.figure()" (100% CPU usage - infinite loop?) but only when calling function 2nd or 3rd time, works fine for the first time and rendering good looking plot. What could be the reason?
fig = plt.figure() will cause the freeze for my PyQt5 as well.
I don't exactly know the reasons, but I have found a nice workaround that works for me.
Workaround:
from matplotlib. Figure import Figure
fig1 = Figure()
ax1 = fig1.add_subplot()
This is probably not the reason but first, you do not need
ax=fig.add_subplot(111)
Try just
ax = plt.gca()
Then, comment
plt.close()
It may help. Just a guess.