This question already has answers here:
Is it possible to use ViBe algorithm, implemented in opencv, for systema without GPU?
(3 answers)
Closed 10 years ago.
i have these
codebook.py
#http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.148.9778&rep=rep1&type=pdf
import numpy as np
import cv2
alpha = 5
beta = 0.95
Tdel = 80
Tadd = 140
Th= 80
mn,mx,f,l,p,q=0,1,2,3,4,5
class CodeBook():
def __init__(self,h,w):
self.h = h
self.w = w
self.M = np.empty((h, w), dtype=np.object)
self.H = np.empty((h, w), dtype=np.object)
filler = np.frompyfunc(lambda x: list(), 1, 1)
filler(self.M,self.M)
filler(self.H,self.H)
self.t = 1
def updatev(self,gray,cb):
I,t = gray,self.t
if not cb:
c = [max(0.0,I-alpha),min(255.0,I+alpha),1,t-1,t,t]
cb.append(c)
else:
found = False
for cm in cb:
if(cm[mn]<=I<=cm[mx] and not found):
cm[mn] = ((I-alpha)+(cm[f]*cm[mn]))/(cm[f]+1.0)
cm[mx] = ((I+alpha)+(cm[f]*cm[mx]))/(cm[f]+1.0)
cm[f] += 1
#cm[l] = max(cm[l],t-cm[q])
cm[l] = 0
cm[q] = t
found = True
else:
cm[l] = max(cm[l],10-cm[q]+cm[p]-1)
if not found:
c = [max(0.0,I-alpha),min(255.0,I+alpha),1,t-1,t,t]
cb.append(c)
return cb
def update(self,gray):
h,w,M = self.h,self.w,self.M
updatev = np.vectorize(self.updatev,otypes=[np.object])
self.M=updatev(gray,M)
self.t += 1
def fgv(self,gray,cwm,cwh):
I,t = gray,self.t
pixval = 0
found = False
for cm in cwm:
if(cm[mn]<=I<=cm[mx] and not found):
cm[mn] = (1-beta)*(I-alpha) + (beta*cm[mn])
cm[mx] = (1-beta)*(I+alpha) + (beta*cm[mx])
cm[f] += 1
#cm[l] = max(cm[l],t-cm[q])
cm[l] = 0
cm[q] = t
found = True
else:
cm[l] += 1
#cm[l]=max(cm[l],t-cm[q]+cm[p]-1)
cwm[:] = [cw for cw in cwm if cw[l]<Tdel]
if found: return 0
for cm in cwh:
if(cm[mn]<=I<=cm[mx] and not found):
cm[mn] = (1-beta)*(I-alpha) + (beta*cm[mn])
cm[mx] = (1-beta)*(I+alpha) + (beta*cm[mx])
cm[f] += 1
#cm[l] = max(cm[l],t-cm[q])
cm[l] = 0
cm[q] = t
found = True
else:
#cm[l]=max(cm[l],t-cm[q]+cm[p]-1)
cm[l] += 1
if not found:
c = [max(0.0,I-alpha),min(255.0,I+alpha),1,0,t,t]
cwh.append(c)
cwh[:] = [cw for cw in cwh if cw[l]<Th]
tomove = [cw for cw in cwh if cw[f]>Tadd]
cwh[:] = [cw for cw in cwh if not cw in tomove]
cwm.extend(tomove)
return 255
def fg(self,gray):
h,w,M,H = self.h,self.w,self.M,self.H
fgv = np.vectorize(self.fgv,otypes=[np.uint8])
fg = fgv(gray,M,H)
self.t += 1
return fg
test.py
import cv2
import sys
import numpy as np
import time
import cProfile
import pyximport; pyximport.install(reload_support=True,
setup_args={'script_args':["--compiler=mingw32"]})
import codebook
c = cv2.VideoCapture(0)
c.set(3,320)
c.set(4,240)
cv2.namedWindow('vid',0)
cv2.namedWindow('fg',0)
_,img = c.read()
img = cv2.resize(img,(160,120))
h,w = img.shape[:2]
cb = codebook.CodeBook(h,w)
N=0
def fillholes(gray):
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3))
res = cv2.morphologyEx(gray,cv2.MORPH_OPEN,kernel)
def run():
while(1):
global N
_,img = c.read()
img = cv2.resize(img,(160,120))
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cv2.imshow('vid',gray)
if N < 10:
cb.update(gray)
else:
start = time.clock()
fg = cb.fg(gray)
print time.clock()-start
element = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(2,2))
fg= cv2.erode(fg,element)
fillholes(fg)
cv2.imshow('fg',fg)
N += 1
if cv2.waitKey(5)==27:
break
run()
cv2.destroyAllWindows()
c.release()
the code is stuck # fgv. cython can speed it up somewhat. but it is still running slowly. i am thinking of doing either of the two
make it run in parallel
multithreading. i am using epd's numpy and changed the MKL_NUM_THREADS to 8. yet it is still bound to a single core.
distribute to worker processes array slices
redo some/all(which? i have no exp) parts in cpp although i really would like to avoid this
i have changed fgv as much as i know how. please let me know what should i be looking at next. thanks a lot!
fixed:
Is it possible to use ViBe algorithm, implemented in opencv, for systema without GPU?
more:http://www.changedetection.net/
Related
I am trying to implement this Wiener filter to reduced the impact of a camera out of focus: https://docs.opencv.org/4.x/de/d3c/tutorial_out_of_focus_deblur_filter.html. The original code is in C++, and I rewrote it in python, but I do not get the same output as the example.
Here is my code:
import cv2 as cv
import numpy as np
def calcPSF(size, R):
h = np.zeros(size, dtype=np.float32)
cv.circle(h,(size[1]//2,size[0]//2), R, 1, -1)
psf = h/np.sum(h)
return psf
def calcWnrFilter(psf, SNR):
h_psf = np.fft.fftshift(psf)
h_planes = [np.float32(h_psf), np.zeros(h_psf.shape, np.float32)]
h_complexI = cv.merge(h_planes)
h_complexI = cv.dft(h_complexI)
h_planes = cv.split(h_complexI)
denom = np.power(np.abs(h_planes[0]),2) + (1/SNR)
wiener = np.divide(h_planes[0], denom, dtype = np.float32)
return wiener
def filter2DFreq(img, wiener):
planes = [np.float32(img), np.zeros(img.shape, np.float32)]
complexI = cv.merge(planes)
complexI = np.divide(cv.dft(complexI), complexI.size, dtype = np.float32)
planesH = [np.float32(wiener), np.zeros(wiener.shape, np.float32)]
complexH = cv.merge(planesH)
complexIH = cv.mulSpectrums(complexI, complexH, 0)
complexIH = cv.idft(complexIH)
planes = cv.split(complexIH)
out = planes[0]
return out
def deBlur(img, R, SNR):
rows, cols = img.shape
m = cv.getOptimalDFTSize( rows )
n = cv.getOptimalDFTSize( cols )
img = (cv.copyMakeBorder(img, 0, m - rows, 0, n - cols, cv.BORDER_CONSTANT, value=[0, 0, 0])/255).astype(np.float32)
h = calcPSF((m,n), R)
Hw = calcWnrFilter(h, SNR)
out = filter2DFreq(img, Hw)
return out
img = cv.imread("original_blur.jpg")[:,:,0]
while True:
v = deBlur(img,53,5200)
cv.imshow("in", img)
cv.imshow("out", v)
key = cv.waitKey(1) & 0xFF
if key == 27:
break
cv.destroyAllWindows()
And here are my imput and output
This is what I am supposed to get:
I verified the dtype of all my variable, everything is in np.float32, and spent hours looking for differences with the original code.
I'm trying to import these on Jupyter, however I got an error when I run these code that say ModuleNotFoundError: No module named 'anna_phog'. I have another python file named as 'anna_phog'. How do I fix this?
below is 'anna_phog_demo.py' where I got the error
from anna_phog import anna_phog
import imageio
import matplotlib.pyplot as plt
image_path = "image_0058.jpg"
S = 8
angle = 360
Level = 3
roi = [1,225,1,300]
save=True
Image = imageio.imread(image_path)
p = anna_phog(Image, bin, angle, Level, roi)
print("P: \n{}".format(p))
print(len(p), type(p))
And below is the 'anna_phog.py' code
import numpy as np
import imageio
import cv2
import matplotlib.pyplot as plt
def anna_phog(Img, bin, angle, L, roi):
if Img.shape[2] == 3:
G = cv2.cvtColor(Img, cv2.COLOR_BGR2GRAY)
else:
G = Img
if np.sum(G) > 100:
# apply automatic Canny edge detection using the computed median
sigma = 0.33
v = np.median(G)
lower = int(max(0, (1.0 - sigma) * v))
upper = int(min(255, (1.0 + sigma) * v))
E = cv2.Canny(G,lower,upper) #high and low treshold
GradientX, GradientY = np.gradient(G)
GradientYY = np.gradient(GradientY, axis=1)
Gr = np.sqrt(np.square(GradientX)+np.square(GradientY))
index = GradientX == 0
GradientX[index] = 1e-5 #maybe another value
YX = GradientY*GradientX
if angle == 180: A = ((np.arctan(YX)+(np.pi/2))*180)/np.pi
if angle == 360: A = ((np.arctan2(GradientY,GradientX)+np.pi)*180)/np.pi
bh, bv = anna_BinMatrix(A,E,Gr,angle,bin)
else:
bh = np.zeros(Img.shape)
bv = np.zeros(Img.shape)
bh_roi = bh[roi[0]:roi[1], roi[2]:roi[3]]
bv_roi = bv[roi[0]:roi[1], roi[2]:roi[3]]
p = anna_PhogDescriptor(bh_roi,bv_roi,L,bin)
return p
def anna_BinMatrix(A,E,G,angle,bin):
n, contorns = cv2.connectedComponents(E, connectivity=8)
X = E.shape[1]
Y = E.shape[0]
bm = np.zeros(shape=(Y,X))
bv = np.zeros(shape=(Y,X))
nAngle = angle/bin
for i in range(n):
posY, posX = np.where(contorns==i)
for j in range(posY.shape[0]):
pos_x = posX[j]
pos_y = posY[j]
b = np.ceil(A[pos_y,pos_x]/nAngle)
if b==0: bin=1
if G[pos_y,pos_x]>0:
bm[pos_y,pos_x] = b
bv[pos_y,pos_x] = G[pos_y,pos_x]
return (bm, bv)
def anna_PhogDescriptor(bh,bv,L,bin):
p = np.array([])
#level 0
for b in range(bin):
ind = bh==b
p = np.append(p, np.sum(bv[ind]))
#higher levels
for l in range(1, L+1):
x = int(np.trunc(bh.shape[1]/(2**l)))
y = int(np.trunc(bh.shape[0]/(2**l)))
for xx in range(0, bh.shape[1]-x+1, x):
for yy in range(0, bh.shape[0]-y+1, y):
print(l)
bh_cella = bh[yy:yy+y, xx:xx+x]
bv_cella = bv[yy:yy+y, xx:xx+x]
for b in range(bin):
ind = bh_cella==b
p = np.append(p, np.sum(bv_cella[ind], axis=0))
if np.sum(p)!=0:
p = p/np.sum(p)
return p
Below is the screenshot of the folder where I put these file
folder path
Hello guys i am trying to implement an algortihm to remove water from underwater images and make image more noticable , but i got an errror ValueError: max() arg is an empty sequence , at the function homomorpic on this line r = max(np.ravel(result[:,:i])) , the error is caused because the result array is empty but i filled it above .Here the code below.
import numpy as np
import cv2
def homomorpic(img):
img = np.float32(img)
#img = img/255
rows , cols , dim = img.shape
(rh,rl,cutoff) = 1.3, 0.8, 32
b,g,r = cv2.split(img)
y_log_b = np.log(b + 0.01)
y_log_g = np.log(g + 0.01)
y_log_r = np.log(r + 0.01)
y_fft_b= np.fft.fft2(y_log_b)
y_fft_g= np.fft.fft2(y_log_g)
y_fft_r= np.fft.fft2(y_log_r)
y_fft_b_shift = np.fft.fftshift(y_log_b)
y_fft_g_shift = np.fft.fftshift(y_log_g)
y_fft_r_shift = np.fft.fftshift(y_log_r)
D0=cols/cutoff
H= np.ones((rows,cols))
B= np.ones((rows,cols))
for i in range(rows):
for j in range(cols):
H[i][j] = ((rh-rl)* (1-np.exp(-((i-rows/2)**2+(j-cols/2)**2)/(2*D0**2))))+rl
result_filter_b = H* y_fft_b_shift
result_filter_g = H* y_fft_g_shift
result_filter_r = H* y_fft_r_shift
result_b_intern = np.real(np.fft.ifft2(np.fft.ifftshift(result_filter_b)))
result_g_intern = np.real(np.fft.ifft2(np.fft.ifftshift(result_filter_g)))
result_r_intern = np.real(np.fft.ifft2(np.fft.ifftshift(result_filter_r)))
result_b = np.exp(result_b_intern)
result_g = np.exp(result_g_intern)
result_r = np.exp(result_r_intern)
result = np.zeros((rows,cols,dim))
result[:,:,0] = result_b
result[:,:,1] = result_g
result[:,:,2] = result_r
ma = -1
mi = 500
for i in range(3):
r = max(np.ravel(result[:,:i]))
x = min(np.ravel(result[:,:i]))
if r > ma :
ma = r
if x < mi :
mi = x
return(result)
image = cv2.imread("eg.png")
image2 = homomorpic(image)
Thanks for any help or suggestion.
In this loop for i in range(3): the first value of i would be 0.
This will later on lead to this r = max(np.ravel(result[:,:0])) where the result from the slicing would be empty.
You would want to shift yourrange forward like this:
for i in range(1, 3+1):
I am trying to create an image array from scratch.
I got the code running but it takes arrounds 30 secs to run it.
I feel it could be faster by using numpy native functions.
How can I do this?
import cv2
import numpy as np
import time
volumes = np.random.randint(low=0, high=200, size=10000)
print(volumes)
image_heigh = 128
image_width = 256
image_channel = 3
show_img = False
def nomralized(data, data_min, data_max, maximum_value):
nomamized_data = maximum_value * ((data - data_min) / (data_max - data_min))
return nomamized_data
start_time = time.time()
for ii in range(len(volumes)-image_width):
# ===================== part to optimize start
final_image = np.zeros((image_heigh, image_width, image_channel))
start = ii
end = ii + image_width
current_vols = volumes[start:end]
# nomalize data
vol_min = 0
vol_max = np.max(current_vols)
vol_norm = nomralized(data=current_vols,
data_min=vol_min,
data_max=vol_max,
maximum_value=image_heigh)
for xxx in range(image_width):
final_image[:int(vol_norm[xxx]), xxx, :] = 1
# ===================== part to optimize end
if show_img:
image = np.float32(final_image)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
cv2.imshow("ok", image)
cv2.waitKey(27)
print("total running time: ", (time.time() - start_time))
How can I do to make this image array creation faster?
I need to create the image every timesteps because I want to simulate real live data stream that come every new timesteps.
This is why I would like to optimize only this part of the code :
for xxx in range(image_width):
final_image[:int(vol_norm[xxx]), xxx, :] = 1
How can I do this?
First simplest optimizations are next:
Use comparing values to np.arange(...) instead of inner loop.
Use gray image instead of 3-channels RGB. 3 times less data to process.
Use np.uint8 type instead of np.float32, which is faster to process and doesn't need conversion to float32 for CV2 visualizing.
All these above optimizations give huge speedup (10x times), and my running time is 2.6 sec instead of 27 sec before.
Also another very useful optimization that I didn't do is that you don't need to recompute previous image pixels in a case when max/min of whole data within current window didn't change. You need to recompute previous image data only in the case if max/min changed. And I expect that your real-life data is gradually changing like Forex or Bitcoin prices, hence max/min change within a window is very non-often.
Optimizations 1)-3) mentioned above are implemented in the next code:
import cv2
import numpy as np
import time
volumes = np.random.randint(low=0, high=200, size=10000)
print(volumes)
image_heigh = 128
image_width = 256
image_channel = 3
show_img = False
def nomralized(data, data_min, data_max, maximum_value):
nomamized_data = maximum_value * ((data - data_min) / (data_max - data_min))
return nomamized_data
start_time = time.time()
aranges = np.arange(image_heigh, dtype = np.int32)[:, None]
for ii in range(len(volumes)-image_width):
# ===================== part to optimize start
#final_image = np.zeros((image_heigh, image_width, image_channel), dtype = np.float32)
start = ii
end = ii + image_width
current_vols = volumes[start:end]
# nomalize data
vol_min = 0
vol_max = np.max(current_vols)
vol_norm = nomralized(data=current_vols,
data_min=vol_min,
data_max=vol_max,
maximum_value=image_heigh)
final_image = (aranges < vol_norm[None, :].astype(np.int32)).astype(np.uint8) * 255
# ===================== part to optimize end
if show_img:
cv2.imshow('ok', final_image)
cv2.waitKey(27)
print("total running time: ", (time.time() - start_time))
For above code I just did one more optimization of inner loop which speed-up code above even 2x times more to have timings of 1.3 sec. But also I put back 3 channels plus float32, this reduced speed resulting in final 2.8 sec, here is the code
Another next optimization is possible if re-computing old images data is not needed.
Main thing to be optimized was that you were re-computing almost same whole image on each step with 1 pixel shift-step along width. Instead of this you need to compute whole image once, then shift right not 1 pixel but whole image width.
Then after this optimization running time is 0.08 sec.
And do 1 pixel stepping only for showing animation, not for computing image data, image data should be computed just once if you need speed.
import cv2
import numpy as np
import time
volumes = np.random.randint(low=0, high=200, size=10000)
print(volumes)
image_heigh = 128
image_width = volumes.size #256
image_channel = 3
screen_width = 256
show_img = False
def nomralized(data, data_min, data_max, maximum_value):
nomamized_data = maximum_value * ((data - data_min) / (data_max - data_min))
return nomamized_data
start_time = time.time()
for ii in range(0, len(volumes), image_width):
# ===================== part to optimize start
final_image = np.zeros((image_heigh, image_width, image_channel))
start = ii
end = ii + image_width
current_vols = volumes[start:end]
# nomalize data
vol_min = 0
vol_max = np.max(current_vols)
vol_norm = nomralized(data=current_vols,
data_min=vol_min,
data_max=vol_max,
maximum_value=image_heigh)
for xxx in range(image_width):
final_image[:int(vol_norm[xxx]), xxx, :] = 1
# ===================== part to optimize end
if show_img:
for start in range(0, final_image.shape[1] - screen_width):
image = np.float32(final_image[:, start : start + screen_width])
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
cv2.imshow("ok", image)
cv2.waitKey(27)
print("total running time: ", (time.time() - start_time))
I also created animation image out of your data:
If you want to create same animation just append next piece of code to the end of script above:
# Needs: python -m pip install pillow
import PIL.Image
imgs = [PIL.Image.fromarray(final_image[:, start : start + screen_width].astype(np.uint8) * 255) for start in range(0, final_image.shape[1] - screen_width, 6)]
imgs[0].save('result.png', append_images = imgs[1:], save_all = True, lossless = True, duration = 100)
I've implemented also simulation of real-time live stream data rendering/visualizing.
live_stream() generator spits out random amount of data at random points of time, this is to simulate data generation process.
stream_fetcher() listens to live stream and records all data received to python queue q0, this fetcher is run in one thread.
renderer() gets data recorded by fetcher and renders it into image through your mathematical formulas and normalization process, it renders as much data as available, resulting in images with varying widths, rendered images are saved to another queue q1.
visualizer() visualizes rendered data by fetching as much rendered images as available.
All functions run in separate threads not to block whole process. Also if any of threads works to slow then it skips some of data to catch-up with current real-time data, thus every queue doesn't overflow.
Also you may see that visualized process is jumpy, it is not because functions are somewhat slow, but because live stream spits out different amount of data in each time step, this is how usually real-time data may behave.
In the next code I did also extra optimization mentioned before, that is not-recomputing image if min/max didn't change.
import cv2, numpy as np
import time, random, threading, queue
image_height = 256
image_width = 512
# Make results reproducible and deterministic
np.random.seed(0)
random.seed(0)
def live_stream():
last = 0.
while True:
a = np.random.uniform(low = -1., high = 1., size = random.randint(1, 20)).astype(np.float64).cumsum() + last
yield a
last = a[-1]
time.sleep(random.random() * 0.1)
q0 = queue.Queue()
def stream_fetcher():
for e in live_stream():
q0.put(e)
threading.Thread(target = stream_fetcher, daemon = True).start()
aranges = np.arange(image_height, dtype = np.int32)[:, None]
q1 = queue.Queue()
def renderer():
def normalized(data, data_min, data_max, maximum_value):
nomamized_data = maximum_value * ((data - data_min) / (data_max - data_min))
return nomamized_data
prev_image = np.zeros((image_height, 0), dtype = np.uint8)
prev_vols = np.zeros((0,), dtype = np.float64)
while True:
data = []
data.append(q0.get())
try:
while True:
data.append(q0.get(block = False))
except queue.Empty:
pass
vols = np.concatenate(data)[-image_width:]
prev_vols = prev_vols[-(image_width - vols.size) or prev_vols.size:]
concat_vols = np.concatenate((prev_vols, vols))[-image_width:]
vols_min, vols_max = np.amin(concat_vols), np.amax(concat_vols)
if prev_vols.size > 0 and (vols_min < np.amin(prev_vols) - 10 ** -8 or vols_max > np.amax(prev_vols) + 10 ** -8):
vols = concat_vols
prev_image = prev_image[:, :-prev_vols.size]
prev_vols = prev_vols[:0]
vols_norm = normalized(
data = vols, data_min = vols_min,
data_max = vols_max, maximum_value = image_height,
)
image = (aranges < vols_norm.astype(np.int32)[None, :]).astype(np.uint8) * 255
whole_image = np.concatenate((prev_image, image), axis = 1)[:, -image_width:]
q1.put(whole_image)
prev_image = whole_image
prev_vols = concat_vols
threading.Thread(target = renderer, daemon = True).start()
def visualizer():
imgs = []
while True:
data = []
data.append(q1.get())
try:
while True:
data.append(q1.get(block = False))
except queue.Empty:
pass
image = np.concatenate(data, axis = 1)[:, -image_width:]
cv2.imshow('ok', image)
cv2.waitKey(1)
if imgs is not None:
try:
# Needs: python -m pip install pillow
import PIL.Image
has_pil = True
except:
has_pil = False
imgs = None
if has_pil:
imgs.append(PIL.Image.fromarray(np.pad(image, ((0, 0), (image_width - image.shape[1], 0)), constant_values = 0)))
if len(imgs) >= 1000:
print('saving...', flush = True)
imgs[0].save('result.png', append_images = imgs[1:], save_all = True, lossless = True, duration = 100)
imgs = None
print('saved!', flush = True)
threading.Thread(target = visualizer, daemon = True).start()
while True:
time.sleep(0.1)
Above live process simulation is rendered into result.png which I show down below:
I've also decided to improve visualization, by using more advanced matplotlib instead of cv2 to be able to show axes and doing real-time plot drawing. Visualization image is down below:
Next is a matplotlib-based code corresponding to last image above:
import cv2, numpy as np
import time, random, threading, queue
image_height = 256
image_width = 512
save_nsec = 20
dpi, fps = 100, 15
# Make results reproducible and deterministic
np.random.seed(0)
random.seed(0)
def live_stream():
last = 0.
pos = 0
while True:
a = np.random.uniform(low = -1., high = 1., size = random.randint(1, 30)).astype(np.float64).cumsum() + last
yield a, pos, pos + a.size - 1
pos += a.size
last = a[-1]
time.sleep(random.random() * 2.2 / fps)
q0 = queue.Queue()
def stream_fetcher():
for e in live_stream():
q0.put(e)
threading.Thread(target = stream_fetcher, daemon = True).start()
aranges = np.arange(image_height, dtype = np.int32)[:, None]
q1 = queue.Queue()
def renderer():
def normalized(data, data_min, data_max, maximum_value):
nomamized_data = maximum_value * ((data - data_min) / (data_max - data_min))
return nomamized_data
prev_image = np.zeros((image_height, 0), dtype = np.uint8)
prev_vols = np.zeros((0,), dtype = np.float64)
while True:
data = []
data.append(q0.get())
try:
while True:
data.append(q0.get(block = False))
except queue.Empty:
pass
data_vols = [e[0] for e in data]
data_minx, data_maxx = data[0][1], data[-1][2]
vols = np.concatenate(data_vols)[-image_width:]
prev_vols = prev_vols[-(image_width - vols.size) or prev_vols.size:]
concat_vols = np.concatenate((prev_vols, vols))[-image_width:]
vols_min, vols_max = np.amin(concat_vols), np.amax(concat_vols)
if prev_vols.size > 0 and (vols_min < np.amin(prev_vols) - 10 ** -8 or vols_max > np.amax(prev_vols) + 10 ** -8):
vols = concat_vols
prev_image = prev_image[:, :-prev_vols.size]
prev_vols = prev_vols[:0]
vols_norm = normalized(
data = vols, data_min = vols_min,
data_max = vols_max, maximum_value = image_height,
)
image = (aranges < vols_norm.astype(np.int32)[None, :]).astype(np.uint8) * 255
whole_image = np.concatenate((prev_image, image), axis = 1)[:, -image_width:]
q1.put((whole_image, data_maxx - whole_image.shape[1] + 1, data_maxx, vols_min, vols_max))
prev_image = whole_image
prev_vols = concat_vols
threading.Thread(target = renderer, daemon = True).start()
def visualizer():
import matplotlib.pyplot as plt, matplotlib.animation
def images():
while True:
data = []
data.append(q1.get())
try:
while True:
data.append(q1.get(block = False))
except queue.Empty:
pass
minx = min([e[1] for e in data])
maxx = min([e[2] for e in data])
miny = min([e[3] for e in data])
maxy = min([e[4] for e in data])
image = np.concatenate([e[0] for e in data], axis = 1)[:, -image_width:]
image = np.pad(image, ((0, 0), (image_width - image.shape[1], 0)), constant_values = 0)
image = np.repeat(image[:, :, None], 3, axis = -1)
yield image, minx, maxx, miny, maxy
it = images()
im = None
fig = plt.figure(figsize = (image_width / dpi, image_height / dpi), dpi = dpi)
def animate_func(i):
nonlocal it, im, fig
image, minx, maxx, miny, maxy = next(it)
print(f'.', end = '', flush = True)
if im is None:
im = plt.imshow(image, interpolation = 'none', aspect = 'auto')
else:
im.set_array(image)
im.set_extent((minx, maxx, miny, maxy))
return [im]
anim = matplotlib.animation.FuncAnimation(fig, animate_func, frames = round(save_nsec * fps), interval = 1000 / fps)
print('saving...', end = '', flush = True)
#anim.save('result.mp4', fps = fps, dpi = dpi, extra_args = ['-vcodec', 'libx264'])
anim.save('result.gif', fps = fps, dpi = dpi, writer = 'imagemagick')
print('saved!', end = '', flush = True)
plt.show()
threading.Thread(target = visualizer, daemon = True).start()
while True:
time.sleep(0.1)
Then I've decided to play a bit and colored last image with RGB palette, the higher the peak is more red-ish it is, if it is more in the middle then it is more green-ish, if it is low enough then it is more blue-ish. Resulting image below was achieved by this coloring code:
And another one colored animation below, line-style instead of bar-style, with the help of this code:
I know this is not an ideal place for questions of this scope, but I'm not sure where else to ask this or how to break it down. I've been working on a function for the past couple weeks, that runs, but for it to be feasible for my purposes, I need to speed it up 200-300x.
I have an image array, where all pixels of similar color have been averaged and set to that average value. Then I have a 2D array of the same height and width, which labels each unique and non-contiguous feature of the image.
Using these I need to assess the size of each feature and its level of contrast to each of its neighbors. These values are used in an equation and if the output of that equation is below a certain threshold, that feature is merged with its most similar neighbor.
I've uploaded the image and the feature label array (printed with numpy.savetext()) to OneDrive and attached links
code:
def textureRemover(pix, labeledPix, ratio = 1.0):
numElements = numpy.amax(labeledPix)
maxSize = numpy.count_nonzero(labeledPix)
MAXIMUMCONTRAST = 443.405
for regionID in range(numElements):
start = time.clock()
regionID += 1
if regionID not in labeledPix:
continue
#print(regionID)
#print((regionID / numElements) * 100, '%')
neighborIDs = getNeighbors(labeledPix, regionID)
if 0 in neighborIDs:
neighborIDs.remove(0) #remove white value
regionMask = labeledPix == regionID
region = pix[regionMask]
size = numpy.count_nonzero(regionMask)
contrastMin = (ratio - (size / maxSize)) * MAXIMUMCONTRAST
regionMean = region.mean(axis = 0)
if len(neighborIDs) > 200:
contrast = numpy.zeros(labeledPix.shape)
contrast[labeledPix!=0] = numpy.sqrt(numpy.sum((regionMean - pix[labeledPix!=0])**2, axis = -1))
significantMask = (contrast < contrastMin)
significantContrasts = list(numpy.unique(contrast[significantMask]))
significantNeighbors = {}
for significantContrast in significantContrasts:
minContrast = min(significantContrasts)
if labeledPix[contrast == minContrast][0] in neighborIDs:
significantNeighbors[minContrast] = labeledPix[contrast == minContrast][0]
else:
significantContrasts.pop(significantContrasts.index(minContrast))
else:
significantNeighbors = {}
for neighborID in neighborIDs:
neighborMask = labeledPix == neighborID
neighbor = pix[neighborMask]
neighborMean = neighbor.mean(axis = 0)
contrast = numpy.sqrt(numpy.sum((regionMean - neighborMean)**2, axis = -1))
if contrast < contrastMin:
significantNeighbors[contrast] = neighborID
if significantNeighbors:
contrasts = significantNeighbors.keys()
minContrast = min(contrasts)
minNeighbor = significantNeighbors[minContrast]
neighborMask = labeledPix == minNeighbor
neighborSize = numpy.count_nonzero(neighborMask)
if neighborSize <= size:
labeledPix[neighborMask] = regionID
pix[neighborMask] = regionMean
else:
labeledPix[regionMask] = minNeighbor
pix[regionMask] = pix[neighborMask].mean(axis = 0)
print(time.clock() - start)
return pix
pix
labeledPix
I know I'm asking for a lot of help, but I've been stuck on this for a few weeks and am unsure what else I can do. Any help will be greatly appreciated!
Here is an optimized version of most of your logic (I underestimated the amount of work that would be...). I skipped the >200 branch and am using fake data because I couldn't access your link. When I switch off your >200 branch your and my code appear to give the same result but mine is quite a bit faster on the fake example.
Sample output:
original
26.056154000000003
optimized
0.763613000000003
equal
True
Code:
import numpy as np
from numpy.lib.stride_tricks import as_strided
def mockdata(m, n, k):
colors = np.random.random((m, n, 3))
i, j = np.ogrid[:m, :n]
labels = np.round(k*k * (np.sin(0.05 * i) + np.sin(0.05 * j)**2)).astype(int) % k
return colors, labels
DIAG_NEIGHBORS = True
MAXIMUMCONTRAST = 443.405
def textureRemover2(pix, labeledPix, ratio=1.0):
start = time.clock()
pix, labeledPix = pix.copy(), labeledPix.copy()
pixf, labeledPixf = pix.reshape(-1, 3), labeledPix.ravel()
m, n = labeledPix.shape
s, t = labeledPix.strides
# find all sizes in O(n)
sizes = np.bincount(labeledPixf)
n_ids = len(sizes)
# make index for quick access to labeled areas
lblidx = np.split(np.argsort(labeledPixf), np.cumsum(sizes[:-1]))
lblidx[0] = None
# find all mean colors in O(n)
regionMeans = np.transpose([np.bincount(labeledPix.ravel(), px)
/ np.maximum(sizes, 1)
for px in pix.reshape(-1, 3).T])
# find all neighbors in O(n)
horz = set(frozenset(p) for bl in as_strided(labeledPix, (m,n-1,2), (s,t,t))
for p in bl)
vert = set(frozenset(p) for bl in as_strided(labeledPix, (m-1,n,2), (s,t,s))
for p in bl)
nb = horz|vert
if DIAG_NEIGHBORS:
dwnrgt = set(frozenset(p) for bl in as_strided(
labeledPix, (m-1,n-1,2), (s,t,s+t)) for p in bl)
dwnlft = set(frozenset(p) for bl in as_strided(
labeledPix[::-1], (m-1,n-1,2), (-s,t,t-s)) for p in bl)
nb = nb|dwnrgt|dwnlft
nb = {p for p in nb if len(p) == 2 and not 0 in p}
nb_dict = {}
for a, b in nb:
nb_dict.setdefault(a, set()).add(b)
nb_dict.setdefault(b, set()).add(a)
maxSize = labeledPix.size - sizes[0]
for id_ in range(1, n_ids):
nbs = list(nb_dict.get(id_, set()))
if not nbs:
continue
d = regionMeans[id_] - regionMeans[nbs]
d = np.einsum('ij,ij->i', d, d)
mnd = np.argmin(d)
if d[mnd] < ((ratio - sizes[id_]/maxSize) * MAXIMUMCONTRAST)**2:
mn = nbs[mnd]
lrg, sml = (id_, mn) if sizes[id_] >= sizes[mn] else (mn, id_)
sizes[lrg], sizes[sml] = sizes[lrg] + sizes[sml], 0
for nb in nb_dict[sml]:
nb_dict[nb].remove(sml)
nb_dict[nb].add(lrg)
nb_dict[lrg].update(nb_dict[sml])
nb_dict[lrg].remove(lrg)
nb_dict[sml] = set()
pixf[lblidx[sml]] = regionMeans[lrg]
labeledPixf[lblidx[sml]] = lrg
lblidx[lrg], lblidx[sml] = np.r_[lblidx[lrg],lblidx[sml]], None
print(time.clock() - start)
return pix
from scipy.ndimage.morphology import binary_dilation
import time
STRUCTEL = np.ones((3,3), int) if DIAG_NEIGHBORS else np.array([[0,1,0],[1,1,1],[0,1,0]], int)
def getNeighbors(labeledPix, regionID):
nb = set(labeledPix[binary_dilation(labeledPix == regionID, structure=STRUCTEL)])
nb.remove(regionID)
return sorted(nb)
numpy = np
def textureRemover(pix, labeledPix, ratio = 1.0):
pix, labeledPix = pix.copy(), labeledPix.copy()
numElements = numpy.amax(labeledPix)
maxSize = numpy.count_nonzero(labeledPix)
MAXIMUMCONTRAST = 443.405
start = time.clock()
for regionID in range(numElements):
regionID += 1
if regionID not in labeledPix:
continue
#print(regionID)
#print((regionID / numElements) * 100, '%')
neighborIDs = getNeighbors(labeledPix, regionID)
if 0 in neighborIDs:
neighborIDs.remove(0) #remove white value
regionMask = labeledPix == regionID
region = pix[regionMask]
size = numpy.count_nonzero(regionMask)
contrastMin = (ratio - (size / maxSize)) * MAXIMUMCONTRAST
regionMean = region.mean(axis = 0)
if len(neighborIDs) > 20000:
contrast = numpy.zeros(labeledPix.shape)
contrast[labeledPix!=0] = numpy.sqrt(numpy.sum((regionMean - pix[labeledPix!=0])**2, axis = -1))
significantMask = (contrast < contrastMin)
significantContrasts = list(numpy.unique(contrast[significantMask]))
significantNeighbors = {}
for significantContrast in significantContrasts:
minContrast = min(significantContrasts)
if labeledPix[contrast == minContrast][0] in neighborIDs:
significantNeighbors[minContrast] = labeledPix[contrast == minContrast][0]
else:
significantContrasts.pop(significantContrasts.index(minContrast))
else:
significantNeighbors = {}
for neighborID in neighborIDs:
neighborMask = labeledPix == neighborID
neighbor = pix[neighborMask]
neighborMean = neighbor.mean(axis = 0)
contrast = numpy.sqrt(numpy.sum((regionMean - neighborMean)**2, axis = -1))
if contrast < contrastMin:
significantNeighbors[contrast] = neighborID
if significantNeighbors:
contrasts = significantNeighbors.keys()
minContrast = min(contrasts)
minNeighbor = significantNeighbors[minContrast]
neighborMask = labeledPix == minNeighbor
neighborSize = numpy.count_nonzero(neighborMask)
if neighborSize <= size:
labeledPix[neighborMask] = regionID
pix[neighborMask] = regionMean
else:
labeledPix[regionMask] = minNeighbor
pix[regionMask] = pix[neighborMask].mean(axis = 0)
print(time.clock() - start)
return pix
data = mockdata(200, 200, 1000)
print('original')
res0 = textureRemover(*data)
print('optimized')
res2 = textureRemover2(*data)
print('equal')
print(np.allclose(res0, res2))