I'm trying to get a specific value in Python of a JSON object. Before I could use something like:
data['data']['data2']
to get a certain value that is associated with data2 but this is a little different, my JSON file is now more complex and is this
{
"data": {
"playerStatSummaries": {
"playerStatSummarySet": [
{
"aggregatedStats": {
"stats": []
},
"leaves": 0,
"losses": 0,
"maxRating": 0,
"modifyDate": "/Date(1357567398182)/",
"playerStatSummaryType": "Unranked3x3",
"rating": 400,
"wins": 5
},
{
"aggregatedStats": {
"stats": []
},
"leaves": 0,
"losses": 0,
"maxRating": 0,
"modifyDate": "/Date(1357567398182)/",
"playerStatSummaryType": "AramUnranked6x6",
"rating": 400,
"wins": 0
},
{
"aggregatedStats": {
"stats": [
{
"statType": "TOTAL_CHAMPION_KILLS",
"value": 68
},
{
"statType": "TOTAL_ASSISTS",
"value": 116
},
{
"statType": "TOTAL_MINION_KILLS",
"value": 1854
},
{
"statType": "TOTAL_TURRETS_KILLED",
"value": 22
},
{
"statType": "TOTAL_NEUTRAL_MINIONS_KILLED",
"value": 359
}
]
},
"leaves": 0,
"losses": 5,
"maxRating": 1505,
"modifyDate": "/Date(1357261303440)/",
"playerStatSummaryType": "RankedSolo5x5",
"rating": 1505,
"wins": 9
},
{
"aggregatedStats": {
"stats": [
{
"statType": "TOTAL_CHAMPION_KILLS",
"value": 369
},
{
"statType": "TOTAL_ASSISTS",
"value": 535
},
{
"statType": "TOTAL_MINION_KILLS",
"value": 9917
},
{
"statType": "TOTAL_TURRETS_KILLED",
"value": 78
},
{
"statType": "TOTAL_NEUTRAL_MINIONS_KILLED",
"value": 1050
}
]
},
"leaves": 0,
"losses": 35,
"maxRating": 1266,
"modifyDate": "/Date(1323496849000)/",
"playerStatSummaryType": "RankedTeam5x5",
"rating": 1266,
"wins": 39
},
{
"aggregatedStats": {
"stats": [
{
"statType": "TOTAL_CHAMPION_KILLS",
"value": 29
},
{
"statType": "TOTAL_ASSISTS",
"value": 17
},
{
"statType": "TOTAL_MINION_KILLS",
"value": 176
},
{
"statType": "TOTAL_TURRETS_KILLED",
"value": 8
},
{
"statType": "TOTAL_NEUTRAL_MINIONS_KILLED",
"value": 12
}
]
},
"leaves": 0,
"losses": 0,
"maxRating": 1200,
"modifyDate": "/Date(1326521499000)/",
"playerStatSummaryType": "CoopVsAI",
"rating": 1200,
"wins": 2
},
{
"aggregatedStats": {
"stats": [
{
"statType": "TOTAL_CHAMPION_KILLS",
"value": 150
},
{
"statType": "TOTAL_ASSISTS",
"value": 184
},
{
"statType": "TOTAL_MINION_KILLS",
"value": 3549
},
{
"statType": "TOTAL_TURRETS_KILLED",
"value": 24
},
{
"statType": "TOTAL_NEUTRAL_MINIONS_KILLED",
"value": 224
}
]
},
"leaves": 0,
"losses": 17,
"maxRating": 0,
"modifyDate": "/Date(1350098520000)/",
"playerStatSummaryType": "RankedTeam3x3",
"rating": 1308,
"wins": 22
},
{
"aggregatedStats": {
"stats": [
{
"statType": "TOTAL_CHAMPION_KILLS",
"value": 15
},
{
"statType": "TOTAL_ASSISTS",
"value": 185
},
{
"statType": "TOTAL_MINION_KILLS",
"value": 250
},
{
"statType": "TOTAL_TURRETS_KILLED",
"value": 4
},
{
"statType": "TOTAL_NEUTRAL_MINIONS_KILLED",
"value": 15
}
]
},
"leaves": 0,
"losses": 3,
"maxRating": 1365,
"modifyDate": "/Date(1321778545000)/",
"playerStatSummaryType": "RankedPremade5x5",
"rating": 1365,
"wins": 8
},
{
"aggregatedStats": {
"stats": [
{
"statType": "TOTAL_CHAMPION_KILLS",
"value": 672
},
{
"statType": "AVERAGE_CHAMPIONS_KILLED",
"value": 9
},
{
"statType": "MAX_COMBAT_PLAYER_SCORE",
"value": 889
},
{
"statType": "AVERAGE_OBJECTIVE_PLAYER_SCORE",
"value": 771
},
{
"statType": "MAX_TEAM_OBJECTIVE",
"value": 2
},
{
"statType": "MAX_NODE_CAPTURE",
"value": 14
},
{
"statType": "MAX_OBJECTIVE_PLAYER_SCORE",
"value": 1424
},
{
"statType": "MAX_TOTAL_PLAYER_SCORE",
"value": 1950
},
{
"statType": "AVERAGE_NUM_DEATHS",
"value": 10
},
{
"statType": "TOTAL_DECAYER",
"value": 105
},
{
"statType": "TOTAL_ASSISTS",
"value": 931
},
{
"statType": "AVERAGE_NODE_NEUTRALIZE",
"value": 6
},
{
"statType": "AVERAGE_NODE_CAPTURE_ASSIST",
"value": 2
},
{
"statType": "MAX_NODE_CAPTURE_ASSIST",
"value": 5
},
{
"statType": "MAX_ASSISTS",
"value": 25
},
{
"statType": "AVERAGE_NODE_NEUTRALIZE_ASSIST",
"value": 1
},
{
"statType": "AVERAGE_TOTAL_PLAYER_SCORE",
"value": 1182
},
{
"statType": "MAX_NODE_NEUTRALIZE_ASSIST",
"value": 3
},
{
"statType": "AVERAGE_COMBAT_PLAYER_SCORE",
"value": 413
},
{
"statType": "AVERAGE_NODE_CAPTURE",
"value": 8
},
{
"statType": "MAX_CHAMPIONS_KILLED",
"value": 20
},
{
"statType": "TOTAL_NODE_NEUTRALIZE",
"value": 391
},
{
"statType": "AVERAGE_TEAM_OBJECTIVE",
"value": 1
},
{
"statType": "AVERAGE_ASSISTS",
"value": 11
},
{
"statType": "TOTAL_NODE_CAPTURE",
"value": 447
},
{
"statType": "MAX_NODE_NEUTRALIZE",
"value": 11
},
{
"statType": "MAX_NUM_DEATHS",
"value": 16
}
]
},
"leaves": 0,
"losses": 0,
"maxRating": 0,
"modifyDate": "/Date(1357567398182)/",
"playerStatSummaryType": "OdinUnranked",
"rating": 400,
"wins": 43
},
{
"aggregatedStats": {
"stats": []
},
"leaves": 0,
"losses": 0,
"maxRating": 0,
"modifyDate": "/Date(1357567398182)/",
"playerStatSummaryType": "AramUnranked2x2",
"rating": 400,
"wins": 0
},
{
"aggregatedStats": {
"stats": []
},
"leaves": 0,
"losses": 0,
"maxRating": 0,
"modifyDate": "/Date(1357567398182)/",
"playerStatSummaryType": "AramUnranked1x1",
"rating": 400,
"wins": 0
},
{
"aggregatedStats": {
"stats": []
},
"leaves": 0,
"losses": 0,
"maxRating": 0,
"modifyDate": "/Date(1357567398182)/",
"playerStatSummaryType": "AramUnranked3x3",
"rating": 400,
"wins": 0
},
{
"aggregatedStats": {
"stats": [
{
"statType": "TOTAL_CHAMPION_KILLS",
"value": 10269
},
{
"statType": "TOTAL_DECAYER",
"value": 0
},
{
"statType": "TOTAL_ASSISTS",
"value": 15722
},
{
"statType": "TOTAL_MINION_KILLS",
"value": 262793
},
{
"statType": "TOTAL_TURRETS_KILLED",
"value": 1954
},
{
"statType": "TOTAL_NEUTRAL_MINIONS_KILLED",
"value": 43898
},
{
"statType": "TOTAL_DEATHS_PER_SESSION",
"value": 1513
}
]
},
"leaves": 1,
"losses": 0,
"maxRating": 0,
"modifyDate": "/Date(1357567398182)/",
"playerStatSummaryType": "Unranked",
"rating": 400,
"wins": 1691
},
{
"aggregatedStats": {
"stats": []
},
"leaves": 0,
"losses": 0,
"maxRating": 0,
"modifyDate": "/Date(1357567398182)/",
"playerStatSummaryType": "AramUnranked5x5",
"rating": 400,
"wins": 0
}
]
},
"previousFirstWinOfDay": "/Date(1357489166306)/",
"userId": 55060
},
"success": true
}
As you can see this is really long, my question is, how would I grab only specific values from a certain playerStatSummarySet set? Like let's say I only wanted to grab the rating value from the set with the playerStatSummaryType value of RankedSolo5x5 how would I do that?
Here's what I have going so far to get the data from the JSON file.
with open('data.txt', 'r') as f:
data = json.load(f)
if you have to work with complex json objects, I suggest you take a look at jsonpath that offers xpath like language for json objects.
An example:
import jsonpath
import json
with open('/test.json', 'r') as f:
data = json.load(f)
path = "$.[?(#.playerStatSummaryType == 'RankedSolo5x5')].rating"
jsonpath.jsonpath(data,path)
out:
[1505]
Use a list comprehension
with open('data.txt', 'r') as f:
data = json.load(f)
rating = [summary["rating"] for summary
in data["data"]["playerStatSummaries"]["playerStatSummarySet"]
if summary["playerStatSummaryType"] == "RankedSolo5x5"][0]
You can still do it, but you have to access the data structure properly. What json.load() is returning is a JSON object which is the same as a Python dictionary. This obj has a key named 'data' in it that is associated with another object-dictionary, etc down until you get to the 'playerStatSummaries' object which has a data member keyed with 'playerStatSummarySet' that is actually a Python list rather than another object-dictionary.
Here's an example of how to search through that list of summary sets and find a specific entry -- remembering that since this data item is a list rather than dictionary object you have step through each of the entries in it to find the one you're looking for rather than just looking-up its name.
import json
with open('data.txt', 'r') as f:
jsonObj = json.load(f)
targetSummaryType = 'RankedSolo5x5'
for summarySet in jsonObj['data']['playerStatSummaries']['playerStatSummarySet']:
if summarySet['playerStatSummaryType'] == targetSummaryType:
print 'max rating for {}: {}'.format(targetSummaryType,
summarySet['maxRating'])
break # if you only expect there to be one
Output:
max rating for RankedSolo5x5: 1505
To figure out what was needed I found it useful to initially pprint() the whole jsonObj which made the structure very easy to see.
Related
Below is code I am using to get data from an api. And below that is the response. I am trying to convert datetime from UTC to CST and then present the data with that time zone instead. But I am having trouble isolating datetime
import requests
import json
weather = requests.get('...')
j = json.loads(weather.text)
print (json.dumps(j, indent=2))
Response:
{
"metadata": null,
"data": [
{
"datetime": "2022-12-11T05:00:00Z",
"is_day_time": false,
"icon_code": 5,
"weather_text": "Clear with few low clouds and few cirrus",
"temperature": {
"value": 45.968,
"units": "F"
},
"feels_like_temperature": {
"value": 39.092,
"units": "F"
},
"relative_humidity": 56,
"precipitation": {
"precipitation_probability": 4,
"total_precipitation": {
"value": 0.0,
"units": "in"
}
},
"wind": {
"speed": {
"value": 5.144953471725125,
"units": "mi/h"
},
"direction": 25
},
"wind_gust": {
"value": 9.014853256979242,
"units": "mi/h"
},
"pressure": {
"value": 29.4171829577118,
"units": "inHg"
},
"visibility": {
"value": 6.835083114610673,
"units": "mi"
},
"dew_point": {
"value": 31.01,
"units": "F"
},
"cloud_cover": 31
},
{
"datetime": "2022-12-11T06:00:00Z",
"is_day_time": false,
"icon_code": 4,
"weather_text": "Clear with few low clouds",
"temperature": {
"value": 45.068,
"units": "F"
},
"feels_like_temperature": {
"value": 38.066,
"units": "F"
},
"relative_humidity": 56,
"precipitation": {
"precipitation_probability": 5,
"total_precipitation": {
"value": 0.0,
"units": "in"
}
},
"wind": {
"speed": {
"value": 5.167322834645669,
"units": "mi/h"
},
"direction": 27
},
"wind_gust": {
"value": 8.724051539012168,
"units": "mi/h"
},
"pressure": {
"value": 29.4213171559632,
"units": "inHg"
},
"visibility": {
"value": 5.592340730136005,
"units": "mi"
},
"dew_point": {
"value": 30.2,
"units": "F"
},
"cloud_cover": 13
},
{
"datetime": "2022-12-11T07:00:00Z",
"is_day_time": false,
"icon_code": 4,
"weather_text": "Clear with few low clouds",
"temperature": {
"value": 44.33,
"units": "F"
},
"feels_like_temperature": {
"value": 37.364,
"units": "F"
},
"relative_humidity": 56,
"precipitation": {
"precipitation_probability": 4,
"total_precipitation": {
"value": 0.0,
"units": "in"
}
},
"wind": {
"speed": {
"value": 4.988367931281317,
"units": "mi/h"
},
"direction": 28
},
"wind_gust": {
"value": 8.254294917680744,
"units": "mi/h"
},
"pressure": {
"value": 29.4165923579616,
"units": "inHg"
},
"visibility": {
"value": 7.456454306848007,
"units": "mi"
},
"dew_point": {
"value": 29.714,
"units": "F"
},
"cloud_cover": 22
}
],
"error": null
I am assuming what you mean is that you want to present the data in the current time of the Central Time zone. As of the date this question was asked, that would be CST (Central Standard Time). At another time it will be CDT (Central Daylight Time) based on daylight savings time rules that are followed in the Country/City for the time zone for which you wish to localize the data. The rules are all nicely kept in the IANA Timezone Database.
So the trick is that you pick your Country/City from the Timezone DB that follows the rules as they apply to your current time zone. For Central Time, America/Chicago usually works but YMMV.
There are a lot of ways to do this. This example is inefficiently iterating through the dictionary created by json.loads and replacing the time string with a converted string. The key is using the dateutil library to parse the timestamp string and convert using the proper UTC offset as defined for the time zone in the IANA database.
Hopefully this example has enough pieces you can copy and adapt to your own needs.
from dateutil.parser import parse
from dateutil import tz
import json
j = json.loads(weather)
# Loop through each data entry, reformatting the time
for entry in j["data"]:
if "datetime" in entry.keys():
parsed_dt = parse(entry["datetime"])
converted = parsed_dt.astimezone(tz.gettz("America/Chicago"))
entry["datetime"] = converted.isoformat()
print (json.dumps(j, indent=2))
The resulting JSON has datetime fields that contain an ISO timestamp for the CST time.
{
"metadata": null,
"data": [{
"datetime": "2022-12-10T23:00:00-06:00",
"is_day_time": false,
"icon_code": 5,
"weather_text": "Clear with few low clouds and few cirrus",
"temperature": {
"value": 45.968,
"units": "F"
},
"feels_like_temperature": {
"value": 39.092,
"units": "F"
},
"relative_humidity": 56,
"precipitation": {
"precipitation_probability": 4,
"total_precipitation": {
"value": 0.0,
"units": "in"
}
},
"wind": {
"speed": {
"value": 5.144953471725125,
"units": "mi/h"
},
"direction": 25
},
"wind_gust": {
"value": 9.014853256979242,
"units": "mi/h"
},
"pressure": {
"value": 29.4171829577118,
"units": "inHg"
},
"visibility": {
"value": 6.835083114610673,
"units": "mi"
},
"dew_point": {
"value": 31.01,
"units": "F"
},
"cloud_cover": 31
},
{
"datetime": "2022-12-11T00:00:00-06:00",
"is_day_time": false,
"icon_code": 4,
"weather_text": "Clear with few low clouds",
"temperature": {
"value": 45.068,
"units": "F"
},
"feels_like_temperature": {
"value": 38.066,
"units": "F"
},
"relative_humidity": 56,
"precipitation": {
"precipitation_probability": 5,
"total_precipitation": {
"value": 0.0,
"units": "in"
}
},
"wind": {
"speed": {
"value": 5.167322834645669,
"units": "mi/h"
},
"direction": 27
},
"wind_gust": {
"value": 8.724051539012168,
"units": "mi/h"
},
"pressure": {
"value": 29.4213171559632,
"units": "inHg"
},
"visibility": {
"value": 5.592340730136005,
"units": "mi"
},
"dew_point": {
"value": 30.2,
"units": "F"
},
"cloud_cover": 13
},
{
"datetime": "2022-12-11T01:00:00-06:00",
"is_day_time": false,
"icon_code": 4,
"weather_text": "Clear with few low clouds",
"temperature": {
"value": 44.33,
"units": "F"
},
"feels_like_temperature": {
"value": 37.364,
"units": "F"
},
"relative_humidity": 56,
"precipitation": {
"precipitation_probability": 4,
"total_precipitation": {
"value": 0.0,
"units": "in"
}
},
"wind": {
"speed": {
"value": 4.988367931281317,
"units": "mi/h"
},
"direction": 28
},
"wind_gust": {
"value": 8.254294917680744,
"units": "mi/h"
},
"pressure": {
"value": 29.4165923579616,
"units": "inHg"
},
"visibility": {
"value": 7.456454306848007,
"units": "mi"
},
"dew_point": {
"value": 29.714,
"units": "F"
},
"cloud_cover": 22
}
],
"error": null
}
Wasn't sure how to title this question but I am working with the Quickbooks Online API and when querying a report like BalanceSheet or GeneralLedger the API returns data rows in multiple nested levels which is quite frustrating to parse through.
Example of the BalanceSheet return included below. I am only interested in the data from "Row" objects but as you can see that can be returned in 1, 2, 3 or more different levels of data. I am thinking of going through each level to check for Rows and then get each Row but that seems overly complex as I would need multiple for loops for each level.
I'm wondering if there is a better way to get each "Row" in that data without regard to which level it is on? Any ideas would be appreciated!
Here's an example of a return from their sandbox data:
{
"Header": {
"Time": "2021-04-28T14:12:17-07:00",
"ReportName": "BalanceSheet",
"DateMacro": "this calendar year-to-date",
"ReportBasis": "Accrual",
"StartPeriod": "2021-01-01",
"EndPeriod": "2021-04-28",
"SummarizeColumnsBy": "Month",
"Currency": "USD",
"Option": [
{
"Name": "AccountingStandard",
"Value": "GAAP"
},
{
"Name": "NoReportData",
"Value": "false"
}
]
},
"Columns": {
"Column": [
{
"ColTitle": "",
"ColType": "Account",
"MetaData": [
{
"Name": "ColKey",
"Value": "account"
}
]
},
{
"ColTitle": "Jan 2021",
"ColType": "Money",
"MetaData": [
{
"Name": "StartDate",
"Value": "2021-01-01"
},
{
"Name": "EndDate",
"Value": "2021-01-31"
},
{
"Name": "ColKey",
"Value": "Jan 2021"
}
]
},
{
"ColTitle": "Feb 2021",
"ColType": "Money",
"MetaData": [
{
"Name": "StartDate",
"Value": "2021-02-01"
},
{
"Name": "EndDate",
"Value": "2021-02-28"
},
{
"Name": "ColKey",
"Value": "Feb 2021"
}
]
},
{
"ColTitle": "Mar 2021",
"ColType": "Money",
"MetaData": [
{
"Name": "StartDate",
"Value": "2021-03-01"
},
{
"Name": "EndDate",
"Value": "2021-03-31"
},
{
"Name": "ColKey",
"Value": "Mar 2021"
}
]
},
{
"ColTitle": "Apr 1-28, 2021",
"ColType": "Money",
"MetaData": [
{
"Name": "StartDate",
"Value": "2021-04-01"
},
{
"Name": "EndDate",
"Value": "2021-04-28"
},
{
"Name": "ColKey",
"Value": "Apr 1-28, 2021"
}
]
}
]
},
"Rows": {
"Row": [
{
"Header": {
"ColData": [
{
"value": "ASSETS"
},
{
"value": ""
},
{
"value": ""
},
{
"value": ""
},
{
"value": ""
}
]
},
"Rows": {
"Row": [
{
"Header": {
"ColData": [
{
"value": "Current Assets"
},
{
"value": ""
},
{
"value": ""
},
{
"value": ""
},
{
"value": ""
}
]
},
"Rows": {
"Row": [
{
"Header": {
"ColData": [
{
"value": "Bank Accounts"
},
{
"value": ""
},
{
"value": ""
},
{
"value": ""
},
{
"value": ""
}
]
},
"Rows": {
"Row": [
{
"ColData": [
{
"value": "Checking",
"id": "35"
},
{
"value": "1201.00"
},
{
"value": "1201.00"
},
{
"value": "1201.00"
},
{
"value": "1201.00"
}
],
"type": "Data"
},
{
"ColData": [
{
"value": "Savings",
"id": "36"
},
{
"value": "800.00"
},
{
"value": "800.00"
},
{
"value": "800.00"
},
{
"value": "800.00"
}
],
"type": "Data"
}
]
},
"Summary": {
"ColData": [
{
"value": "Total Bank Accounts"
},
{
"value": "2001.00"
},
{
"value": "2001.00"
},
{
"value": "2001.00"
},
{
"value": "2001.00"
}
]
},
"type": "Section",
"group": "BankAccounts"
},
{
"Header": {
"ColData": [
{
"value": "Accounts Receivable"
},
{
"value": ""
},
{
"value": ""
},
{
"value": ""
},
{
"value": ""
}
]
},
"Rows": {
"Row": [
{
"ColData": [
{
"value": "Accounts Receivable (A/R)",
"id": "84"
},
{
"value": "5281.52"
},
{
"value": "5281.52"
},
{
"value": "5281.52"
},
{
"value": "5281.52"
}
],
"type": "Data"
}
]
},
"Summary": {
"ColData": [
{
"value": "Total Accounts Receivable"
},
{
"value": "5281.52"
},
{
"value": "5281.52"
},
{
"value": "5281.52"
},
{
"value": "5281.52"
}
]
},
"type": "Section",
"group": "AR"
},
{
"Header": {
"ColData": [
{
"value": "Other Current Assets"
},
{
"value": ""
},
{
"value": ""
},
{
"value": ""
},
{
"value": ""
}
]
},
"Rows": {
"Row": [
{
"ColData": [
{
"value": "Inventory Asset",
"id": "81"
},
{
"value": "596.25"
},
{
"value": "596.25"
},
{
"value": "596.25"
},
{
"value": "596.25"
}
],
"type": "Data"
},
{
"ColData": [
{
"value": "Undeposited Funds",
"id": "4"
},
{
"value": "2062.52"
},
{
"value": "2062.52"
},
{
"value": "2062.52"
},
{
"value": "2062.52"
}
],
"type": "Data"
}
]
},
"Summary": {
"ColData": [
{
"value": "Total Other Current Assets"
},
{
"value": "2658.77"
},
{
"value": "2658.77"
},
{
"value": "2658.77"
},
{
"value": "2658.77"
}
]
},
"type": "Section",
"group": "OtherCurrentAssets"
}
]
},
"Summary": {
"ColData": [
{
"value": "Total Current Assets"
},
{
"value": "9941.29"
},
{
"value": "9941.29"
},
{
"value": "9941.29"
},
{
"value": "9941.29"
}
]
},
"type": "Section",
"group": "CurrentAssets"
},
{
"Header": {
"ColData": [
{
"value": "Fixed Assets"
},
{
"value": ""
},
{
"value": ""
},
{
"value": ""
},
{
"value": ""
}
]
},
"Rows": {
"Row": [
{
"Header": {
"ColData": [
{
"value": "Truck",
"id": "37"
},
{
"value": ""
},
{
"value": ""
},
{
"value": ""
},
{
"value": ""
}
]
},
"Rows": {
"Row": [
{
"ColData": [
{
"value": "Original Cost",
"id": "38"
},
{
"value": "13495.00"
},
{
"value": "13495.00"
},
{
"value": "13495.00"
},
{
"value": "13495.00"
}
],
"type": "Data"
}
]
},
"Summary": {
"ColData": [
{
"value": "Total Truck"
},
{
"value": "13495.00"
},
{
"value": "13495.00"
},
{
"value": "13495.00"
},
{
"value": "13495.00"
}
]
},
"type": "Section"
}
]
},
"Summary": {
"ColData": [
{
"value": "Total Fixed Assets"
},
{
"value": "13495.00"
},
{
"value": "13495.00"
},
{
"value": "13495.00"
},
{
"value": "13495.00"
}
]
},
"type": "Section",
"group": "FixedAssets"
}
]
},
"Summary": {
"ColData": [
{
"value": "TOTAL ASSETS"
},
{
"value": "23436.29"
},
{
"value": "23436.29"
},
{
"value": "23436.29"
},
{
"value": "23436.29"
}
]
},
"type": "Section",
"group": "TotalAssets"
},
{
"Header": {
"ColData": [
{
"value": "LIABILITIES AND EQUITY"
},
{
"value": ""
},
{
"value": ""
},
{
"value": ""
},
{
"value": ""
}
]
},
"Rows": {
"Row": [
{
"Header": {
"ColData": [
{
"value": "Liabilities"
},
{
"value": ""
},
{
"value": ""
},
{
"value": ""
},
{
"value": ""
}
]
},
"Rows": {
"Row": [
{
"Header": {
"ColData": [
{
"value": "Current Liabilities"
},
{
"value": ""
},
{
"value": ""
},
{
"value": ""
},
{
"value": ""
}
]
},
"Rows": {
"Row": [
{
"Header": {
"ColData": [
{
"value": "Accounts Payable"
},
{
"value": ""
},
{
"value": ""
},
{
"value": ""
},
{
"value": ""
}
]
},
"Rows": {
"Row": [
{
"ColData": [
{
"value": "Accounts Payable (A/P)",
"id": "33"
},
{
"value": "1602.67"
},
{
"value": "1602.67"
},
{
"value": "1602.67"
},
{
"value": "1602.67"
}
],
"type": "Data"
}
]
},
"Summary": {
"ColData": [
{
"value": "Total Accounts Payable"
},
{
"value": "1602.67"
},
{
"value": "1602.67"
},
{
"value": "1602.67"
},
{
"value": "1602.67"
}
]
},
"type": "Section",
"group": "AP"
},
{
"Header": {
"ColData": [
{
"value": "Credit Cards"
},
{
"value": ""
},
{
"value": ""
},
{
"value": ""
},
{
"value": ""
}
]
},
"Rows": {
"Row": [
{
"ColData": [
{
"value": "Mastercard",
"id": "41"
},
{
"value": "157.72"
},
{
"value": "157.72"
},
{
"value": "157.72"
},
{
"value": "157.72"
}
],
"type": "Data"
}
]
},
"Summary": {
"ColData": [
{
"value": "Total Credit Cards"
},
{
"value": "157.72"
},
{
"value": "157.72"
},
{
"value": "157.72"
},
{
"value": "157.72"
}
]
},
"type": "Section",
"group": "CreditCards"
},
{
"Header": {
"ColData": [
{
"value": "Other Current Liabilities"
},
{
"value": ""
},
{
"value": ""
},
{
"value": ""
},
{
"value": ""
}
]
},
"Rows": {
"Row": [
{
"ColData": [
{
"value": "Arizona Dept. of Revenue Payable",
"id": "89"
},
{
"value": "0.00"
},
{
"value": "0.00"
},
{
"value": "0.00"
},
{
"value": "0.00"
}
],
"type": "Data"
},
{
"ColData": [
{
"value": "Board of Equalization Payable",
"id": "90"
},
{
"value": "370.94"
},
{
"value": "370.94"
},
{
"value": "370.94"
},
{
"value": "370.94"
}
],
"type": "Data"
},
{
"ColData": [
{
"value": "Loan Payable",
"id": "43"
},
{
"value": "4000.00"
},
{
"value": "4000.00"
},
{
"value": "4000.00"
},
{
"value": "4000.00"
}
],
"type": "Data"
}
]
},
"Summary": {
"ColData": [
{
"value": "Total Other Current Liabilities"
},
{
"value": "4370.94"
},
{
"value": "4370.94"
},
{
"value": "4370.94"
},
{
"value": "4370.94"
}
]
},
"type": "Section",
"group": "OtherCurrentLiabilities"
}
]
},
"Summary": {
"ColData": [
{
"value": "Total Current Liabilities"
},
{
"value": "6131.33"
},
{
"value": "6131.33"
},
{
"value": "6131.33"
},
{
"value": "6131.33"
}
]
},
"type": "Section",
"group": "CurrentLiabilities"
},
{
"Header": {
"ColData": [
{
"value": "Long-Term Liabilities"
},
{
"value": ""
},
{
"value": ""
},
{
"value": ""
},
{
"value": ""
}
]
},
"Rows": {
"Row": [
{
"ColData": [
{
"value": "Notes Payable",
"id": "44"
},
{
"value": "25000.00"
},
{
"value": "25000.00"
},
{
"value": "25000.00"
},
{
"value": "25000.00"
}
],
"type": "Data"
}
]
},
"Summary": {
"ColData": [
{
"value": "Total Long-Term Liabilities"
},
{
"value": "25000.00"
},
{
"value": "25000.00"
},
{
"value": "25000.00"
},
{
"value": "25000.00"
}
]
},
"type": "Section",
"group": "LongTermLiabilities"
}
]
},
"Summary": {
"ColData": [
{
"value": "Total Liabilities"
},
{
"value": "31131.33"
},
{
"value": "31131.33"
},
{
"value": "31131.33"
},
{
"value": "31131.33"
}
]
},
"type": "Section",
"group": "Liabilities"
},
{
"Header": {
"ColData": [
{
"value": "Equity"
},
{
"value": ""
},
{
"value": ""
},
{
"value": ""
},
{
"value": ""
}
]
},
"Rows": {
"Row": [
{
"ColData": [
{
"value": "Opening Balance Equity",
"id": "34"
},
{
"value": "-9337.50"
},
{
"value": "-9337.50"
},
{
"value": "-9337.50"
},
{
"value": "-9337.50"
}
],
"type": "Data"
},
{
"ColData": [
{
"value": "Retained Earnings",
"id": "2"
},
{
"value": "1642.46"
},
{
"value": "1642.46"
},
{
"value": "1642.46"
},
{
"value": "1642.46"
}
],
"type": "Data"
},
{
"ColData": [
{
"value": "Net Income"
},
{
"value": ""
},
{
"value": ""
},
{
"value": ""
},
{
"value": ""
}
],
"type": "Data",
"group": "NetIncome"
}
]
},
"Summary": {
"ColData": [
{
"value": "Total Equity"
},
{
"value": "-7695.04"
},
{
"value": "-7695.04"
},
{
"value": "-7695.04"
},
{
"value": "-7695.04"
}
]
},
"type": "Section",
"group": "Equity"
}
]
},
"Summary": {
"ColData": [
{
"value": "TOTAL LIABILITIES AND EQUITY"
},
{
"value": "23436.29"
},
{
"value": "23436.29"
},
{
"value": "23436.29"
},
{
"value": "23436.29"
}
]
},
"type": "Section",
"group": "TotalLiabilitiesAndEquity"
}
]
}
}
In a Django application, I want to use a dictionary as elements of a result.html page:
<tbody>
{% for element in products%}
<tr>
<td>{{ element['q0']['Results'][0]['Name'] }}</td>
</tr>
{% endfor %}
</tbody>
But it returns Could not parse the remainder: '['q0']['Results'][0]['Name']' from 'element['q0']['Results'][0]['Name']':
return render(request, 'todo/result.html', {'products': top_products})
File "C:\Python36\lib\site-packages\django\shortcuts.py", line 19, in render
content = loader.render_to_string(template_name, context, request, using=using)
File "C:\Python36\lib\site-packages\django\template\loader.py", line 61, in render_to_string
template = get_template(template_name, using=using)
File "C:\Python36\lib\site-packages\django\template\loader.py", line 15, in get_template
return engine.get_template(template_name)
File "C:\Python36\lib\site-packages\django\template\backends\django.py", line 34, in get_template
return Template(self.engine.get_template(template_name), self)
File "C:\Python36\lib\site-packages\django\template\engine.py", line 143, in get_template
template, origin = self.find_template(template_name)
File "C:\Python36\lib\site-packages\django\template\engine.py", line 125, in find_template
template = loader.get_template(name, skip=skip)
File "C:\Python36\lib\site-packages\django\template\loaders\base.py", line 30, in get_template
contents, origin, origin.template_name, self.engine,
File "C:\Python36\lib\site-packages\django\template\base.py", line 155, in __init__
self.nodelist = self.compile_nodelist()
File "C:\Python36\lib\site-packages\django\template\base.py", line 193, in compile_nodelist
return parser.parse()
File "C:\Python36\lib\site-packages\django\template\base.py", line 478, in parse
raise self.error(token, e)
File "C:\Python36\lib\site-packages\django\template\base.py", line 476, in parse
compiled_result = compile_func(self, token)
File "C:\Python36\lib\site-packages\django\template\defaulttags.py", line 814, in do_for
nodelist_loop = parser.parse(('empty', 'endfor',))
File "C:\Python36\lib\site-packages\django\template\base.py", line 449, in parse
raise self.error(token, e)
File "C:\Python36\lib\site-packages\django\template\base.py", line 447, in parse
filter_expression = self.compile_filter(token.contents)
File "C:\Python36\lib\site-packages\django\template\base.py", line 563, in compile_filter
return FilterExpression(token, self)
File "C:\Python36\lib\site-packages\django\template\base.py", line 663, in __init__
"from '%s'" % (token[upto:], token))
django.template.exceptions.TemplateSyntaxError: Could not parse the remainder: '['q0']['Results'][0]['Name']' from 'element['q0']['Results'][0]['Name']'
It was sent by views.py:
def getmatch(request):
# cosas cosas cosas para obtener top_products
print(top_products[0])
return render(request, 'todo/result.html', {'products': top_products})
Here is an example of a product top_products[0]:
{
"q1": {
"Id": "q1",
"Limit": 20,
"Offset": 0,
"TotalResults": 0,
"Locale": "fr_FR",
"Results": [],
"Includes": {},
"HasE rrors": false,
"Errors": []
},
"q0": {
"Id": "q0",
"Limit": 10,
"Offset": 0,
"TotalResults": 1,
"Locale": "fr_FR",
"Results": [
{
"EANs": [
"8011003827336"
],
"Description": "L’aur a divine d’une femme habillée d’une essence éblouissante et sensuelle…\nEros pour Femme est le mythe signé Versace, qui déclenche la passion débordante d’Eros au pre mier regard.\n\nMais qui séduit qui ?\nEros pour Femme est une invitation à s’abandonner au désir, en osmose avec les forces de la nature apaisée.\n\nAudacieuse, cré ative et sensuelle, comme seule peut l’être la maison Versace, cette Eau de Toilette révèle une aura radieuse et une séduction irrésistible.",
"ImageUrl": "https://w ww.sephora.fr/dw/image/v2/BCVW_PRD/on/demandware.static/-/Sites-masterCatalog_Sephora/default/dw99b648b2/images/hi-res/SKU/SKU_5/359845_swatch.jpg?sw=250&sh=250&sm=f it",
"Name": "Eros pour Femme - Eau de Toilette",
"Id": "P2615007",
"CategoryId": "parfum_719097",
"BrandExternalId": "versace_c45bfd",
"Brand": {
"Id": "versace_c45b fd",
"Name": "VERSACE"
},
"Active": true,
"ProductPageUrl": "https://www.sephora.fr/p/eros-pour-femme---eau-de-toilette-359845.html",
"Disabled": false,
"ISBNs": [],
"FamilyIds": [],
"UPCs": [],
"StoryIds": [],
"ModelNumbers": [],
"Attributes": {},
"QuestionIds": [],
"AttributesOrder": [],
"ReviewIds": [],
"ManufacturerPartNumber s": [],
"QAStatistics": {
"QuestionHelpfulVoteCount": 0,
"FirstAnswerTime": "None",
"LastQuestionAnswerTime": "None",
"FirstQuestionTime": "None",
"FeaturedAnswerCount": 0,
"LastAnswerTime": "None",
"TagDistribution": {},
"ContextDataDistribution": {},
"TotalAnswerCount": 0,
"FeaturedQuestionCount": 0,
"LastQuestionTime": "None",
"Question NotHelpfulVoteCount": 0,
"BestAnswerCount": 0,
"TagDistributionOrder": [],
"AnswerHelpfulVoteCount": 0,
"HelpfulVoteCount": 0,
"AnswerNotHelpfulVoteCount": 0,
"Total QuestionCount": 0,
"ContextDataDistributionOrder": []
},
"TotalQuestionCount": 0,
"TotalAnswerCount": 0,
"ReviewStatistics": {
"ContextDataDistributionOrder": [
"Gender ",
"Age",
"Eyes",
"Skin",
"loyalty"
],
"ContextDataDistribution": {
"Gender": {
"Id": "Gender",
"Values": [
{
"Count": 7,
"Value": "Female"
}
]
},
"Age": {
"Id": "Age",
"Valu es": [
{
"Count": 1,
"Value": "13to17"
},
{
"Count": 2,
"Value": "18to24"
},
{
"Count": 1,
"Value": "25to34"
},
{
"Count": 1,
"Value": "35to44"
},
{
"Count": 1,
"Value": "45to 54"
},
{
"Count": 1,
"Value": "plus54"
}
]
},
"Eyes": {
"Id": "Eyes",
"Values": [
{
"Count": 2,
"Value": "Marrons"
},
{
"Count": 3,
"Value": "Bleus"
},
{
"Count": 1,
"Value": "N oirs"
}
]
},
"Skin": {
"Id": "Skin",
"Values": [
{
"Count": 1,
"Value": "Normale"
},
{
"Count": 2,
"Value": "Seche"
},
{
"Count": 2,
"Value": "Mixte"
},
{
"Count": 1,
"Value": " Deshydratee"
}
]
},
"loyalty": {
"Id": "loyalty",
"Values": [
{
"Count": 2,
"Value": "Yes--Im-a-VIB"
},
{
"Count": 2,
"Value": "Yes--Im-a-VIB-Rouge"
},
{
"Count": 2,
"Value": "No"
}
]
}
},
"AverageOverallRating": 4.428571428571429,
"NotHelpfulVoteCount": 1,
"FeaturedReviewCount": 0,
"NotRecommendedCount": 1,
"HelpfulVoteCount": 19,
"RatingDis tribution": [
{
"RatingValue": 5,
"Count": 5
},
{
"RatingValue": 2,
"Count": 1
},
{
"RatingValue": 4,
"Count": 1
}
],
"RecommendedCount": 5,
"RatingsOnlyReviewCount": 0,
"To talReviewCount": 7,
"FirstSubmissionTime": "2017-05-28T22:46:00.000+00:00",
"LastSubmissionTime": "2020-03-21T19:01:26.000+00:00",
"SecondaryRatingsAveragesOrder": [],
"SecondaryRatingsAverages": {},
"OverallRatingRange": 5,
"TagDistributionOrder": [],
"TagDistribution": {}
},
"TotalReviewCount": 7,
"FilteredQAStatistics": {
"Ques tionHelpfulVoteCount": 0,
"FirstAnswerTime": "None",
"LastQuestionAnswerTime": "None",
"FirstQuestionTime": "None",
"FeaturedAnswerCount": 0,
"LastAnswerTime": "None",
"TagD istribution": {},
"ContextDataDistribution": {},
"TotalAnswerCount": 0,
"FeaturedQuestionCount": 0,
"LastQuestionTime": "None",
"QuestionNotHelpfulVoteCount": 0,
"Best AnswerCount": 0,
"TagDistributionOrder": [],
"AnswerHelpfulVoteCount": 0,
"HelpfulVoteCount": 0,
"AnswerNotHelpfulVoteCount": 0,
"TotalQuestionCount": 0,
"ContextDat aDistributionOrder": []
},
"FilteredReviewStatistics": {
"ContextDataDistributionOrder": [
"Gender",
"Age",
"Eyes",
"Skin",
"loyalty"
],
"ContextDataDistribution": {
"Gen der": {
"Id": "Gender",
"Values": [
{
"Count": 7,
"Value": "Female"
}
]
},
"Age": {
"Id": "Age",
"Values": [
{
"Count": 1,
"Value": "13to17"
},
{
"Count": 2,
"Value": "18to24"
},
{
"Count": 1,
"Value": "25to34"
},
{
"Count": 1,
"Value": "35to44"
},
{
"Count": 1,
"Value": "45to54"
},
{
"Count": 1,
"Value": "plus54"
}
]
},
"Eyes": {
"Id": "Eyes",
"Value s": [
{
"Count": 2,
"Value": "Marrons"
},
{
"Count": 3,
"Value": "Bleus"
},
{
"Count": 1,
"Value": "Noirs"
}
]
},
"Skin": {
"Id": "Skin",
"Values": [
{
"Count": 1,
"Value": "Nor male"
},
{
"Count": 2,
"Value": "Seche"
},
{
"Count": 2,
"Value": "Mixte"
},
{
"Count": 1,
"Value": "Deshydratee"
}
]
},
"loyalty": {
"Id": "loyalty",
"Values": [
{
"Count": 2,
"Value": "Yes--Im-a-VIB"
},
{
"Count": 2,
"Value": "Yes--Im-a-VIB-Rouge"
},
{
"Count": 2,
"Value": "No"
}
]
}
},
"AverageOverallRating": 4.428571428571429,
"NotHelpfulVoteCo unt": 1,
"FeaturedReviewCount": 0,
"NotRecommendedCount": 1,
"HelpfulVoteCount": 19,
"RatingDistribution": [
{
"RatingValue": 5,
"Count": 5
},
{
"RatingValue": 2,
"Count ": 1
},
{
"RatingValue": 4,
"Count": 1
}
],
"RecommendedCount": 5,
"RatingsOnlyReviewCount": 0,
"TotalReviewCount": 7,
"FirstSubmissionTime": "2017-05-28T22:46:00.000+00 :00",
"LastSubmissionTime": "2020-03-21T19:01:26.000+00:00",
"SecondaryRatingsAveragesOrder": [],
"SecondaryRatingsAverages": {},
"OverallRatingRange": 5,
"TagDistri butionOrder": [],
"TagDistribution": {}
}
}
],
"Includes": {},
"HasErrors": false,
"Errors": []
},
"d": {
"attributs": {
"Doux": {
"claimed_benefit": 0,
"perceived_benefit": 0
},
"Délicat": {
"claimed_benefit": 0,
"perceived_benefit": 0
},
"Elegant": {
"claimed_benefit": 0,
"perceived_benefit": 0
},
"Mature": {
"claimed_benefit": 0,
" perceived_benefit": 0
},
"Sexy": {
"claimed_benefit": 0,
"perceived_benefit": 0
},
"Féminin": {
"claimed_benefit": 0,
"perceived_benefit": 0
},
"Frais": {
"claimed_ benefit": 0,
"perceived_benefit": 0.14285714285714285
},
"Classe": {
"claimed_benefit": 0,
"perceived_benefit": 0
},
"Mou": {
"claimed_benefit": 0,
"perceived_benefit": 0.14285714285714285
},
"Décontracté": {
"claimed_benefit": 0,
"perceived_benefit": 0
},
"Comme les autres": {
"claimed_benefit": 0,
"perceived_benefit": 0
},
"Jeu ne femme": {
"claimed_benefit": 1,
"perceived_benefit": 0.14285714285714285
},
"charmant": {
"claimed_benefit": 0,
"perceived_benefit": 0
},
"Gai": {
"claimed_benefit": 0,
"perceived_benefit": 0
},
"Propre": {
"claimed_benefit": 0,
"perceived_benefit": 0
},
"Eté": {
"claimed_benefit": 0,
"perceived_benefit": 0
},
"Rafraîchissant ": {
"claimed_benefit": 0,
"perceived_benefit": 0
},
"Chaud": {
"claimed_benefit": 0,
"perceived_benefit": 0
},
"Masculin": {
"claimed_benefit": 0,
"perceived_benefit ": 0
},
"Fiable": {
"claimed_benefit": 0,
"perceived_benefit": 0
},
"Mystérieux": {
"claimed_benefit": 0,
"perceived_benefit": 0
},
"Furtif": {
"claimed_benefit": 0,
"perceived_benefit": 0.14285714285714285
},
"Fort": {
"claimed_benefit": 0,
"perceived_benefit": 0.14285714285714285
},
"Hivernal": {
"claimed_benefit": 0,
"perceived_ benefit": 0
},
"Herbacé": {
"claimed_benefit": 0,
"perceived_benefit": 0
},
"Plantes": {
"claimed_benefit": 0,
"perceived_benefit": 0
},
"Big brands": {
"claimed_be nefit": 0,
"perceived_benefit": 0
},
"Luxueux": {
"claimed_benefit": 0,
"perceived_benefit": 0
},
"Connu": {
"claimed_benefit": 0,
"perceived_benefit": 0.2857142857142857
},
"A la mode": {
"claimed_benefit": 0,
"perceived_benefit": 0
}
}
},
"total": 0
}
Instead of using square bracket notations, Django Template Language uses dots. So the result should be: {{ element.q0.Results.0.Name }}
I have a big JSON file with a very complex structure
you can look on it here: https://drive.google.com/file/d/1tBVJ2xYSCpTTUGPJegvAz2ZXbeN0bteX/view?usp=sharing
it contains more than 7 millions lines, and I want to extract only the "text" field
I have written a python code, to extra all the values of the "text" key or field in the whole file, and it extracted only 12 values! while when I open the JSON file on the Visualstudio, I have more than 19000 values!!
you can see the code here:
import json
import csv
with open("/Users/zahraa-maher/rasa-init-demo/venv/Tickie/external_data/frames2.json") as file:
data = json.load(file)
fname = "outputText8.csv"
with open(fname, "w") as file:
csv_file = csv.writer(file,lineterminator='\n')
csv_file.writerow(["text"])
for item in data[i]["turns"]:
csv_file.writerow([item['text']])
please take a look on the JSON file as it is very large one and with a complex structure, so I an not paste it here to see because it would be not understandable
also this is a part of the son file:
[
{
"user_id": "U22HTHYNP",
"turns": [
{
"text": "I'd like to book a trip to Atlantis from Caprica on Saturday, August 13, 2016 for 8 adults. I have a tight budget of 1700.",
"labels": {
"acts": [
{
"args": [
{
"val": "book",
"key": "intent"
}
],
"name": "inform"
},
{
"args": [
{
"val": "Atlantis",
"key": "dst_city"
},
{
"val": "Caprica",
"key": "or_city"
},
{
"val": "Saturday, August 13, 2016",
"key": "str_date"
},
{
"val": "8",
"key": "n_adults"
},
{
"val": "1700",
"key": "budget"
}
],
"name": "inform"
}
],
"acts_without_refs": [
{
"args": [
{
"val": "book",
"key": "intent"
}
],
"name": "inform"
},
{
"args": [
{
"val": "Atlantis",
"key": "dst_city"
},
{
"val": "Caprica",
"key": "or_city"
},
{
"val": "Saturday, August 13, 2016",
"key": "str_date"
},
{
"val": "8",
"key": "n_adults"
},
{
"val": "1700",
"key": "budget"
}
],
"name": "inform"
}
],
"active_frame": 1,
"frames": [
{
"info": {
"intent": [
{
"val": "book",
"negated": false
}
],
"budget": [
{
"val": "1700.0",
"negated": false
}
],
"dst_city": [
{
"val": "Atlantis",
"negated": false
}
],
"or_city": [
{
"val": "Caprica",
"negated": false
}
],
"str_date": [
{
"val": "august 13",
"negated": false
}
],
"n_adults": [
{
"val": "8",
"negated": false
}
]
},
"frame_id": 1,
"requests": [],
"frame_parent_id": null,
"binary_questions": [],
"compare_requests": []
}
]
},
"author": "user",
"timestamp": 1471272019730.0
},
{
"db": {
"result": [
[
{
"trip": {
"returning": {
"duration": {
"hours": 0,
"min": 51
},
"arrival": {
"hour": 10,
"year": 2016,
"day": 24,
"min": 51,
"month": 8
},
"departure": {
"hour": 10,
"year": 2016,
"day": 24,
"min": 0,
"month": 8
}
},
"seat": "ECONOMY",
"leaving": {
"duration": {
"hours": 0,
"min": 51
},
"arrival": {
"hour": 0,
"year": 2016,
"day": 16,
"min": 51,
"month": 8
},
"departure": {
"hour": 0,
"year": 2016,
"day": 16,
"min": 0,
"month": 8
}
},
"or_city": "Porto Alegre",
"duration_days": 9
},
"price": 2118.81,
"hotel": {
"gst_rating": 7.15,
"vicinity": [],
"name": "Scarlet Palms Resort",
"country": "Brazil",
"amenities": [
"FREE_BREAKFAST",
"FREE_PARKING",
"FREE_WIFI"
],
"dst_city": "Goiania",
"category": "3.5 star hotel"
}
},
{
"trip": {
"returning": {
"duration": {
"hours": 2,
"min": 37
},
"arrival": {
"hour": 12,
"year": 2016,
"day": 10,
"min": 37,
"month": 8
},
"departure": {
"hour": 10,
"year": 2016,
"day": 10,
"min": 0,
"month": 8
}
},
"seat": "ECONOMY",
"leaving": {
"duration": {
"hours": 2,
"min": 37
},
"arrival": {
"hour": 0,
"year": 2016,
"day": 4,
"min": 37,
"month": 8
},
"departure": {
"hour": 22,
"year": 2016,
"day": 3,
"min": 0,
"month": 8
}
},
"or_city": "Porto Alegre",
"duration_days": 7
},
"price": 2369.83,
"hotel": {
"gst_rating": 0,
"vicinity": [],
"name": "Sunway Hostel",
"country": "Argentina",
"amenities": [
"FREE_BREAKFAST",
"FREE_WIFI"
],
"dst_city": "Rosario",
"category": "2.0 star hotel"
}
},
{
"trip": {
"returning": {
"duration": {
"hours": 0,
"min": 51
},
"arrival": {
"hour": 10,
"year": 2016,
"day": 24,
"min": 51,
"month": 8
},
"departure": {
"hour": 10,
"year": 2016,
"day": 24,
"min": 0,
"month": 8
}
},
"seat": "BUSINESS",
"leaving": {
"duration": {
"hours": 0,
"min": 51
},
"arrival": {
"hour": 0,
"year": 2016,
"day": 16,
"min": 51,
"month": 8
},
"departure": {
"hour": 0,
"year": 2016,
"day": 16,
"min": 0,
"month": 8
}
},
"or_city": "Porto Alegre",
"duration_days": 9
},
"price": 2375.72,
"hotel": {
"gst_rating": 7.15,
"vicinity": [],
"name": "Scarlet Palms Resort",
"country": "Brazil",
"amenities": [
"FREE_BREAKFAST",
"FREE_PARKING",
"FREE_WIFI"
],
"dst_city": "Goiania",
"category": "3.5 star hotel"
}
},
{
"trip": {
"returning": {
"duration": {
"hours": 1,
"min": 30
},
"arrival": {
"hour": 11,
"year": 2016,
"day": 1,
"min": 30,
"month": 9
},
"departure": {
"hour": 10,
"year": 2016,
"day": 1,
"min": 0,
"month": 9
}
},
"seat": "BUSINESS",
"leaving": {
"duration": {
"hours": 1,
"min": 30
},
"arrival": {
"hour": 18,
"year": 2016,
"day": 19,
"min": 30,
"month": 8
},
"departure": {
"hour": 17,
"year": 2016,
"day": 19,
"min": 0,
"month": 8
}
},
"or_city": "Porto Alegre",
"duration_days": 13
},
"price": 2492.95,
"hotel": {
"gst_rating": 0,
"vicinity": [],
"name": "Hotel Mundo",
"country": "Brazil",
"amenities": [
"FREE_BREAKFAST",
"FREE_WIFI",
"FREE_PARKING"
],
"dst_city": "Manaus",
"category": "2.5 star hotel"
}
},
{
"trip": {
"returning": {
"duration": {
"hours": 0,
"min": 51
},
"arrival": {
"hour": 10,
"year": 2016,
"day": 31,
"min": 51,
"month": 8
},
"departure": {
"hour": 10,
"year": 2016,
"day": 31,
"min": 0,
"month": 8
}
},
"seat": "ECONOMY",
"leaving": {
"duration": {
"hours": 0,
"min": 51
},
"arrival": {
"hour": 19,
"year": 2016,
"day": 27,
"min": 51,
"month": 8
},
"departure": {
"hour": 19,
"year": 2016,
"day": 27,
"min": 0,
"month": 8
}
},
"or_city": "Porto Alegre",
"duration_days": 4
},
"price": 2538.0,
"hotel": {
"gst_rating": 8.22,
"vicinity": [],
"name": "The Glee",
"country": "Brazil",
"amenities": [
"FREE_BREAKFAST",
"FREE_WIFI"
],
"dst_city": "Recife",
"category": "4.0 star hotel"
}
}
],
[],
[],
[],
[],
[],
[]
],
"search": [
{
"ORIGIN_CITY": "Porto Alegre",
"PRICE_MIN": "2000",
"NUM_ADULTS": "2",
"timestamp": 1471271949.995,
"PRICE_MAX": "3000",
"ARE_DATES_FLEXIBLE": "true",
"NUM_CHILDREN": "5",
"START_TIME": "1470110400000",
"MAX_DURATION": 2592000000.0,
"DESTINATION_CITY": "Brazil",
"RESULT_LIMIT": "10",
"END_TIME": "1472616000000"
},
{
"ORIGIN_CITY": "Atlantis",
"NUM_ADULTS": "8",
"RESULT_LIMIT": "10",
"timestamp": 1471272148.124,
"PRICE_MAX": "1700",
"NUM_CHILDREN": "",
"ARE_DATES_FLEXIBLE": "true",
"START_TIME": "NaN",
"END_TIME": "NaN"
},
{
"ORIGIN_CITY": "Caprica",
"PRICE_MAX": "1700",
"NUM_ADULTS": "8",
"RESULT_LIMIT": "10",
"timestamp": 1471272189.07,
"DESTINATION_CITY": "Atlantis",
"NUM_CHILDREN": "",
"ARE_DATES_FLEXIBLE": "true",
"START_TIME": "1470715200000",
"END_TIME": "1472011200000"
},
{
"ORIGIN_CITY": "Caprica",
"PRICE_MAX": "1700",
"NUM_ADULTS": "8",
"RESULT_LIMIT": "10",
"timestamp": 1471272205.436,
"DESTINATION_CITY": "Atlantis",
"NUM_CHILDREN": "",
"ARE_DATES_FLEXIBLE": "true",
"START_TIME": "1470715200000",
"END_TIME": "1472011200000"
},
{
"ORIGIN_CITY": "Caprica",
"PRICE_MIN": "1700",
"NUM_ADULTS": "8",
"RESULT_LIMIT": "10",
"timestamp": 1471272278.72,
"DESTINATION_CITY": "Atlantis",
"NUM_CHILDREN": "",
"ARE_DATES_FLEXIBLE": "true",
"START_TIME": "1470715200000",
"END_TIME": "1472011200000"
},
{
"ORIGIN_CITY": "Caprica",
"PRICE_MIN": "1700",
"NUM_ADULTS": "8",
"RESULT_LIMIT": "10",
"timestamp": 1471272454.542,
"DESTINATION_CITY": "Atlantis",
"NUM_CHILDREN": "",
"ARE_DATES_FLEXIBLE": "true",
"START_TIME": "1471060800000",
"END_TIME": "1472011200000"
},
{
"ORIGIN_CITY": "Caprica",
"PRICE_MIN": "1700",
"NUM_ADULTS": "8",
"RESULT_LIMIT": "10",
"timestamp": 1471272466.008,
"DESTINATION_CITY": "Atlantis",
"NUM_CHILDREN": "",
"ARE_DATES_FLEXIBLE": "true",
"START_TIME": "1471060800000",
"END_TIME": "1472011200000"
}
]
},
How it could be modified to extract all the "text" values from the JSON file to a CSV file?
This is a potential solution using pandas:
import pandas as pd
#importing data
dj = pd.read_json("frames2.json")
dtext = dj[["user_id","turns"]]
#Saving text records in a list
list_ = []
for record in dtext["turns"].values:
for r in record:
list_.append(r["text"])
#Exporting the csv
out = pd.Series(list_,name="text")
out.to_csv("text.csv")
It gives the following output.
Try:
import json
import csv
with open("/Users/zahraa-maher/rasa-init-demo/venv/Tickie/external_data/frames2.json") as file:
data = json.load(file)
fname = "outputText8.csv"
with open(fname, "w") as file:
csv_file = csv.writer(file,lineterminator='\n')
csv_file.writerow(["text"])
for keys,values in data.items():
now it up to you which of the fields you want to save, if you user a debugger you can see the values and Keys
I have a scenario as depicted below in python code .
In this I am trying to explicitly define new york and ny as synonyms. But unfortunately it is not working. Can you please guide me as I am new to elastic search.
Also I am using custom analyzer.
I also have the file synonyms.txt having text:
ny,newyork,nyork
from datetime import datetime
from elasticsearch import Elasticsearch
es = Elasticsearch()
keywords = ['thousand eyes', 'facebook', 'superdoc', 'quora', 'your story', 'Surgery', 'lending club', 'ad roll',
'the honest company', 'Draft kings', 'newyork']
count = 1
doc_setting = {
"settings": {
"analysis": {
"analyzer": {
"my_analyzer_keyword": {
"type": "custom",
"tokenizer": "keyword",
"filter": [
"asciifolding",
"lowercase",
"synonym"
]
},
"my_analyzer_shingle": {
"type": "custom",
"tokenizer": "standard",
"filter": [
"asciifolding",
"lowercase",
"synonym"
]
}
},
"filter": {
"synonym": {
"type": "synonym",
"synonyms_path": "synonyms.txt",
"ignore_case": "true"
}
}
}
}, "mappings": {
"your_type": {
"properties": {
"keyword": {
"type": "string",
"index_analyzer": "my_analyzer_keyword",
"search_analyzer": "my_analyzer_shingle"
}
}
}
}
}
validate=es.index(index='test', doc_type='your_type', body=doc_setting)
print(validate)
for keyword in keywords:
doc = {
'id': count,
'keyword': keyword
}
res = es.index(index="test", doc_type='your_type', id=count, body=doc)
print(res['result'])
count = count + 1
#res11 = es.get(index="test", doc_type='your_type', id=1)
#print(res11['_source'])
es.indices.refresh(index="test")
question = "I saw news on ny news channel of lending club on facebook, your story and quora"
print("Question asked: %s" % question)
res = es.search(index="test",`enter code here` doc_type='your_type', body={
"query": {"match": {"keyword": question}}})
print("Got %d Hits:" % res['hits']['total'])
for hit in res['hits']['hits']:
print(hit["_source"])
PUT /test_index
{
"settings": {
"analysis": {
"analyzer": {
"my_analyzer_keyword": {
"type": "custom",
"tokenizer": "keyword",
"filter": [
"asciifolding",
"lowercase",
"synonym"
]
},
"my_analyzer_shingle": {
"type": "custom",
"tokenizer": "standard",
"filter": [
"asciifolding",
"lowercase",
"synonym"
]
}
},
"filter": {
"synonym" : {
"type" : "synonym",
"lenient": true,
"synonyms" : ["ny,newyork,nyork"]
}
}
}
}, "mappings": {
"your_type": {
"properties": {
"keyword": {
"type": "text",
"analyzer": "my_analyzer_keyword",
"search_analyzer": "my_analyzer_shingle"
}
}
}
}
}
Then Analyze using
POST /test_index/_analyze
{
"analyzer" : "my_analyzer_shingle",
"text" : "I saw news on ny news channel of lending club on facebook, your story and quorat"
}
The tokens I get are
{
"tokens": [
{
"token": "i",
"start_offset": 0,
"end_offset": 1,
"type": "<ALPHANUM>",
"position": 0
},
{
"token": "saw",
"start_offset": 2,
"end_offset": 5,
"type": "<ALPHANUM>",
"position": 1
},
{
"token": "news",
"start_offset": 6,
"end_offset": 10,
"type": "<ALPHANUM>",
"position": 2
},
{
"token": "on",
"start_offset": 11,
"end_offset": 13,
"type": "<ALPHANUM>",
"position": 3
},
{
"token": "ny",
"start_offset": 14,
"end_offset": 16,
"type": "<ALPHANUM>",
"position": 4
},
{
"token": "newyork",
"start_offset": 14,
"end_offset": 16,
"type": "SYNONYM",
"position": 4
},
{
"token": "nyork",
"start_offset": 14,
"end_offset": 16,
"type": "SYNONYM",
"position": 4
},
{
"token": "news",
"start_offset": 17,
"end_offset": 21,
"type": "<ALPHANUM>",
"position": 5
},
{
"token": "channel",
"start_offset": 22,
"end_offset": 29,
"type": "<ALPHANUM>",
"position": 6
},
{
"token": "of",
"start_offset": 30,
"end_offset": 32,
"type": "<ALPHANUM>",
"position": 7
},
{
"token": "lending",
"start_offset": 33,
"end_offset": 40,
"type": "<ALPHANUM>",
"position": 8
},
{
"token": "club",
"start_offset": 41,
"end_offset": 45,
"type": "<ALPHANUM>",
"position": 9
},
{
"token": "on",
"start_offset": 46,
"end_offset": 48,
"type": "<ALPHANUM>",
"position": 10
},
{
"token": "facebook",
"start_offset": 49,
"end_offset": 57,
"type": "<ALPHANUM>",
"position": 11
},
{
"token": "your",
"start_offset": 59,
"end_offset": 63,
"type": "<ALPHANUM>",
"position": 12
},
{
"token": "story",
"start_offset": 64,
"end_offset": 69,
"type": "<ALPHANUM>",
"position": 13
},
{
"token": "and",
"start_offset": 70,
"end_offset": 73,
"type": "<ALPHANUM>",
"position": 14
},
{
"token": "quorat",
"start_offset": 74,
"end_offset": 80,
"type": "<ALPHANUM>",
"position": 15
}
]
}
and the search produces
POST /test_index/_search
{
"query" : {
"match" : { "keyword" : "I saw news on ny news channel of lending club on facebook, your story and quora" }
}
}
{
"took": 36,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 3,
"max_score": 1.6858001,
"hits": [
{
"_index": "test_index",
"_type": "your_type",
"_id": "4",
"_score": 1.6858001,
"_source": {
"keyword": "newyork"
}
},
{
"_index": "test_index",
"_type": "your_type",
"_id": "2",
"_score": 1.1727304,
"_source": {
"keyword": "facebook"
}
},
{
"_index": "test_index",
"_type": "your_type",
"_id": "5",
"_score": 0.6931472,
"_source": {
"keyword": "quora"
}
}
]
}
}