Loop patchwork in python3 - python

I need to create a patchwork in Python 3. All I have left to do is create a loop which makes the design border the graphics window. I know I need a for loop however I am not sure how to do this.
This is what I have so far:
from graphics import *
def main():
height = eval(input("What is the height of the window"))
width = eval(input("What is the width of the window"))
colour = input("enter the colour of the patch")
win = GraphWin("Patch", 100*width, 100*height)
boat_x = 0
boat_y = 0
for x in range (4):
boat(win, boat_x, boat_y, colour)
boat_x = boat_x + 23
for i in range(height * 5):
boat(win, boat_x, boat_y, colour)
boat_x = boat_x + 24
for j in range(height * 5):
boat(win, boat_x, boat_y, colour)
boat_y = boat_y + 100
win.getMouse()
win.close()
def boat(win, x, y, colour):
body1 = Polygon(Point(1+x,95+y), Point(5+x,100+y),
Point(20+x,100+y), Point(24+x,95+y))
body1.draw(win)
line1 = Line(Point(13+x,95+y), Point(13+x,90+y))
line1.draw(win)
sail1 = Polygon(Point(1+x,90+y), Point(24+x,90+y), Point(13+x, 73+y))
sail1.setFill(colour)
sail1.draw(win)
body2 = Polygon(Point(1+x, 63), Point(5+x, 68),
Point(20+x,68), Point(24+x,63))
body2.draw(win)
line2 = Line(Point(13+x,63), Point(13+x,58))
line2.draw(win)
sail2 = Polygon(Point(1+x,58), Point(24+x, 58), Point(13+x,40))
sail2.setFill(colour)
sail2.draw(win)
body3 = Polygon(Point(1+x,28), Point(5+x,33),
Point(20+x,33), Point(24+x, 28))
body3.draw(win)
line3 = Polygon(Point(13+x,28), Point(13+x,23))
line3.draw(win)
sail3 = Polygon(Point(1+x,23), Point(24+x, 23), Point(13+x, 5))
sail3.setFill(colour)
sail3.draw(win)
main()
So far this creates the top border but nothing else.
I am also aware that the boat function isn't the most efficient way of drawing

When you say that you need to "make the design border the graphics window" I assume you want your boat design to be repeated several times along each edge of the window (that is, the top, bottom, left and right).
This should be doable in two loops. One will draw the top and bottom edges, the other two will draw the left and right edges. I'm not too sure how your drawing code works, so I'm guessing at some offsets here:
top = 0
bottom = (height-1) * 100
for x in range(0, width*100, 25):
boat(x, top, colour)
boat(x, bottom, colour)
left = 0
right = width * 100 - 25
for y in range(100, (height-1)*100, 100):
boat(left, y, colour)
boat(right, y, colour)
This should call your boat subroutine every 25 pixels across the top and bottom, and every 100 pixels along the left and right edges. Adjust the top, bottom, left and right values and the parameters in the range calls in the loops to make the spacing suit your needs (I just made it up). This code avoids drawing the corner items twice, though depending on how the drawing routine works that might not be necessary.

Related

Bokeh Histogram of Roulette Game not showing up, am I missing something?

So I'm making a roulette game, here are the guidelines:
Roulette is a casino game that involves a steel ball spinner around a wheel. There are 38 slots where the ball might drop. 18 of those slots are colored red, another 18 are colored black and 2 are colored green. When you bet on either red or black and win, you get back twice the amount of your original bet. For example, if you bet $1, you would get an extra $1 for winning, but you would lose that original $1 if you lost.
Simulate 200 people playing roulette, each betting $1 on red 100 times.
Create a line chart and an appropriate histogram that describes these results.
Make sure to label your line chart and histogram.
So I believe my code for the game is right, but the histogram is showing up as a blank graph without anything on it.
Am I missing something? Is there something else I need to add or incorporate?
Here's what I have written for this.
import math
import random
import numpy as np
from bokeh.plotting import figure, show
def roulette(x):
results = []
count = 0
for i in range(1, x):
roll = random.randint(1, 38)
if roll <= 18:
count += 1
results.append(count/i)
else:
count -= 1
results.append(count/i)
return results
def listf(x):
for i in range(x):
return(roulette(100)[-1])
roulette_list = listf(200)
hist = np.histogram(roulette_list, bins = 10, range = (0, 200))
yval = hist[0]
xval = hist[1]
xbarwidth = xval[1] - xval[0]
xval = xval + xbarwidth/2
xval = xval[0:-1]
print(xval)
f = figure()
for x, y in zip(xval, yval):
f.vbar(x, xbarwidth, y, line_color = "white")
show(f)
Your bokeh code works perfectly, here you can see a minimal example with self defined xval and yval.
xval = [1,2,3,4]
yval = [1,2,3,4]
xbarwidth = 1
f = figure()
for x, y in zip(xval, yval):
f.vbar(x, xbarwidth, y, line_color = "white")
show(f)
You have to ckeck your implementation for the roulette() and listf. If you call
roulette_list = listf(200)
this returns only one value right now and than np.histogram doesn't work as intended.
Edit
My you can substitute your call roulette_list = listf(200) function with roulette_list =np.random.randint(0, 38, size=200, dtype=int). If you do so for a test, you will see some output in your figure.

Manim - Strange Corner Calculation Behavior After Moving Square

Hey so I'm just starting to learn manim but I encountered some strange behavior. If I get the coordinates of a square and draw them, they align with the square. But, if I try to move / shift / align_to / next_to the square, then draw the corners again, they no longer align with the square. It works in all directions, for all scales, and what's quite weird is that the offset seems to be proportional to how far the square is shifted.
Here is my (distilled) code:
def square_and_corners(square, color):
# Calculate the corners of the square
DL = square.get_left() + square.get_bottom()
DR = square.get_right() + square.get_bottom()
UL = square.get_left() + square.get_top()
UR = square.get_right() + square.get_top()
# Add corners and square
self.add(Dot(DL, color=color), Dot(DR, color=color),
Dot(UL, color=color), Dot(UR, color=color))
self.add(square)
# No moving
square1 = Square(2, color=WHITE)
square_and_corners(square1, WHITE)
# Move to RIGHT
square2 = Square(2, color=RED)
square2.move_to(RIGHT)
square_and_corners(square2, RED)
# align to the left of the central square
square3 = Square(2, color=GREEN)
square3.next_to(square1, LEFT)
square_and_corners(square3, GREEN)
Solution Code
class SquareScene(Scene):
def construct(self):
def square_and_corners(square, color):
DL = square.get_left() + square.get_bottom()
DR = square.get_right() + square.get_bottom()
UL = square.get_left() + square.get_top()
UR = square.get_right() + square.get_top()
g = [DL,DR,UL,UR]
G = VGroup()
for s in g:
dot = Dot(point = s,color = color)
G.add(dot)
G.add(square)
return G
# No moving
square1 = Square(side_length = 2)
self.add(square_and_corners(square1, WHITE))
# Move to RIGHT
square2 = Square(side_length = 2).set_stroke(color = RED)
a = square_and_corners(square2, RED)
self.add(a.move_to(RIGHT))
# align to the left of the central square
square3 = Square(side_length = 2, color=GREEN)
b = square_and_corners(square3, GREEN)
self.add(b.next_to(square1, LEFT))
# You can move only the square if you want (or any mobject in the VGroup)
square4 = Square(side_length = 2, color=BLUE)
b = square_and_corners(square4, BLUE)
self.add(b.next_to(square1, UP))
self.add(square4.next_to(square1,DOWN))
Details
The best way to deal with a group of mobjects in manim is by grouping them in a VGroup() this way enables you to animate all the mobjects in the group or any mobject you want separately and reduces the number of errors while rendering and problems that appear in the animation and reduces the lines you write to make your animation and it is pretty easy to deal with in iterations.
The Output

Cutting the codes in the program and making it neater

I'm having a hard time cutting the code and making it into a loop so that it would make the code of the program, neater.
Although my code works as it suppose to be, I think there is a right way of creating it, adding a for loop rather than writing all of these codes, I know there is an easy way to do this, I just couldn't figure how to do it properly. I know I'm suppose to create a for loop.
squares
from graphics import *
def main():
win = GraphWin("Squares", 500, 500)
rect = Rectangle(Point(0,500), Point(500,0))
rect.setFill("Red")
rect.draw(win)
rect2 = Rectangle(Point(20,480), Point(480,20))
rect2.setFill("white")
rect2.draw(win)
rect3 = Rectangle(Point(40,460), Point(460,40))
rect3.setFill("red")
rect3.draw(win)
rect4 = Rectangle(Point(60,440), Point(440,60))
rect4.setFill("white")
rect4.draw(win)
rect5 = Rectangle(Point(80,420), Point(420,80))
rect5.setFill("red")
rect5.draw(win)
rect6 = Rectangle(Point(100,400), Point(400,100))
rect6.setFill("white")
rect6.draw(win)
rect7 = Rectangle(Point(120,380), Point(380,120))
rect7.setFill("red")
rect7.draw(win)
rect8 = Rectangle(Point(140,360), Point(360,140))
rect8.setFill("white")
rect8.draw(win)
rect9 = Rectangle(Point(160,340), Point(340,160))
rect9.setFill("red")
rect9.draw(win)
rect10 = Rectangle(Point(180,320), Point(320,180))
rect10.setFill("white")
rect10.draw(win)
rect11 = Rectangle(Point(200,300), Point(300,200))
rect11.setFill("red")
rect11.draw(win)
rect12 = Rectangle(Point(220,280), Point(280,220))
rect12.setFill("white")
rect12.draw(win)
The results shows squares into some sort of a patchwork
Try the following:
from graphics import *
def main():
win = GraphWin("Squares", 500, 500)
# create all rects
rects = [Rectangle(Point(0 + 20*i,500 - 20*i), Point(500 - 20*i, 0 + 20*i)) for i in range(12)]
# draw all rects
for idx, rect in enumerate(rects):
rect.fill("red" if idx % 2 == 0 else "white")
rect.draw(win)
If the patchwork is just a background and you don't plan on modifying it you could use this:
from graphics import *
def main():
win = GraphWin("Squares", 500, 500)
i = 1
for x in range(0, 221, 20):
rect = Rectangle(Point(x, 500 - x), Point(500 - x,x))
rect.setFill("red" if i % 2 else "white")
rect.draw(win)
i += 1
An alternate approach that only needs to draw half as many rectangles due to using the rectangle's outline as the other color:
SQUARE, WIDTH = 500, 20
def main():
win = GraphWin("Squares", SQUARE, SQUARE)
save_config = dict(DEFAULT_CONFIG)
DEFAULT_CONFIG.update(dict(outline='red', fill='white', width=WIDTH))
for xy in range(WIDTH//2, SQUARE//2, WIDTH*2):
Rectangle(Point(xy, SQUARE - xy), Point(SQUARE - xy, xy)).draw(win)
DEFAULT_CONFIG.update(save_config)
It's fully parameterized so you can fit it to a different size square or have different width stripes by adjusting the SQUARE and WIDTH parameters. Rather than draw 12 rectangles in alternating colors, with the parameters as currently set, it draws 6 white rectangles with red outlines:

Replicating this design in Python

I've been trying to replicate this design using Python.
I am using the Graphics module, obtained here. I can't use any other Graphic Module at the moment.
This code here allows me to draw 5 circles in a line repeated by a loop.
def fdShape():
win = GraphWin(199,199)
centre = Point(20,100)
for y in range(5):
for x in range(5):
centre = Point(x * 40 + 20, y * 40 + 60)
circle = Circle(centre, 20)
circle.setOutline("red")
circle.draw(win)
One problem that I've found with this code is that it leaves a blank line at the top of the window and place the last circle line at the bottom, beyond the borders of the window. Thats the first problem.
The second is using the code to display semi circles displayed in red. As you can see in the image at the top of this page. I'm unsure of how to replicate this picture using Python.
Thank you!
This looks pretty close:
from graphic import *
def main():
repeat = 5
diameter = 40
radius = diameter // 2
offset = radius // 2
win = GraphWin("Graphic Design", diameter*repeat + offset, diameter*repeat)
win.setBackground('white')
for i in range(repeat):
for j in range(repeat):
draw_symbol(win, i % 2,
Point(i*diameter + offset, j*diameter), radius, 'red')
win.getMouse()
win.close()
def draw_symbol(win, kind, lower_left, radius, colour):
centre = Point(lower_left.x+radius, lower_left.y+radius)
circle = Circle(centre, radius)
circle.setOutline('')
circle.setFill(colour)
circle.draw(win)
if kind == 0:
rectangle = Rectangle(lower_left,
Point(lower_left.x+radius, lower_left.y+radius*2))
else:
rectangle = Rectangle(lower_left,
Point(lower_left.x+radius*2, lower_left.y+radius))
rectangle.setOutline('white')
rectangle.setFill('white')
rectangle.draw(win)
circle = Circle(centre, radius)
circle.setWidth(1)
circle.setOutline(colour)
circle.setFill('')
circle.draw(win)
main()
Two issues I see.
GraphWin should be initialized to 200x200, not 199x199.
This line:
centre = Point(x * 40 + 20, y * 40 + 60)
Should most likely be:
centre = Point(x * 40 + 20, y * 40 + 20)

Randomly orientated lines drawn off a random point in python

I'm trying to create python program that has several vertical lines which act as boundaries where randomly generated points or "dots" (as referred to in the code) which draw a straight line at a random degree. If the straight line intersects with one of the vertical "boundaries" I want to make it change colour. I have a picture of what I am trying to achieve which will probably explain my situation a bit clearer. The code I post below has drawn the "vertical boundaries" and has the points randomly generated within the region, however that is where I am stuck.
What I am aiming to achieve:
Example of program
My current Code:
setup(750,750)
screen_size = 750
max_coord = (screen_size - 30) / 2
### change the number of dots you have via that variable
num_dots = 500
bgcolor('yellow')
dot_size=5
reset() # Create an empty window
pi = Turtle()
hideturtle()
def parallel_lines(number):
pi.pensize(2)
pi.pencolor('black')
width = pi.window_width()
height = pi.window_height()
pi.setheading(90)
pi.penup()
pi.setposition(width/-2, height/-2)
for i in range(1, number +2):
pi.pendown()
pi.forward(height)
pi.penup()
pi.setposition(width/-2+i*(width/(number+1)),height/-2)
parallel_lines(7)
## centre turtle back in the middle of the page
goto(0,0)
### list to hold the dots
x_coords = []
y_coords = []
### Draw the dots via randomint
penup()
color("blue")
for dot_num in range(num_dots):
dot_pos_x = randint (-max_coord, max_coord)
dot_pos_y = randint (-max_coord, max_coord)
goto(dot_pos_x, dot_pos_y)
dot(dot_size)
x_coords.append(dot_pos_x)
y_coords.append(dot_pos_y)
done()
Thank you in advance for anyone that can help.
Here's an implementation of the program the OP describes. If there is a line intersection, it uses Python 3 turtle's undo feature to remove the line and redraw it in the alternate color:
from turtle import Turtle, Screen
from random import randint, randrange
SCREEN_SIZE = 750
PLANK_COUNT = 8
PINHEAD_SIZE = 5
FLOOR_COLOR = "yellow"
DEFAULT_COLOR = "blue"
CROSSING_COLOR = "red"
screen = Screen()
screen.setup(SCREEN_SIZE, SCREEN_SIZE)
screen.bgcolor(FLOOR_COLOR)
# configure numbers to replicate Lazzarini's setup
NUMBER_PINS = 3408
PIN_LENGTH = 78.125
PLANK_WIDTH = screen.window_width() / PLANK_COUNT
def parallel_lines(turtle, width, height):
turtle.penup()
turtle.setheading(90)
turtle.sety(height / -2)
x_coordinates = []
for i in range(PLANK_COUNT + 1):
x = i * PLANK_WIDTH - width / 2
turtle.setx(x)
turtle.pendown()
turtle.forward(height)
turtle.penup()
turtle.left(180)
x_coordinates.append(x)
return x_coordinates
pi = Turtle(visible=False)
pi.speed("fastest")
x_coordinates = parallel_lines(pi, screen.window_width(), screen.window_height())
def crosses(x0, x1, coordinates):
for coordinate in coordinates:
if x0 <= coordinate <= x1 or x1 <= coordinate <= x0:
return True
return False
previous_crossings = crossings = 0
max_coord = screen.window_width() / 2
for pin in range(NUMBER_PINS):
x0, y0 = randint(-max_coord, max_coord), randint(-max_coord, max_coord)
pi.color(DEFAULT_COLOR)
pi.goto(x0, y0)
pi.dot(PINHEAD_SIZE)
pi.setheading(randrange(360))
pi.pendown()
pi.forward(PIN_LENGTH)
if crosses(x0, pi.xcor(), x_coordinates):
pi.undo()
pi.color(CROSSING_COLOR)
pi.dot(PINHEAD_SIZE)
pi.forward(PIN_LENGTH)
crossings += 1
pi.penup()
if previous_crossings != crossings:
estimate = (2 * PIN_LENGTH * pin) / (PLANK_WIDTH * crossings)
print(estimate)
previous_crossings = crossings
screen.exitonclick()
Now for the rest of the story. What the OP didn't mention is that this is a drawing of planks in a floor, and we're dropping pins onto it, keeping track of how many cross lines in the flooring, as a means of estimating the value of PI (π)!
Read about Buffon's needle for details. The gist is the probability of a pin crossing a line is a function of PI so we can turn the equation around, drop actual (or virtual) pins, to estimate PI.
The program outputs the running estimate for PI (π), based on pins dropped so far, to the console:
...
3.121212121212121
3.1215970961887476
3.1370772946859904
3.134418324291742
3.131768953068592
3.1381381381381384
3.1384892086330933
3.1358467983243568
3.1451612903225805
3.1454979129397733
3.1458333333333335
3.1491384432560903
3.1465005931198102
3.1438721136767316
3.144208037825059
3.144542772861357
3.1419316843345113

Categories