Getting SQLAlchemy to issue CREATE SCHEMA on create_all - python

I have a SqlAlchemy model with a schema argument like so:
Base = declarative_base()
class Road(Base):
__tablename__ = "roads"
__table_args__ = {'schema': 'my_schema'}
id = Column(Integer, primary_key=True)
When I use Base.metadata.create_all(engine) it correctly issues a CREATE TABLE with the schema name on the front like so CREATE TABLE my_schema.roads ( but Postgresql rightly complains that the schema doesn't exist.
Am I missing a step to get SqlAlchemy to issue the CREATE SCHEMA my_schema or do I have to call this manually?

I have done it manually on my db init script like so:
from sqlalchemy.schema import CreateSchema
engine.execute(CreateSchema('my_schema'))
But this seems less magical than I was expecting.

I ran into the same issue and believe the "cleanest" way of issuing the DDL is something like this:
from sqlalchemy import event
from sqlalchemy.schema import CreateSchema
event.listen(Base.metadata, 'before_create', CreateSchema('my_schema'))
This will ensure that before anything contained in the metadata of your base is created, you have the schema for it. This does, however, not check if the schema already exists.
You can do CreateSchema('my_schema').execute_if(callback_=check_schema) if you can be bothered to write the check_schema callback ("Controlling DDL Sequences" on should_create in docs). Or, as an easy way out, just use DDL("CREATE SCHEMA IF NOT EXISTS my_schema") instead (for Postgres):
from sqlalchemy import DDL
event.listen(Base.metadata, 'before_create', DDL("CREATE SCHEMA IF NOT EXISTS my_schema"))

I wrote a function that creates the declared schemas based on the accepted answer. It uses the schema value from the __table_args__ dict from each mapped class.
from sqlalchemy import event, DDL
# Import or write your mapped classes and configuration here
def init_db():
for mapper in Base.registry.mappers:
cls = mapper.class_
if issubclass(cls, Base):
table_args = getattr(cls, '__table_args__', None)
if table_args:
schema = table_args.get('schema')
if schema:
stmt = f"CREATE SCHEMA IF NOT EXISTS {schema}"
event.listen(Base.metadata, 'before_create', DDL(stmt))
Base.metadata.create_all(bind=engine)

Related

sqlalchemy.exc.OperationalError: (sqlite3.OperationalError) unknown database "mydb"

I have a problem to use flask_alchemy for my unit test function
In the production environment I use a postgresql database
"SQLALCHEMY_DATABASE_URI": "postgresql://login:passwd#dburl:1234/mydatabase",
To work with the postgresql schema, in my entity definition i declare a _table_args to specify a schema
class MyTable(Base):
__tablename__ = 'my_tablename'
__table_args__ = {'schema': 'mydbschema'}
my_id = Column('my_id', Date, primary_key=True)
....
But in my unittest i would like to use a memory database
"SQLALCHEMY_DATABASE_URI": "sqlite://",
When i run my function i have this error :
E sqlalchemy.exc.OperationalError: (sqlite3.OperationalError) unknown database "mydbschema"
Somebody knows a workarround in this case ?
I know that OP found a workaround (though, I'm not sure how it works), but for those who still searching for proper solution - you need to use ATTACH DATABASE statement in order to select specific schema, for example if you are using pytest you can use following fixture to create test's setup:
from sqlalchemy import create_engine
#pytest.fixture
def setup_db():
engine = create_engine('sqlite:///:memory:')
with engine.connect() as conn:
conn.execute('ATTACH DATABASE \':memory:\' AS mydbschema;')
yield conn
Of course, you can define fixture scope by your needs.
Similarly, you can use DETACH DATABASE statement to detach and dissociate a named database from a database connection (if necessary), which will destroy DB in the case of in-memory databases.
I found a workaround ...
class MyTable(Base):
__tablename__ = 'my_tablename'
__table_args__ = {'schema': 'mydbschema'}
my_id = Column('my_id', Date, primary_key=True) if os.environ.get('TESTVAR') is None else {}
....

How to recognise a sqlite database created with sqlalchemy using pydal?

I create a very simple database with sqlalchemy as follows:
from sqlalchemy import Column, Integer, String
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
Base = declarative_base()
class Person(Base):
__tablename__ = 'person'
id = Column(Integer, primary_key=True)
name = Column(String(250), nullable=False)
engine = create_engine('sqlite:///sqlalchemy_example.db')
# Create all tables in the engine. This is equivalent to "Create Table"
# statements in raw SQL.
Base.metadata.create_all(engine)
Base.metadata.bind = engine
DBSession = sessionmaker(bind=engine)
session = DBSession()
# Insert a Person in the person table
new_person = Person(name='new person')
session.add(new_person)
session.commit()
and then I tried to read it using pyDAL reference.
from pydal import DAL, Field
db = DAL('sqlite://sqlalchemy_example.db', auto_import=True)
db.tables
>> []
db.define_table('person', Field('name'))
>> OperationalError: table "person" already exists
How do I access the table using pyDAL?
thank you
First, do not set auto_import=True, as that is only relevant if pyDAL *.table migration metadata files exist for the tables, which will not be the case here.
Second, pyDAL does not know the table already exists, and because migrations are enabled by default, it attempts to create the table. To prevent this, you can simply disable migrations:
# Applies to all tables.
db = DAL('sqlite://sqlalchemy_example.db', migrate_enabled=False)
or:
# Applies to this table only.
db.define_table('person', Field('name'), migrate=False)
If you would like pyDAL to take over migrations for future changes to this table, then you should run a "fake migration", which will cause pyDAL to generate a *.table migration metadata file for this table without actually running the migration. To do this, temporarily make the following change:
db.define_table('person', Field('name'), fake_migrate=True)
After leaving the above in place for a single request, the *.table file will be generated, and you can remove the fake_migrate=True argument.
Finally, note that pyDAL expects the id field to be an auto-incrementing integer primary key field.

How to use Enum with SQLAlchemy and Alembic?

Here's my Post model:
class Post(Base):
__tablename__ = 'posts'
title = db.Column(db.String(120), nullable=False)
description = db.Column(db.String(2048), nullable=False)
I'd like to add Enum status to it. So, I've created a new Enum:
import enum
class PostStatus(enum.Enum):
DRAFT='draft'
APPROVE='approve'
PUBLISHED='published'
And added a new field to model:
class Post(Base):
...
status = db.Column(db.Enum(PostStatus), nullable=False, default=PostStatus.DRAFT.value, server_default=PostStatus.DRAFT.value)
After doing FLASK_APP=server.py flask db migrate, a such migration was generated:
def upgrade():
op.add_column('posts', sa.Column('status', sa.Enum('DRAFT', 'APPROVE', 'PUBLISHED', name='poststatus'), server_default='draft', nullable=False))
After trying to upgrade DB, I'm getting:
sqlalchemy.exc.ProgrammingError: (psycopg2.ProgrammingError) type "poststatus" does not exist
LINE 1: ALTER TABLE posts ADD COLUMN status poststatus DEFAULT 'draf...
^
[SQL: "ALTER TABLE posts ADD COLUMN status poststatus DEFAULT 'draft' NOT NULL"]
Why type poststatus was not created on DB-level automatically? In the similar migration it was.
How to specify server_default option properly? I need both ORM-level defaults and DB-level ones, because I'm altering existing rows, so ORM defaults are not applied.
Why real values in DB are 'DRAFT', 'APPROVE', 'PUBLISHED', but not draft, etc? I supposed there should be ENUM values, not names.
Thank you in advance.
Why real values in DB are 'DRAFT', 'APPROVE', 'PUBLISHED', but not draft, etc? I supposed there should be ENUM values, not names.
As Peter Bašista's already mentioned SQLAlchemy uses the enum names (DRAFT, APPROVE, PUBLISHED) in the database. I assume that was done because the enum values ("draft", "approve", ...) can be arbitrary types in Python and they are not guaranteed to be unique (unless #unique is used).
However since SQLAlchemy 1.2.3 the Enum class accepts a parameter values_callable which can be used to store enum values in the database:
status = db.Column(
db.Enum(PostStatus, values_callable=lambda obj: [e.value for e in obj]),
nullable=False,
default=PostStatus.DRAFT.value,
server_default=PostStatus.DRAFT.value
)
Why type poststatus was not created on DB-level automatically? In the similar migration it was.
I think basically you are hitting a limitation of alembic: It won't handle enums on PostgreSQL correctly in some cases. I suspect the main issue in your case is Autogenerate doesn't correctly handle postgresql enums #278.
I noticed that the type is created correctly if I use alembic.op.create_table so my workaround is basically:
enum_type = SQLEnum(PostStatus, values_callable=lambda enum: [e.value for e in enum])
op.create_table(
'_dummy',
sa.Column('id', Integer, primary_key=True),
sa.Column('status', enum_type)
)
op.drop_table('_dummy')
c_status = Column('status', enum_type, nullable=False)
add_column('posts', c_status)
Use the following function example in case you are using PostgreSQL:
from sqlalchemy.dialects import postgresql
from ... import PostStatus
from alembic import op
import sqlalchemy as sa
def upgrade():
post_status = postgresql.ENUM(PostStatus, name="status")
post_status.create(op.get_bind(), checkfirst=True)
op.add_column('posts', sa.Column('status', post_status))
def downgrade():
post_status = postgresql.ENUM(PostStatus, name="status")
post_status.drop(op.get_bind())
This and related StackOverflow threads resort to PostgreSQL dialect-specific typing. However, generic support may be easily achieved in an Alembic migration as follows.
First, import the Python enum, the SQLAlchemy Enum, and your SQLAlchemy declarative base wherever you're going to declare your custom SQLAlchemy Enum column type.
import enum
from sqlalchemy import Enum
from sqlalchemy.ext.declarative import declarative_base
Base = declarative_base()
Let's take OP's original Python enumerated class:
class PostStatus(enum.Enum):
DRAFT='draft'
APPROVE='approve'
PUBLISHED='published'
Now we create a SQLAlchemy Enum instantiation:
PostStatusType: Enum = Enum(
PostStatus,
name="post_status_type",
create_constraint=True,
metadata=Base.metadata,
validate_strings=True,
)
When you run your Alembic alembic revision --autogenerate -m "Revision Notes" and try to apply the revision with alembic upgrade head, you'll likely get an error about the type not existing. For example:
...
sqlalchemy.exc.ProgrammingError: (psycopg2.errors.UndefinedObject) type "post_status_type" does not exist
LINE 10: post_status post_status_type NOT NULL,
...
To fix this, import your SQLAlchemy Enum class and add the following to your upgrade() and downgrade() functions in the Alembic autogenerated revision script.
from myproject.database import PostStatusType
...
def upgrade() -> None:
PostStatusType.create(op.get_bind(), checkfirst=True)
... the remainder of the autogen code...
def downgrade() -> None:
...the autogen code...
PostStatusType.drop(op.get_bind(), checkfirst=True)
Finally, be sure to update the auto-generated sa.Column() declaration in the table(s) using the enumerated type to simply reference the SQLAlchemy Enum type instead of using Alembic's attempt to re-declare it. For example in def upgrade() -> None:
op.create_table(
"my_table",
sa.Column(
"post_status",
PostStatusType,
nullable=False,
),
)
I can only answer the third part of your question.
The documentation for the Enum type in SQLAlchemy states that:
Above, the string names of each element, e.g. “one”, “two”, “three”, are persisted to the database; the values of the Python Enum, here indicated as integers, are not used; the value of each enum can therefore be any kind of Python object whether or not it is persistable.
So, it is by SQLAlchemy design that Enum names, not values are persisted into the database.

sqlalchemy dynamic schema on entity at runtime

I'm using SQL Alchemy and have some schema's that are account specific. The name of the schema is derived using the account ID, so I don't have the name of the schema until I hit my application service or repository layer. I'm wondering if it's possible to run a query against an entity that has it's schema dynamically set at runtime?
I know I need to set the __table_args__['schema'] and have tried doing that using the type() built-in, but I always get the following error:
could not assemble any primary key columns for mapped table
I'm ready to give up and just write straight sql, but I really hate to do that. Any idea how this can be done? I'm using SA 0.99 and I do have a PK mapped.
Thanks
from sqlalchemy 1.1,
this can be done easily using using schema_translation_map.
https://docs.sqlalchemy.org/en/11/changelog/migration_11.html#multi-tenancy-schema-translation-for-table-objects
One option would be to reflect the particular account-dependent tables. Here is the SqlAlchemy Documentation on the matter.
Alternatively, You can create the table with a static schema attribute and update it as needed at runtime and run the queries you need to. I can't think of a non-messy way to do this. So here's the messy option
Use a loop to update the schema property in each table definition whenever the account is switched.
add all the tables that are account-specific to a list.
if the tables are expressed in the declarative syntax, then you have to modify the DeclarativeName.__table__.schema attribute. I'm not sure if you need to also modify DeclarativeName.__table_args__['schema'], but I guess it won't hurt.
If the tables are expressed in the old style Table syntax, then you have to modify the Table.schema attribute.
If you're using text for any relationships or foreign keys, then that will break, and you have to inspect each table for such hard coded usage and change them
example
user_id = Column(ForeignKey('my_schema.user.id')) needs to be written as user_id = Column(ForeignKey(User.id)). Then you can change the schema of User to my_new_schema. Otherwise, at query time sqlalchemy will be confused because the foreign key will point to my_schema.user.id while the query would point to my_new_schema.user.
I'm not sure if more complicated relationships can be expressed without the use of plain text, so I guess that's the limit to my proposed solution.
Here's an example I wrote up in the terminal:
>>> from sqlalchemy import Column, Table, Integer, String, select, ForeignKey
>>> from sqlalchemy.orm import relationship, backref
>>> from sqlalchemy.ext.declarative import declarative_base
>>> B = declarative_base()
>>>
>>> class User(B):
... __tablename__ = 'user'
... __table_args__ = {'schema': 'first_schema'}
... id = Column(Integer, primary_key=True)
... name = Column(String)
... email = Column(String)
...
>>> class Posts(B):
... __tablename__ = 'posts'
... __table_args__ = {'schema':'first_schema'}
... id = Column(Integer, primary_key=True)
... user_id = Column(ForeignKey(User.id))
... text = Column(String)
...
>>> str(select([User.id, Posts.text]).select_from(User.__table__.join(Posts)))
'SELECT first_schema."user".id, first_schema.posts.text \nFROM first_schema."user" JOIN first_schema.posts ON first_schema."user".id = first_schema.posts.user_id'
>>> account_specific = [User, Posts]
>>> for Tbl in account_specific:
... Tbl.__table__.schema = 'second_schema'
...
>>> str(select([User.id, Posts.text]).select_from(User.__table__.join(Posts)))
'SELECT second_schema."user".id, second_schema.posts.text \nFROM second_schema."user" JOIN second_schema.posts ON second_schema."user".id = second_schema.posts.user_id'
As you see the same query refers to the second_schema after I update the table's schema attribute.
edit: Although you can do what I did here, using the schema translation map as shown in the the answer below is the proper way to do it.
They are set statically. Foreign keys needs the same treatment, and I have an additional issue, in that I have multiple schemas that contain multiple tables so I did this:
from sqlalchemy.ext.declarative import declarative_base
staging_dbase = declarative_base()
model_dbase = declarative_base()
def adjust_schemas(staging, model):
for vv in staging_dbase.metadata.tables.values():
vv.schema = staging
for vv in model_dbase.metadata.tables.values():
vv.schema = model
def all_tables():
return staging_dbase.metadata.tables.union(model_dbase.metadata.tables)
Then in my startup code:
adjust_schemas(staging=staging_name, model=model_name)
You can mod this for a single declarative base.
I'm working on a project in which I have to create postgres schemas and tables dynamically and then insert data in proper schema. Here is something I have done maybe it will help someone:
import sqlalchemy
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
from app.models.user import User
engine_uri = "postgres://someusername:somepassword#localhost:5432/users"
engine = create_engine(engine_uri, pool_pre_ping=True)
SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)
def create_schema(schema_name: str):
"""
Creates a new postgres schema
- **schema_name**: name of the new schema to create
"""
if not engine.dialect.has_schema(engine, schema_name):
engine.execute(sqlalchemy.schema.CreateSchema(schema_name))
def create_tables(schema_name: str):
"""
Create new tables for postgres schema
- **schema_name**: schema in which tables are to be created
"""
if (
engine.dialect.has_schema(engine, schema_name) and
not engine.dialect.has_table(engine, str(User.__table__.name))
):
User.__table__.schema = schema_name
User.__table__.create(engine)
def add_data(schema_name: str):
"""
Add data to a particular postgres schema
- **schema_name**: schema in which data is to be added
"""
if engine.dialect.has_table(engine, str(User.__table__.name)):
db = SessionLocal()
db.connection(execution_options={
"schema_translate_map": {None: schema_name}},
)
user = User()
user.name = "Moin"
user.salary = 10000
db.add(user)
db.commit()

SQLAlchemy printing raw SQL from create()

I am giving Pylons a try with SQLAlchemy, and I love it, there is just one thing, is it possible to print out the raw SQL CREATE TABLE data generated from Table().create() before it's executed?
from sqlalchemy.schema import CreateTable
print(CreateTable(table))
If you are using declarative syntax:
print(CreateTable(Model.__table__))
Update:
Since I have the accepted answer and there is important information in klenwell answer, I'll also add it here.
You can get the SQL for your specific database (MySQL, Postgresql, etc.) by compiling with your engine.
print(CreateTable(Model.__table__).compile(engine))
Update 2:
#jackotonye Added in the comments a way to do it without an engine.
print(CreateTable(Model.__table__).compile(dialect=postgresql.dialect()))
You can set up you engine to dump the metadata creation sequence, using the following:
def metadata_dump(sql, *multiparams, **params):
# print or write to log or file etc
print(sql.compile(dialect=engine.dialect))
engine = create_engine(myDatabaseURL, strategy='mock', executor=metadata_dump)
metadata.create_all(engine)
One advantage of this approach is that enums and indexes are included in the printout. Using CreateTable leaves this out.
Another advantage is that the order of the schema definitions is correct and (almost) usable as a script.
I needed to get the raw table sql in order to setup tests for some existing models. Here's a successful unit test that I created for SQLAlchemy 0.7.4 based on Antoine's answer as proof of concept:
from sqlalchemy import create_engine
from sqlalchemy.schema import CreateTable
from model import Foo
sql_url = "sqlite:///:memory:"
db_engine = create_engine(sql_url)
table_sql = CreateTable(Foo.table).compile(db_engine)
self.assertTrue("CREATE TABLE foos" in str(table_sql))
Something like this? (from the SQLA FAQ)
http://docs.sqlalchemy.org/en/latest/faq/sqlexpressions.html
It turns out this is straight-forward:
from sqlalchemy.dialects import postgresql
from sqlalchemy.schema import CreateTable
from sqlalchemy import Table, Column, String, MetaData
metadata = MetaData()
users = Table('users', metadata,
Column('username', String)
)
statement = CreateTable(users)
print(statement.compile(dialect=postgresql.dialect()))
Outputs this:
CREATE TABLE users (
username VARCHAR
)
Going further, it can even support bound parameters in prepared statements.
Reference
How do I render SQL expressions as strings, possibly with bound parameters inlined?
...
or without an Engine:
from sqlalchemy.dialects import postgresql
print(statement.compile(dialect=postgresql.dialect()))
SOURCE: http://docs.sqlalchemy.org/en/latest/faq/sqlexpressions.html#faq-sql-expression-string
Example: Using SQL Alchemy to generate a user rename script
#!/usr/bin/env python
import csv
from sqlalchemy.dialects import postgresql
from sqlalchemy import bindparam, Table, Column, String, MetaData
metadata = MetaData()
users = Table('users', metadata,
Column('username', String)
)
renames = []
with open('users.csv') as csvfile:
for row in csv.DictReader(csvfile):
renames.append({
'from': row['sAMAccountName'],
'to': row['mail']
})
for rename in renames:
stmt = (users.update()
.where(users.c.username == rename['from'])
.values(username=rename['to']))
print(str(stmt.compile(dialect=postgresql.dialect(),
compile_kwargs={"literal_binds": True})) + ';')
When processing this users.csv:
sAMAccountName,mail
bmcboatface,boaty.mcboatface#example.com
ndhyani,naina.dhyani#contoso.com
Gives output like this:
UPDATE users SET username='boaty.mcboatface#example.com' WHERE users.username = 'bmcboatface';
UPDATE users SET username='naina.dhyani#contoso.com' WHERE users.username = 'ndhyani';users.username = 'ndhyani';
Why a research vessel has an email address is yet to be determined. I have been in touch with Example Inc's IT team and have had no response.
May be you mean echo parameter of sqlalchemy.create_engine?
/tmp$ cat test_s.py
import sqlalchemy as sa
from sqlalchemy.ext.declarative import declarative_base
Base = declarative_base()
class Department(Base):
__tablename__ = "departments"
department_id = sa.Column(sa.types.Integer, primary_key=True)
name = sa.Column(sa.types.Unicode(100), unique=True)
chief_id = sa.Column(sa.types.Integer)
parent_department_id = sa.Column(sa.types.Integer,
sa.ForeignKey("departments.department_id"))
parent_department = sa.orm.relation("Department")
engine = sa.create_engine("sqlite:///:memory:", echo=True)
Base.metadata.create_all(bind=engine)
/tmp$ python test_s.py
2011-03-24 15:09:58,311 INFO sqlalchemy.engine.base.Engine.0x...42cc PRAGMA table_info("departments")
2011-03-24 15:09:58,312 INFO sqlalchemy.engine.base.Engine.0x...42cc ()
2011-03-24 15:09:58,312 INFO sqlalchemy.engine.base.Engine.0x...42cc
CREATE TABLE departments (
department_id INTEGER NOT NULL,
name VARCHAR(100),
chief_id INTEGER,
parent_department_id INTEGER,
PRIMARY KEY (department_id),
UNIQUE (name),
FOREIGN KEY(parent_department_id) REFERENCES departments (department_id)
)
2011-03-24 15:09:58,312 INFO sqlalchemy.engine.base.Engine.0x...42cc ()
2011-03-24 15:09:58,312 INFO sqlalchemy.engine.base.Engine.0x...42cc COMMIT

Categories