I have a large (500k by 500k), sparse matrix. I would like to get the principle components of it (in fact, even computing just the largest PC would be fine). Randomized PCA works great, except that it is essentially finding the eigenvectors of the covariance matrix instead of the correlation matrix. Any ideas of a package that will find PCA using the covariance matrix of a large, sparse matrix? Preferably in python, though matlab and R work too.
(For reference, a similar question was asked here but the methods refer to covariance matrix).
Are they not the same thing? As far as I understand it, the correlation matrix is just the covariance matrix normalised by the product of each variable's standard deviation. And, if I recall correctly, isn't there a scaling ambiguity in PCA anyway?
Have you ever tried irlba package in R - "The IRLBA package is the R language implementation of the method. With it, you can compute partial SVDs and principal component analyses of very large scale data. The package works well with sparse matrices and with other matrix classes like those provided by the Bigmemory package." you can check here for details
Related
I have a large sparse square non-normal matrix: 73080 rows, but only 6 nonzero entries per row (and all equal to 1.). I'd like to compute the two largest eigenvalues, as well as the operator (2) norm, ideally with Python. The natural way for me to store this matrix is with scipy's csr_matrix, especially since I'll be multiplying it with other sparse matrices. However, I don't see a good way to compute the relevant statistics: scipy.sparse.linalg's norm method doesn't have the 2-norm implemented and converting to a dense matrix seems like it would be a bad idea, and running scipy.sparse.linalg.eigs seems to run extremely, maybe prohibitively, slowly, and in any event it computes lots of data that I just don't need. I suppose I could subtract off the spectral projector corresponding to the top eigenvalue but then I'd still need to know the top eigenvalue of the new matrix, which I'd like to do with an out-of-the-box method if at all possible, and in any event this wouldn't continue to work after multiplying with other large sparse matrices.
However, these kinds of computations seem to be doable: the top of page 6 of this paper seems to have data on the eigenvalues of ~10000-row matrices. If this is not feasible in Python, is there another way I should try to do this? Thanks in advance.
I'm trying to implement Reinsch's Algorithm (pp 4).
Since the working matrices are sparse, I'm using scipy.sparse module, but as you can see, Reinsch's algorithm needs the Cholesky decomposition of a sparse matrix (let's call it my_matrix) in order to solve certain system, but I couldn't find anything related to this.
Of course, in the same algorithm I can solve the sparse system using, for instance scipy.sparse.linalg.spsolve, and then at the end of the algorithm use something like:
R = numpy.linalg.chol( my_matrix.A )
But, in my application my_matrix is usualy about 800*800, so the last one is very inneficient.
So, my question is, where I can find such decomposition?.
Thank's in advance.
For fast decomposition, you can try,
from scikits.sparse.cholmod import cholesky
factor = cholesky(A.toarray())
x = factor(b)
A is your sparse, symmetric, positive-definite matrix.
Since your matrix is not "Huge!!" converting it into numpy array doesn't cause any problem.
I have written a simple PCA code that calculates the covariance matrix and then uses linalg.eig on that covariance matrix to find the principal components. When I use scikit's PCA for three principal components I get almost the equivalent result. My PCA function outputs the third column of transformed data with flipped signs to what scikit's PCA function does. Now I think there is a higher probability that scikit's built-in PCA is correct than to assume that my code is correct. I have noticed that the third principal component/eigenvector has flipped signs in my case. So if scikit's third eigenvector is (a,-b,-c,-d) then mine is (-a,b,c,d). I might a bit shabby in my linear algebra, but I assume those are different results. The way I arrive at my eigenvectors is by computing the eigenvectors and eigenvalues of the covariance matrix using linalg.eig. I would gladly try to find eigenvectors by hand, but doing that for a 4x4 matrix (I am using iris data set) is not fun.
Iris data set has 4 dimensions, so at most I can run PCA for 4 components. When I run for one component, the results are equivalent. When I run for 2, also equivalent. For three, as I said, my function outputs flipped signs in the third column. When I run for four, again signs are flipped in the third column and all other columns are fine. I am afraid I cannot provide the code for this. This is a project, kind of.
This is desired behaviour, even stated in the documentation of sklearn's PCA
Due to implementation subtleties of the Singular Value Decomposition (SVD), which is used in this implementation, running fit twice on the same matrix can lead to principal components with signs flipped (change in direction). For this reason, it is important to always use the same estimator object to transform data in a consistent fashion.
and quite obviously correct from mathematical perspective, as if v is eigenvector of A then
Av = kv
thus also
A(-v) = -(Av) = -(kv) = k(-v)
So if scikit's third eigenvector is (a,-b,-c,-d) then mine is (-a,b,c,d).
That's completely normal. If v is an eigenvector of a matrix, then -v is an eigenvector with the same eigenvalue.
I'm trying to decomposing signals in components (matrix factorization) in a large sparse matrix in Python using the sklearn library.
I made use of scipy's scipy.sparse.csc_matrix to construct my matrix of data. However I'm unable to perform any analysis such as factor analysis or independent component analysis. The only thing I'm able to do is use truncatedSVD or scipy's scipy.sparse.linalg.svds and perform PCA.
Does anyone know any work-arounds to doing ICA or FA on a sparse matrix in python? Any help would be much appreciated! Thanks.
Given:
M = UΣV^t
The drawback with SVD is that the matrix U and V^t are dense matrices. It doesn't really matter that the input matrix is sparse, U and T will be dense. Also the computational complexity of SVD is O(n^2*m) or O(m^2*n) where n is the number of rows and m the number of columns in the input matrix M. It depends on which one is biggest.
It is worth mentioning that SVD will give you the optimal solution and if you can live with a smaller loss, calculated by the frobenius norm, you might want to consider using the CUR algorithm. It will scale to larger datasets with O(n*m).
U = CUR^t
Where C and R are now SPARSE matrices.
If you want to look at a python implementation, take a look at pymf. But be a bit careful about that exact implementations since it seems, at this point in time, there is an open issue with the implementation.
Even the input matrix is sparse the output will not be a sparse matrix. If the system does not support a dense matrix neither the results will not be supported
It is usually a best practice to use coo_matrix to establish the matrix and then convert it using .tocsc() to manipulate it.
While trying to compute inverse of a matrix in python using numpy.linalg.inv(matrix), I get singular matrix error. Why does it happen? Has it anything to do with the smallness of the values in the matrix. The numbers in my matrix are probabilities and add up to 1.
It may very well have to do with the smallness of the values in the matrix.
Some matrices that are not, in fact, mathematically singular (with a zero determinant) are totally singular from a practical point of view, in that the math library one is using cannot process them properly.
Numerical analysis is tricky, as you know, and how well it deals with such situations is a measure of the quality of a matrix library.