Is there a short contains function for lists? - python

Given a list xs and a value item, how can I check whether xs contains item (i.e., if any of the elements of xs is equal to item)? Is there something like xs.contains(item)?
For performance considerations, see Fastest way to check if a value exists in a list.

Use:
if my_item in some_list:
...
Also, inverse operation:
if my_item not in some_list:
...
It works fine for lists, tuples, sets and dicts (check keys).
Note that this is an O(n) operation in lists and tuples, but an O(1) operation in sets and dicts.

In addition to what other have said, you may also be interested to know that what in does is to call the list.__contains__ method, that you can define on any class you write and can get extremely handy to use python at his full extent.
A dumb use may be:
>>> class ContainsEverything:
def __init__(self):
return None
def __contains__(self, *elem, **k):
return True
>>> a = ContainsEverything()
>>> 3 in a
True
>>> a in a
True
>>> False in a
True
>>> False not in a
False
>>>

I came up with this one liner recently for getting True if a list contains any number of occurrences of an item, or False if it contains no occurrences or nothing at all. Using next(...) gives this a default return value (False) and means it should run significantly faster than running the whole list comprehension.
list_does_contain = next((True for item in list_to_test if item == test_item), False)

The list method index will return -1 if the item is not present, and will return the index of the item in the list if it is present. Alternatively in an if statement you can do the following:
if myItem in list:
#do things
You can also check if an element is not in a list with the following if statement:
if myItem not in list:
#do things

There is also the list method:
[2, 51, 6, 8, 3].__contains__(8)
# Out[33]: True
[2, 51, 6, 3].__contains__(8)
# Out[33]: False

There is one another method that uses index. But I am not sure if this has any fault or not.
list = [5,4,3,1]
try:
list.index(2)
#code for when item is expected to be in the list
print("present")
except:
#code for when item is not expected to be in the list
print("not present")
Output:
not present

Related

How to compare two list of dictionaries [duplicate]

a = [1, 2, 3, 1, 2, 3]
b = [3, 2, 1, 3, 2, 1]
a & b should be considered equal, because they have exactly the same elements, only in different order.
The thing is, my actual lists will consist of objects (my class instances), not integers.
O(n): The Counter() method is best (if your objects are hashable):
def compare(s, t):
return Counter(s) == Counter(t)
O(n log n): The sorted() method is next best (if your objects are orderable):
def compare(s, t):
return sorted(s) == sorted(t)
O(n * n): If the objects are neither hashable, nor orderable, you can use equality:
def compare(s, t):
t = list(t) # make a mutable copy
try:
for elem in s:
t.remove(elem)
except ValueError:
return False
return not t
You can sort both:
sorted(a) == sorted(b)
A counting sort could also be more efficient (but it requires the object to be hashable).
>>> from collections import Counter
>>> a = [1, 2, 3, 1, 2, 3]
>>> b = [3, 2, 1, 3, 2, 1]
>>> print (Counter(a) == Counter(b))
True
If you know the items are always hashable, you can use a Counter() which is O(n)
If you know the items are always sortable, you can use sorted() which is O(n log n)
In the general case you can't rely on being able to sort, or has the elements, so you need a fallback like this, which is unfortunately O(n^2)
len(a)==len(b) and all(a.count(i)==b.count(i) for i in a)
If you have to do this in tests:
https://docs.python.org/3.5/library/unittest.html#unittest.TestCase.assertCountEqual
assertCountEqual(first, second, msg=None)
Test that sequence first contains the same elements as second, regardless of their order. When they don’t, an error message listing the differences between the sequences will be generated.
Duplicate elements are not ignored when comparing first and second. It verifies whether each element has the same count in both sequences. Equivalent to: assertEqual(Counter(list(first)), Counter(list(second))) but works with sequences of unhashable objects as well.
New in version 3.2.
or in 2.7:
https://docs.python.org/2.7/library/unittest.html#unittest.TestCase.assertItemsEqual
Outside of tests I would recommend the Counter method.
The best way to do this is by sorting the lists and comparing them. (Using Counter won't work with objects that aren't hashable.) This is straightforward for integers:
sorted(a) == sorted(b)
It gets a little trickier with arbitrary objects. If you care about object identity, i.e., whether the same objects are in both lists, you can use the id() function as the sort key.
sorted(a, key=id) == sorted(b, key==id)
(In Python 2.x you don't actually need the key= parameter, because you can compare any object to any object. The ordering is arbitrary but stable, so it works fine for this purpose; it doesn't matter what order the objects are in, only that the ordering is the same for both lists. In Python 3, though, comparing objects of different types is disallowed in many circumstances -- for example, you can't compare strings to integers -- so if you will have objects of various types, best to explicitly use the object's ID.)
If you want to compare the objects in the list by value, on the other hand, first you need to define what "value" means for the objects. Then you will need some way to provide that as a key (and for Python 3, as a consistent type). One potential way that would work for a lot of arbitrary objects is to sort by their repr(). Of course, this could waste a lot of extra time and memory building repr() strings for large lists and so on.
sorted(a, key=repr) == sorted(b, key==repr)
If the objects are all your own types, you can define __lt__() on them so that the object knows how to compare itself to others. Then you can just sort them and not worry about the key= parameter. Of course you could also define __hash__() and use Counter, which will be faster.
If the comparison is to be performed in a testing context, use assertCountEqual(a, b) (py>=3.2) and assertItemsEqual(a, b) (2.7<=py<3.2).
Works on sequences of unhashable objects too.
If the list contains items that are not hashable (such as a list of objects) you might be able to use the Counter Class and the id() function such as:
from collections import Counter
...
if Counter(map(id,a)) == Counter(map(id,b)):
print("Lists a and b contain the same objects")
Let a,b lists
def ass_equal(a,b):
try:
map(lambda x: a.pop(a.index(x)), b) # try to remove all the elements of b from a, on fail, throw exception
if len(a) == 0: # if a is empty, means that b has removed them all
return True
except:
return False # b failed to remove some items from a
No need to make them hashable or sort them.
I hope the below piece of code might work in your case :-
if ((len(a) == len(b)) and
(all(i in a for i in b))):
print 'True'
else:
print 'False'
This will ensure that all the elements in both the lists a & b are same, regardless of whether they are in same order or not.
For better understanding, refer to my answer in this question
You can write your own function to compare the lists.
Let's get two lists.
list_1=['John', 'Doe']
list_2=['Doe','Joe']
Firstly, we define an empty dictionary, count the list items and write in the dictionary.
def count_list(list_items):
empty_dict={}
for list_item in list_items:
list_item=list_item.strip()
if list_item not in empty_dict:
empty_dict[list_item]=1
else:
empty_dict[list_item]+=1
return empty_dict
After that, we'll compare both lists by using the following function.
def compare_list(list_1, list_2):
if count_list(list_1)==count_list(list_2):
return True
return False
compare_list(list_1,list_2)
from collections import defaultdict
def _list_eq(a: list, b: list) -> bool:
if len(a) != len(b):
return False
b_set = set(b)
a_map = defaultdict(lambda: 0)
b_map = defaultdict(lambda: 0)
for item1, item2 in zip(a, b):
if item1 not in b_set:
return False
a_map[item1] += 1
b_map[item2] += 1
return a_map == b_map
Sorting can be quite slow if the data is highly unordered (timsort is extra good when the items have some degree of ordering). Sorting both also requires fully iterating through both lists.
Rather than mutating a list, just allocate a set and do a left-->right membership check, keeping a count of how many of each item exist along the way:
If the two lists are not the same length you can short circuit and return False immediately.
If you hit any item in list a that isn't in list b you can return False
If you get through all items then you can compare the values of a_map and b_map to find out if they match.
This allows you to short-circuit in many cases long before you've iterated both lists.
plug in this:
def lists_equal(l1: list, l2: list) -> bool:
"""
import collections
compare = lambda x, y: collections.Counter(x) == collections.Counter(y)
ref:
- https://stackoverflow.com/questions/9623114/check-if-two-unordered-lists-are-equal
- https://stackoverflow.com/questions/7828867/how-to-efficiently-compare-two-unordered-lists-not-sets
"""
compare = lambda x, y: collections.Counter(x) == collections.Counter(y)
set_comp = set(l1) == set(l2) # removes duplicates, so returns true when not sometimes :(
multiset_comp = compare(l1, l2) # approximates multiset
return set_comp and multiset_comp #set_comp is gere in case the compare function doesn't work

Is there another way besides "all" to check if all elements values before my target element are true?

I'm trying to return true if only all the previous elements are true up to the current position.
I have it set up with all function but I don't want to code it this way
def check(lightsOnOff, light):
for light in lights[:light]:
if not on:
return False
return True
count = count + 1
In general all is a useful construct to use, I can see why it looks wrong in this expression
all(list(lightsOnOff.values())[:light])
but the smelly part is actually the list(iterable)[:number] construction, which forces construction of the whole list then truncates it.
As an important aside, if lightsOnOff is a dict (not e.g. an OrderedDict) your code will be non-deterministic (see notes at bottom).
If you don't want to create a list and slice it, you can leverage itertools:
from itertools import islince
...
all(islice(lightsOnOff.values(), n))
As a frame challenge, if your dict has an order and you know the keys, you can simply rewrite it as:
all(lightsOnOff[k] for k in keys[:light])
and if your dict has keys that are ordered and e.g. integers, just use a list?
all(listOfLights[:light])
Provided you want to implement all yourself on an arbitrary list, you can do something like:
my_list = [1, 7, 2, 1, None, 2, 3]
up_to_ix = 5
def my_all(some_list, up_to_index):
for element in some_list[:up_to_index]:
if not element:
return False
return True
my_all(my_list, up_to_ix)
The function will loop through all elements in the list up to, but excluding the some_index and if it finds at least one Falsy value, will return False, otherwise True.

comparing contents of two lists python [duplicate]

a = [1, 2, 3, 1, 2, 3]
b = [3, 2, 1, 3, 2, 1]
a & b should be considered equal, because they have exactly the same elements, only in different order.
The thing is, my actual lists will consist of objects (my class instances), not integers.
O(n): The Counter() method is best (if your objects are hashable):
def compare(s, t):
return Counter(s) == Counter(t)
O(n log n): The sorted() method is next best (if your objects are orderable):
def compare(s, t):
return sorted(s) == sorted(t)
O(n * n): If the objects are neither hashable, nor orderable, you can use equality:
def compare(s, t):
t = list(t) # make a mutable copy
try:
for elem in s:
t.remove(elem)
except ValueError:
return False
return not t
You can sort both:
sorted(a) == sorted(b)
A counting sort could also be more efficient (but it requires the object to be hashable).
>>> from collections import Counter
>>> a = [1, 2, 3, 1, 2, 3]
>>> b = [3, 2, 1, 3, 2, 1]
>>> print (Counter(a) == Counter(b))
True
If you know the items are always hashable, you can use a Counter() which is O(n)
If you know the items are always sortable, you can use sorted() which is O(n log n)
In the general case you can't rely on being able to sort, or has the elements, so you need a fallback like this, which is unfortunately O(n^2)
len(a)==len(b) and all(a.count(i)==b.count(i) for i in a)
If you have to do this in tests:
https://docs.python.org/3.5/library/unittest.html#unittest.TestCase.assertCountEqual
assertCountEqual(first, second, msg=None)
Test that sequence first contains the same elements as second, regardless of their order. When they don’t, an error message listing the differences between the sequences will be generated.
Duplicate elements are not ignored when comparing first and second. It verifies whether each element has the same count in both sequences. Equivalent to: assertEqual(Counter(list(first)), Counter(list(second))) but works with sequences of unhashable objects as well.
New in version 3.2.
or in 2.7:
https://docs.python.org/2.7/library/unittest.html#unittest.TestCase.assertItemsEqual
Outside of tests I would recommend the Counter method.
The best way to do this is by sorting the lists and comparing them. (Using Counter won't work with objects that aren't hashable.) This is straightforward for integers:
sorted(a) == sorted(b)
It gets a little trickier with arbitrary objects. If you care about object identity, i.e., whether the same objects are in both lists, you can use the id() function as the sort key.
sorted(a, key=id) == sorted(b, key==id)
(In Python 2.x you don't actually need the key= parameter, because you can compare any object to any object. The ordering is arbitrary but stable, so it works fine for this purpose; it doesn't matter what order the objects are in, only that the ordering is the same for both lists. In Python 3, though, comparing objects of different types is disallowed in many circumstances -- for example, you can't compare strings to integers -- so if you will have objects of various types, best to explicitly use the object's ID.)
If you want to compare the objects in the list by value, on the other hand, first you need to define what "value" means for the objects. Then you will need some way to provide that as a key (and for Python 3, as a consistent type). One potential way that would work for a lot of arbitrary objects is to sort by their repr(). Of course, this could waste a lot of extra time and memory building repr() strings for large lists and so on.
sorted(a, key=repr) == sorted(b, key==repr)
If the objects are all your own types, you can define __lt__() on them so that the object knows how to compare itself to others. Then you can just sort them and not worry about the key= parameter. Of course you could also define __hash__() and use Counter, which will be faster.
If the comparison is to be performed in a testing context, use assertCountEqual(a, b) (py>=3.2) and assertItemsEqual(a, b) (2.7<=py<3.2).
Works on sequences of unhashable objects too.
If the list contains items that are not hashable (such as a list of objects) you might be able to use the Counter Class and the id() function such as:
from collections import Counter
...
if Counter(map(id,a)) == Counter(map(id,b)):
print("Lists a and b contain the same objects")
Let a,b lists
def ass_equal(a,b):
try:
map(lambda x: a.pop(a.index(x)), b) # try to remove all the elements of b from a, on fail, throw exception
if len(a) == 0: # if a is empty, means that b has removed them all
return True
except:
return False # b failed to remove some items from a
No need to make them hashable or sort them.
I hope the below piece of code might work in your case :-
if ((len(a) == len(b)) and
(all(i in a for i in b))):
print 'True'
else:
print 'False'
This will ensure that all the elements in both the lists a & b are same, regardless of whether they are in same order or not.
For better understanding, refer to my answer in this question
You can write your own function to compare the lists.
Let's get two lists.
list_1=['John', 'Doe']
list_2=['Doe','Joe']
Firstly, we define an empty dictionary, count the list items and write in the dictionary.
def count_list(list_items):
empty_dict={}
for list_item in list_items:
list_item=list_item.strip()
if list_item not in empty_dict:
empty_dict[list_item]=1
else:
empty_dict[list_item]+=1
return empty_dict
After that, we'll compare both lists by using the following function.
def compare_list(list_1, list_2):
if count_list(list_1)==count_list(list_2):
return True
return False
compare_list(list_1,list_2)
from collections import defaultdict
def _list_eq(a: list, b: list) -> bool:
if len(a) != len(b):
return False
b_set = set(b)
a_map = defaultdict(lambda: 0)
b_map = defaultdict(lambda: 0)
for item1, item2 in zip(a, b):
if item1 not in b_set:
return False
a_map[item1] += 1
b_map[item2] += 1
return a_map == b_map
Sorting can be quite slow if the data is highly unordered (timsort is extra good when the items have some degree of ordering). Sorting both also requires fully iterating through both lists.
Rather than mutating a list, just allocate a set and do a left-->right membership check, keeping a count of how many of each item exist along the way:
If the two lists are not the same length you can short circuit and return False immediately.
If you hit any item in list a that isn't in list b you can return False
If you get through all items then you can compare the values of a_map and b_map to find out if they match.
This allows you to short-circuit in many cases long before you've iterated both lists.
plug in this:
def lists_equal(l1: list, l2: list) -> bool:
"""
import collections
compare = lambda x, y: collections.Counter(x) == collections.Counter(y)
ref:
- https://stackoverflow.com/questions/9623114/check-if-two-unordered-lists-are-equal
- https://stackoverflow.com/questions/7828867/how-to-efficiently-compare-two-unordered-lists-not-sets
"""
compare = lambda x, y: collections.Counter(x) == collections.Counter(y)
set_comp = set(l1) == set(l2) # removes duplicates, so returns true when not sometimes :(
multiset_comp = compare(l1, l2) # approximates multiset
return set_comp and multiset_comp #set_comp is gere in case the compare function doesn't work

Python: Get index if in statement evaluates true

I'm doing a simple lookup
if xo.st in sts:
#...
If the condition is met I need to get the index of the element in sts (sts is a list or a tuple). This needs to be fast (it is a big list). What is the best solution for this?
What about:
if xo.st in sts:
print sts.index(xo.st)
This will return the first index of xo.st insts
First thing that comes to mind is
list.index(xo.st)
list and tuple both have an index method, which returns the index for a value if it's in the data, or raises a ValueError if it's not present.
If you want speed you might want to keep an ordered list and do a binary search
Here is a previous SO about this.
The index method, present in lists and tuples, is what you need.
It raises a ValueError when the value is NOT in the list.
If that's not what you want, you can make something like this:
>>> def get_index(value, sequence):
... try:
... return sequence.index(value)
... except ValueError:
... return None
...
>>> l = [1,2,3,4,5]
>>> print get_index(1, l)
0
>>> print get_index(2, l)
1
>>> print get_index(9, l)
None

python 2.7 : knowing if it's a list of list of list OR a list of list

a script is feeding me with list of list of list or list of list.
What I plan to do is call this
test = myList[0][0][0]
and if an exception is raised I'll know that it's a list of list.
Is there a better/proper way to do this?
Thanks.
I'm not sure if it's better/proper, but you can also test whether something is a list with isinstance or type functions.
For example
a = [1,2,3]
b = (1,2,3) # Not a list
type(a) == type([]) # True
type(b) == type([]) # False
type(a) is list # True
type(b) is list # False
isinstance(a, list) # True
isinstance(b, list) # False
The first method is probably not ideal, the second would probably be better if you were to use type, but I think the general consensus is that isinstance is generally better.
EDIT: Some discussion about the difference between the two approaches
So, I guess your code would look something like:
if(isinstance(myList[0][0], list)):
# Use myList[0][0][0]
else:
# Use myList[0][0]

Categories