kd tree build sort optimize - python

The algorithm build of kd-tree implemented in the Python programming language is as follows (from http://en.wikipedia.org/wiki/K-d_tree):
class Node: pass
def kdtree(point_list, depth=0):
if not point_list:
return None
# Select axis based on depth so that axis cycles through all valid values
k = len(point_list[0]) # assumes all points have the same dimension
axis = depth % k
# Sort point list and choose median as pivot element
point_list.sort(key=lambda point: point[axis])
median = len(point_list) // 2 # choose median
# Create node and construct subtrees
node = Node()
node.location = point_list[median]
node.left_child = kdtree(point_list[:median], depth + 1)
node.right_child = kdtree(point_list[median + 1:], depth + 1)
return node
Sorting is performed on every step. How to reduce the amount of sorting?

It looks like you're only sorting to split around the median. Instead, you could implement a linear-time selection algorithm such as quickselect, then do a linear-time partition of point_list. Then, you don't need to sort at all anymore.

Related

Heuristic to choose five column arrays that maximise the dot product

I have a sparse 60000x10000 matrix M where each element is either a 1 or 0. Each column in the matrix is a different combination of signals (ie. 1s and 0s). I want to choose five column vectors from M and take the Hadamard (ie. element-wise) product of them; I call the resulting vector the strategy vector. After this step, I compute the dot product of this strategy vector with a target vector (that does not change). The target vector is filled with 1s and -1s such that having a 1 in a specific row of the strategy vector is either rewarded or penalised.
Is there some heuristic or linear algebra method that I could use to help me pick the five vectors from the matrix M that result in a high dot product? I don't have any experience with Google's OR tools nor Scipy's optimization methods so I am not too sure if they can be applied to my problem. Advice on this would be much appreciated! :)
Note: the five column vectors given as the solution does not need to be the optimal one; I'd rather have something that does not take months/years to run.
First of all, thanks for a good question. I don't get to practice numpy that often. Also, I don't have much experience in posting to SE, so any feedback, code critique, and opinions relating to the answer are welcome.
This was an attempt at finding an optimal solution at first, but I didn't manage to deal with the complexity. The algorithm should, however, give you a greedy solution that might prove to be adequate.
Colab Notebook (Python code + Octave validation)
Core Idea
Note: During runtime, I've transposed the matrix. So, the column vectors in the question correspond to row vectors in the algorithm.
Notice that you can multiply the target with one vector at a time, effectively getting a new target, but with some 0s in it. These will never change, so you can filter out some computations by removing those rows (columns, in the algorithm) in further computations entirely - both from the target and the matrix. - you're then left with a valid target again (only 1s and -1 in it).
That's the basic idea of the algorithm. Given:
n: number of vectors you need to pick
b: number of best vectors to check
m: complexity of matrix operations to check one vector
Do an exponentially-complex O((n*m)^b) depth-first search, but decrease the complexity of the calculations in deeper layers by reducing target/matrix size, while cutting down a few search paths with some heuristics.
Heuristics used
The best score achieved so far is known in every recursion step. Compute an optimistic vector (turn -1 to 0) and check what scores can still be achieved. Do not search in levels where the score cannot be surpassed.
This is useless if the best vectors in the matrix have 1s and 0s equally distributed. The optimistic scores are just too high. However, it gets better with more sparsity.
Ignore duplicates. Basically, do not check duplicate vectors in the same layer. Because we reduce the matrix size, the chance for ending up with duplicates increases in deeper recursion levels.
Further Thoughts on Heuristics
The most valuable ones are those that eliminate the vector choices at the start. There's probably a way to find vectors that are worse-or-equal than others, with respect to their affects on the target. Say, if v1 only differs from v2 by an extra 1, and target has a -1 in that row, then v1 is worse-or-equal than v2.
The problem is that we need to find more than 1 vector, and can't readily discard the rest. If we have 10 vectors, each worse-or-equal than the one before, we still have to keep 5 at the start (in case they're still the best option), then 4 in the next recursion level, 3 in the following, etc.
Maybe it's possible to produce a tree and pass it on in into recursion? Still, that doesn't help trim down the search space at the start... Maybe it would help to only consider 1 or 2 of the vectors in the worse-or-equal chain? That would explore more diverse solutions, but doesn't guarantee that it's more optimal.
Warning: Note that the MATRIX and TARGET in the example are in int8. If you use these for the dot product, it will overflow. Though I think all operations in the algorithm are creating new variables, so are not affected.
Code
# Given:
TARGET = np.random.choice([1, -1], size=60000).astype(np.int8)
MATRIX = np.random.randint(0, 2, size=(10000,60000), dtype=np.int8)
# Tunable - increase to search more vectors, at the cost of time.
# Performs better if the best vectors in the matrix are sparse
MAX_BRANCHES = 3 # can give more for sparser matrices
# Usage
score, picked_vectors_idx = pick_vectors(TARGET, MATRIX, 5)
# Function
def pick_vectors(init_target, init_matrix, vectors_left_to_pick: int, best_prev_result=float("-inf")):
assert vectors_left_to_pick >= 1
if init_target.shape == (0, ) or len(init_matrix.shape) <= 1 or init_matrix.shape[0] == 0 or init_matrix.shape[1] == 0:
return float("inf"), None
target = init_target.copy()
matrix = init_matrix.copy()
neg_matrix = np.multiply(target, matrix)
neg_matrix_sum = neg_matrix.sum(axis=1)
if vectors_left_to_pick == 1:
picked_id = np.argmax(neg_matrix_sum)
score = neg_matrix[picked_id].sum()
return score, [picked_id]
else:
sort_order = np.argsort(neg_matrix_sum)[::-1]
sorted_sums = neg_matrix_sum[sort_order]
sorted_neg_matrix = neg_matrix[sort_order]
sorted_matrix = matrix[sort_order]
best_score = best_prev_result
best_picked_vector_idx = None
# Heuristic 1 (H1) - optimistic target.
# Set a maximum score that can still be achieved
optimistic_target = target.copy()
optimistic_target[target == -1] = 0
if optimistic_target.sum() <= best_score:
# This check can be removed - the scores are too high at this point
return float("-inf"), None
# Heuristic 2 (H2) - ignore duplicates
vecs_tried = set()
# MAIN GOAL: for picked_id, picked_vector in enumerate(sorted_matrix):
for picked_id, picked_vector in enumerate(sorted_matrix[:MAX_BRANCHES]):
# H2
picked_tuple = tuple(picked_vector)
if picked_tuple in vecs_tried:
continue
else:
vecs_tried.add(picked_tuple)
# Discard picked vector
new_matrix = np.delete(sorted_matrix, picked_id, axis=0)
# Discard matrix and target rows where vector is 0
ones = np.argwhere(picked_vector == 1).squeeze()
new_matrix = new_matrix[:, ones]
new_target = target[ones]
if len(new_matrix.shape) <= 1 or new_matrix.shape[0] == 0:
return float("-inf"), None
# H1: Do not compute if best score cannot be improved
new_optimistic_target = optimistic_target[ones]
optimistic_matrix = np.multiply(new_matrix, new_optimistic_target)
optimistic_sums = optimistic_matrix.sum(axis=1)
optimistic_viable_vector_idx = optimistic_sums > best_score
if optimistic_sums.max() <= best_score:
continue
new_matrix = new_matrix[optimistic_viable_vector_idx]
score, next_picked_vector_idx = pick_vectors(new_target, new_matrix, vectors_left_to_pick - 1, best_prev_result=best_score)
if score <= best_score:
continue
# Convert idx of trimmed-down matrix into sorted matrix IDs
for i, returned_id in enumerate(next_picked_vector_idx):
# H1: Loop until you hit the required number of 'True'
values_passed = 0
j = 0
while True:
value_picked: bool = optimistic_viable_vector_idx[j]
if value_picked:
values_passed += 1
if values_passed-1 == returned_id:
next_picked_vector_idx[i] = j
break
j += 1
# picked_vector index
if returned_id >= picked_id:
next_picked_vector_idx[i] += 1
best_score = score
# Convert from sorted matrix to input matrix IDs before returning
matrix_id = sort_order[picked_id]
next_picked_vector_idx = [sort_order[x] for x in next_picked_vector_idx]
best_picked_vector_idx = [matrix_id] + next_picked_vector_idx
return best_score, best_picked_vector_idx
Maybe it's too naive, but the first thing that occurs to me is to choose the 5 columns with the shortest distance to the target:
import scipy
import numpy as np
from sklearn.metrics.pairwise import pairwise_distances
def sparse_prod_axis0(A):
"""Sparse equivalent of np.prod(arr, axis=0)
From https://stackoverflow.com/a/44321026/3381305
"""
valid_mask = A.getnnz(axis=0) == A.shape[0]
out = np.zeros(A.shape[1], dtype=A.dtype)
out[valid_mask] = np.prod(A[:, valid_mask].A, axis=0)
return np.matrix(out)
def get_strategy(M, target, n=5):
"""Guess n best vectors.
"""
dists = np.squeeze(pairwise_distances(X=M, Y=target))
idx = np.argsort(dists)[:n]
return sparse_prod_axis0(M[idx])
# Example data.
M = scipy.sparse.rand(m=6000, n=1000, density=0.5, format='csr').astype('bool')
target = np.atleast_2d(np.random.choice([-1, 1], size=1000))
# Try it.
strategy = get_strategy(M, target, n=5)
result = strategy # target.T
It strikes me that you could add another step of taking the top few percent from the M–target distances and check their mutual distances — but this could be quite expensive.
I have not checked how this compares to an exhaustive search.

Recurrence relation and time complexity of finding next larger in Generic tree

Question: Given a generic tree and an integer n. Find and return the node with next larger element in the tree i.e. find a node with value just greater than n.
Although i was able to solve it is O(n) by removing the later for loop and doing comparisons while calling recursion. I am bit curious about time complexity of following version of code.
I came up with recurrence relation as T(n) = T(n-1) + (n-1) = O(n^2). Where T(n-1) is for time taken by children and + (n-1) for finding the next larger (second for loop). Have i done it right? or am i missing something?
def nextLargestHelper(root, n):
"""
root => reference to root node
n => integer
Returns node and value of node which is just larger not first larger than n.
"""
# Special case
if root is None:
return None, None
# list to store all values > n
largers = list()
# Induction step
if root.data > n:
largers.append([root, root.data])
# Induction step and Base case; if no children do not call recursion
for child in root.children:
# Induction hypothesis; my function returns me node and value just larger than 'n'
node, value = nextLargestHelper(child, n)
# If larger found in subtree
if node:
largers.append([node, value])
# Initialize node to none, and value as +infinity
node = None
value = sys.maxsize
# travers through all larger values and return the smallest value greater than n
for item in largers: # structure if item is [Node, value]
# this is why value is initialized to +infinity; so as it is true for first time
if item[1] < value:
node = item[0]
value = item[1]
return node, value
At first: please use different chacters for O-Notation and inputvalues.
You "touch" every node exactly once, so the result should be O(n). A bit special is your algorithm finding the minimum afterwards. You could include this in your go-though-all-children loop for an easier recurrence estimation. As it is, you have do a recurrence estimation for the minimum of the list as well.
Your recurrence equation should look more like T(n) = a*T(n/a) + c = O(n) since in each step you have a children forming a subtrees with size (n-1)/a. In each step you have next to some constant factors also the computation of the minimum of a list with at most a elements. You could write it as a*T(n/a) + a*c1 +c2 which is the same as a*T(n/a) + c. The actual formula would look more like this: T(n) = a*T((n-1)/a) + c but the n-1 makes it harder to apply the master theorem.

Efficient Particle-Pair Interactions Calculation

I have an N-body simulation that generates a list of particle positions, for multiple timesteps in the simulation. For a given frame, I want to generate a list of the pairs of particles' indices (i, j) such that dist(p[i], p[j]) < masking_radius. Essentially I'm creating a list of "interaction" pairs, where the pairs are within a certain distance of each other. My current implementation looks something like this:
interaction_pairs = []
# going through each unique pair (order doesn't matter)
for i in range(num_particles):
for j in range(i + 1, num_particles):
if dist(p[i], p[j]) < masking_radius:
interaction_pairs.append((i,j))
Because of the large number of particles, this process takes a long time (>1 hr per test), and it is severely limiting to what I need to do with the data. I was wondering if there was any more efficient way to structure the data such that calculating these pairs would be more efficient instead of comparing every possible combination of particles. I was looking into KDTrees, but I couldn't figure out a way to utilize them to compute this more efficiently. Any help is appreciated, thank you!
Since you are using python, sklearn has multiple implementations for nearest neighbours finding:
http://scikit-learn.org/stable/modules/neighbors.html
There is KDTree and Balltree provided.
As for KDTree the main point is to push all the particles you have into KDTree, and then for each particle ask query: "give me all particles in range X". KDtree usually do this faster than bruteforce search.
You can read more for example here: https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/kdtrees.pdf
If you are using 2D or 3D space, then other option is to just cut the space into big grid (which cell size of masking radius) and assign each particle into one grid cell. Then you can find possible candidates for interaction just by checking neighboring cells (but you also have to do a distance check, but for much fewer particle pairs).
Here's a fairly simple technique using plain Python that can reduce the number of comparisons required.
We first sort the points along either the X, Y, or Z axis (selected by axis in the code below). Let's say we choose the X axis. Then we loop over point pairs like your code does, but when we find a pair whose distance is greater than the masking_radius we test whether the difference in their X coordinates is also greater than the masking_radius. If it is, then we can bail out of the inner j loop because all points with a greater j have a greater X coordinate.
My dist2 function calculates the squared distance. This is faster than calculating the actual distance because computing the square root is relatively slow.
I've also included code that behaves similar to your code, i.e., it tests every pair of points, for speed comparison purposes; it also serves to check that the fast code is correct. ;)
from random import seed, uniform
from operator import itemgetter
seed(42)
# Make some fake data
def make_point(hi=10.0):
return [uniform(-hi, hi) for _ in range(3)]
psize = 1000
points = [make_point() for _ in range(psize)]
masking_radius = 4.0
masking_radius2 = masking_radius ** 2
def dist2(p, q):
return (p[0] - q[0])**2 + (p[1] - q[1])**2 + (p[2] - q[2])**2
pair_count = 0
test_count = 0
do_fast = 1
if do_fast:
# Sort the points on one axis
axis = 0
points.sort(key=itemgetter(axis))
# Fast
for i, p in enumerate(points):
left, right = i - 1, i + 1
for j in range(i + 1, psize):
test_count += 1
q = points[j]
if dist2(p, q) < masking_radius2:
#interaction_pairs.append((i, j))
pair_count += 1
elif q[axis] - p[axis] >= masking_radius:
break
if i % 100 == 0:
print('\r {:3} '.format(i), flush=True, end='')
total_pairs = psize * (psize - 1) // 2
print('\r {} / {} tests'.format(test_count, total_pairs))
else:
# Slow
for i, p in enumerate(points):
for j in range(i+1, psize):
q = points[j]
if dist2(p, q) < masking_radius2:
#interaction_pairs.append((i, j))
pair_count += 1
if i % 100 == 0:
print('\r {:3} '.format(i), flush=True, end='')
print('\n', pair_count, 'pairs')
output with do_fast = 1
181937 / 499500 tests
13295 pairs
output with do_fast = 0
13295 pairs
Of course, if most of the point pairs are within masking_radius of each other, there won't be much benefit in using this technique. And sorting the points adds a little bit of time, but Python's TimSort is rather efficient, especially if the data is already partially sorted, so if the masking_radius is sufficiently small you should see a noticeable improvement in the speed.

Ising Model: How to shorten simulation time?

I am simulating the Ising Model of ferromagnets in dimensions higher than 3 using a simple coding structure but am having some problems with efficiency. In my code, there is one particular function that is the bottleneck.
In the simulation process, it is necessary to find what are called the nearest neighbors of a given site. For example, in the 2D Ising model, spins occupy the lattice at every point, noted by two numbers: (x,y). The nearest neighbors of the point at (x,y) are the four adjacent values, namely (x+1,y),(x-1,y),(x,y+1),(x,y-1). In 5D, the spin at some lattice site has coordinates (a,b,c,d,e) with 10 nearest neighbors, in the same form as before but for each point in the tuple.
Now here's the code that is given the following inputs:
"site_i is a random value between 0 and n-1 denoting the site of the ith spin"
"coord is an array of size (n**dim,dim) that contains the coordinates of ever spin"
"spins is an array of shape (n**dim,1) that contains the spin values (-1 or 1)"
"n is the lattice size and dim is the dimensionality"
"neighbor_coupling is the number that tells the function to return the neighbor spins that are one spacing away, two spacing away, etc."
def calc_neighbors(site_i,coord,spins,n,dim,neighbor_coupling):
# Extract all nearest neighbors
# Obtain the coordinates of each nearest neighbor
# How many neighbors to extract
num_NN = 2*dim
# Store the results in a result array
result_coord = np.zeros((num_NN,dim))
result_spins = np.zeros((num_NN,1))
# Get the coordinates of the ith site
site_coord = coord[site_i]
# Run through the + and - for each scalar value in the vector in site_coord
count = 0
for i in range(0,dim):
assert count <= num_NN, "Accessing more than nearest neighbors values."
site_coord_i = site_coord[i]
plus = site_coord_i + neighbor_coupling
minus = site_coord_i - neighbor_coupling
# Implement periodic boundaries
if (plus > (n-1)): plus = plus - n
if (minus < 0): minus = n - np.abs(minus)
# Store the coordinates
result_coord[count] = site_coord
result_coord[count][i] = minus
# Store the spin value
spin_index = np.where(np.all(result_coord[count]==coord,axis=1))[0][0]
result_spins[count] = spins[spin_index]
count = count + 1
# Store the coordinates
result_coord[count] = site_coord
result_coord[count][i] = plus
# Store the spin value
spin_index = np.where(np.all(result_coord[count]==coord,axis=1))[0][0]
result_spins[count] = spins[spin_index]
count = count + 1
I don't really know how I can make this faster but it would help a lot. Perhaps a different way of storing everything?
Not an answer, just some suggestions for straightening: there is a lot of copying while you attempt to document every step of the calculation. Without sacrificing this, you could drop site_coord_i, and then
# New coords, implement periodic boundaries
plus = (site_coord[i] + neighbor_coupling) % n
minus = (site_coord[i] - neighbor_coupling + n) % n
This avoids intermediate steps ("if...").
One other suggestions would be to defer using a subarray until you really need it:
# Store the coordinates
rcc = site_coord
rcc[i] = plus
# Store the spin value
spin_index = np.where(np.all(rcc==coord,axis=1))[0][0]
result_spins[count] = spins[spin_index]
result_coord[count] = rcc
count += 1
The goal is to reduce the number of dimensions of the variable used in the comparison, and to prefer local variables.

Too slow queries in interval tree

I have a list of intervals and I need to return the ones that overlap with an interval passed in a query. What is special is that in a typical query around a third or even half of the intervals will overlap with the one given in the query. Also, the ratio of the shortest interval to the longest is not more than 1:5. I implemented my own interval tree (augmented red-black tree) - I did not want to use existing implementations because I needed support for closed intervals and some special features. I tested the query speed with 6000 queries in a tree with 6000 intervals (so n=6000 and m=3000 (app.)). It turned out that brute force is just as good as using the tree:
Computation time - loop: 125.220461 s
Tree setup: 0.05064 s
Tree Queries: 123.167337 s
Let me use asymptotic analysis. n: number of queries; n: number of intervals; app. n/2: number of intervals returned in a query:
time complexity brute force: n*n
time complexity tree: n*(log(n)+n/2) --> 1/2 nn + nlog(n) --> n*n
So the result is saying that the two should be roughly the same for a large n. Still one would somehow expect the tree to be noticeably faster given the constant 1/2 in front of n*n. So there are three possible reasons I can imagine for the results I got:
a) My implementation is wrong. (Should I be using BFS like below?)
b) My implementation is right, but I made things cumbersome for Python so it needs more time to deal with the tree than to deal with brute force.
c) everything is OK - it is just how things should behave for a large n
My query function looks like this:
from collections import deque
def query(self,low,high):
result = []
q = deque([self.root]) # this is the root node in the tree
append_result = result.append
append_q = q.append
pop_left = q.popleft
while q:
node = pop_left() # look at the next node
if node.overlap(low,high): # some overlap?
append_result(node.interval)
if node.low != None and low <= node.get_low_max(): # en-q left node
append_q(node.low)
if node.high != None and node.get_high_min() <= high: # en-q right node
append_q(node.high)
I build the tree like this:
def build(self, intervals):
"""
Function which is recursively called to build the tree.
"""
if intervals is None:
return None
if len(intervals) > 2: # intervals is always sorted in increasing order
mid = len(intervals)//2
# split intervals into three parts:
# central element (median)
center = intervals[mid]
# left half (<= median)
new_low = intervals[:mid]
#right half (>= median)
new_high = intervals[mid+1:]
#compute max on the lower side (left):
max_low = max([n.get_high() for n in new_low])
#store min on the higher side (right):
min_high = new_high[0].get_low()
elif len(intervals) == 2:
center = intervals[1]
new_low = [intervals[0]]
new_high = None
max_low = intervals[0].get_high()
min_high = None
elif len(intervals) == 1:
center = intervals[0]
new_low = None
new_high = None
max_low = None
min_high = None
else:
raise Exception('The tree is not behaving as it should...')
return(Node(center, self.build(new_low),self.build(new_high),
max_low, min_high))
EDIT:
A node is represented like this:
class Node:
def __init__(self, interval, low, high, max_low, min_high):
self.interval = interval # pointer to corresponding interval object
self.low = low # pointer to node containing intervals to the left
self.high = high # pointer to node containing intervals to the right
self.max_low = max_low # maxiumum value on the left side
self.min_high = min_high # minimum value on the right side
All the nodes in a subtree can be obtained like this:
def subtree(current):
node_list = []
if current.low != None:
node_list += subtree(current.low)
node_list += [current]
if current.high != None:
node_list += subtree(current.high)
return node_list
p.s. note that by exploiting that there is so much overlap and that all intervals have comparable lenghts, I managed to implement a simple method based on sorting and bisection that completed in 80 s, but I would say this is over-fitting... Amusingly, by using asymptotic analysis, I found it should have app. the same runtime as using the tree...
If I correctly understand your problem, you are trying to speed up your process.
If it is that, try to create a real tree instead of manipulating lists.
Something that looks like :
class IntervalTreeNode():
def __init__(self, parent, min, max):
self.value = (min,max)
self.parent = parent
self.leftBranch = None
self.rightBranch= None
def insert(self, interval):
...
def asList(self):
""" return the list that is this node and all the subtree nodes """
left=[]
if (self.leftBranch != None):
left = self.leftBranch.asList()
right=[]
if (self.rightBranch != None):
left = self.rightBranch.asList()
return [self.value] + left + right
And then at start create an internalTreeNode and insert all yours intervals in.
This way, if you really need a list you can build a list each time you need a result and not each time you make a step in your recursive iteration using [x:] or [:x] as list manipulation is a costly operation in python. It is possible to work also using directly the nodes instead of a list that will greatly speed up the process as you just have to return a reference to the node instead of doing some list addition.

Categories