Floating point conversion - python

How can I create a floating point decimal from the two variables who are integers
i=1
j=9
is there anyway to combine these two and get the floating point decimal 1.9?

Maybe this helps
floatingpoint=float(str(i)+'.'+str(j))
Edit:
>>> float('%d.%d' % (i,j))
1.9

How about something like
>>> i = 1
>>> j = 9
>>> i + j / 10.0
1.8999999999999999

Not exactly.
>>> float(1+9*0.11)
1.99
>>> 1+9 * 0.1
1.8999999999999999

Related

Comparing two variables upto x decimal places

Let a = 1.11114
b = 1.11118
When I compare these two variables using the code below
if b <= a
I want the comparison to be done only up to 4 decimal places, such that a = b.
Can anyone help me with an efficient code?
Thank you!
To avoid rounding, you can multiply the number by power of 10 to cast to integer up to the decimal place you want to consider (to truncate the decimal part), and then divide by the same power to obtain the truncated float:
n = 4 # number of decimal digits you want to consider
a_truncated = int(a * 10**n)/10**n
See also Python setting Decimal Place range without rounding?
Possible duplicate of Truncate to three decimals in Python
Extract x digits with the power of 10^x and then divide by the same:
>>> import math
>>> def truncate(number, digits) -> float:
... stepper = 10.0 ** digits
... return math.trunc(stepper * number) / stepper
>>> a
1.11114
>>> b
1.11118
>>> truncate(a,4) == truncate(b,4)
True
Solution by #Erwin Mayer
You can look at whether their differences is close to 0 with an absolute tolerance of 1e-4 with math.isclose:
>>> import math
>>> math.isclose(a - b, 0, abs_tol=1e-4)
True
Use round() in-built function -
a = round(a,4) # 4 is no. of digits you want
b = round(b,4)
if a >= b :
... # Do stuff

Python 3 Decimal precision

I have an issue with floating-point numbers:
a = 0.4812
b = 0.4813
a-b
-9.999999999998899e-05
a = Decimal(0.4812)
b = Decimal(0.4813)
a-b
Decimal('-0.000099999999999988986587595718447118997573852539062500')
How can I get exactly -0.0001?
You need to pass the numbers in as strings to the Decimal constructor, if you use float literals they've already lost precision before the Decimal object gets constructed.
>>> a = Decimal('0.4812')
>>> b = Decimal('0.4813')
>>> a - b
Decimal('-0.0001')
To illustrate more clearly:
>>> Decimal('0.4812')
Decimal('0.4812')
>>> Decimal(0.4812)
Decimal('0.481200000000000016608936448392341844737529754638671875')
If you want round it you can use this: round(-0.000099999999999988986587595718447118997573852539062500, 4)

Clarification on the Decimal type in Python

Everybody knows, or at least, every programmer should know, that using the float type could lead to precision errors. However, in some cases, an exact solution would be great and there are cases where comparing using an epsilon value is not enough. Anyway, that's not really the point.
I knew about the Decimal type in Python but never tried to use it. It states that "Decimal numbers can be represented exactly" and I thought that it meant a clever implementation that allows to represent any real number. My first try was:
>>> from decimal import Decimal
>>> d = Decimal(1) / Decimal(3)
>>> d3 = d * Decimal(3)
>>> d3 < Decimal(1)
True
Quite disappointed, I went back to the documentation and kept reading:
The context for arithmetic is an environment specifying precision [...]
OK, so there is actually a precision. And the classic issues can be reproduced:
>>> dd = d * 10**20
>>> dd
Decimal('33333333333333333333.33333333')
>>> for i in range(10000):
... dd += 1 / Decimal(10**10)
>>> dd
Decimal('33333333333333333333.33333333')
So, my question is: is there a way to have a Decimal type with an infinite precision? If not, what's the more elegant way of comparing 2 decimal numbers (e.g. d3 < 1 should return False if the delta is less than the precision).
Currently, when I only do divisions and multiplications, I use the Fraction type:
>>> from fractions import Fraction
>>> f = Fraction(1) / Fraction(3)
>>> f
Fraction(1, 3)
>>> f * 3 < 1
False
>>> f * 3 == 1
True
Is it the best approach? What could be the other options?
The Decimal class is best for financial type addition, subtraction multiplication, division type problems:
>>> (1.1+2.2-3.3)*10000000000000000000
4440.892098500626 # relevant for government invoices...
>>> import decimal
>>> D=decimal.Decimal
>>> (D('1.1')+D('2.2')-D('3.3'))*10000000000000000000
Decimal('0.0')
The Fraction module works well with the rational number problem domain you describe:
>>> from fractions import Fraction
>>> f = Fraction(1) / Fraction(3)
>>> f
Fraction(1, 3)
>>> f * 3 < 1
False
>>> f * 3 == 1
True
For pure multi precision floating point for scientific work, consider mpmath.
If your problem can be held to the symbolic realm, consider sympy. Here is how you would handle the 1/3 issue:
>>> sympy.sympify('1/3')*3
1
>>> (sympy.sympify('1/3')*3) == 1
True
Sympy uses mpmath for arbitrary precision floating point, includes the ability to handle rational numbers and irrational numbers symbolically.
Consider the pure floating point representation of the irrational value of √2:
>>> math.sqrt(2)
1.4142135623730951
>>> math.sqrt(2)*math.sqrt(2)
2.0000000000000004
>>> math.sqrt(2)*math.sqrt(2)==2
False
Compare to sympy:
>>> sympy.sqrt(2)
sqrt(2) # treated symbolically
>>> sympy.sqrt(2)*sympy.sqrt(2)==2
True
You can also reduce values:
>>> import sympy
>>> sympy.sqrt(8)
2*sqrt(2) # √8 == √(4 x 2) == 2*√2...
However, you can see issues with Sympy similar to straight floating point if not careful:
>>> 1.1+2.2-3.3
4.440892098500626e-16
>>> sympy.sympify('1.1+2.2-3.3')
4.44089209850063e-16 # :-(
This is better done with Decimal:
>>> D('1.1')+D('2.2')-D('3.3')
Decimal('0.0')
Or using Fractions or Sympy and keeping values such as 1.1 as ratios:
>>> sympy.sympify('11/10+22/10-33/10')==0
True
>>> Fraction('1.1')+Fraction('2.2')-Fraction('3.3')==0
True
Or use Rational in sympy:
>>> frac=sympy.Rational
>>> frac('1.1')+frac('2.2')-frac('3.3')==0
True
>>> frac('1/3')*3
1
You can play with sympy live.
So, my question is: is there a way to have a Decimal type with an infinite precision?
No, since storing an irrational number would require infinite memory.
Where Decimal is useful is representing things like monetary amounts, where the values need to be exact and the precision is known a priori.
From the question, it is not entirely clear that Decimal is more appropriate for your use case than float.
is there a way to have a Decimal type with an infinite precision?
No; for any non-empty interval on the real line, you cannot represent all the numbers in the set with infinite precision using a finite number of bits. This is why Fraction is useful, as it stores the numerator and denominator as integers, which can be represented precisely:
>>> Fraction("1.25")
Fraction(5, 4)
If you are new to Decimal, this post is relevant: Python floating point arbitrary precision available?
The essential idea from the answers and comments is that for computationally tough problems where precision is needed, you should use the mpmath module https://code.google.com/p/mpmath/. An important observation is that,
The problem with using Decimal numbers is that you can't do much in the way of math functions on Decimal objects
Just to point out something that might not be immediately obvious to everyone:
The documentation for the decimal module says
... The exactness carries over into arithmetic. In decimal floating point, 0.1 + 0.1 + 0.1 - 0.3 is exactly equal to zero.
(Also see the classic: Is floating point math broken?)
However, if we use decimal.Decimal naively, we get the same "unexpected" result
>>> Decimal(0.1) + Decimal(0.1) + Decimal(0.1) == Decimal(0.3)
False
The problem in the naive example above is the use of float arguments, which are "losslessly converted to [their] exact decimal equivalent," as explained in the docs.
The trick (implicit in the accepted answer) is to construct the Decimal instances using e.g. strings, instead of floats
>>> Decimal('0.1') + Decimal('0.1') + Decimal('0.1') == Decimal('0.3')
True
or, perhaps more convenient in some cases, using tuples (<sign>, <digits>, <exponent>)
>>> Decimal((0, (1,), -1)) + Decimal((0, (1,), -1)) + Decimal((0, (1,), -1)) == Decimal((0, (3,), -1))
True
Note: this does not answer the original question, but it is closely related, and may be of help to people who end up here based on the question title.

how can I round a value with 1 decimal to 2 decimals

I need to round values to exactly 2 decimals, but when I use round() it doesn't work, if the value is 0.4, but I need 0.40.
round(0.4232323, 2) = 0.42
bad: round(0.4, 2) = 0.4
How can I solve this?
0.4 and 0.40 are mathematically equivalent.
If you want to display them with two decimal places, use {:.2f} formatting:
>>> '{:.2f}'.format(0.4)
'0.40'
print("{0:.2f}".format(round(0.4232323, 2)))
If you represent these values as floats then there is no difference between 0.4 and 0.40. To print them with different precision is just a question of format strings (as per the other two answers).
However, if you want to work with decimals, there is a decimal module in Python.
>>> from decimal import Decimal
>>> a = Decimal("0.40")
>>> b = Decimal("0.4")
# They have equal values
>>> a == b
True
# But maintain their precision
>>> a + 1
Decimal('1.40')
>>> b + 1
Decimal('1.4')
>>> a - b
Decimal('0.00')
Use the quantize method to round to a particular number of places. For example:
>>> c = Decimal(0.4232323)
>>> c.quantize(Decimal("0.00"))
Decimal('0.42')
>>> str(c.quantize(Decimal("0.00")))
'0.42'

How do you round UP a number?

How does one round a number UP in Python?
I tried round(number) but it rounds the number down. Example:
round(2.3) = 2.0
and not 3, as I would like.
The I tried int(number + .5) but it round the number down again! Example:
int(2.3 + .5) = 2
The math.ceil (ceiling) function returns the smallest integer higher or equal to x.
For Python 3:
import math
print(math.ceil(4.2))
For Python 2:
import math
print(int(math.ceil(4.2)))
I know this answer is for a question from a while back, but if you don't want to import math and you just want to round up, this works for me.
>>> int(21 / 5)
4
>>> int(21 / 5) + (21 % 5 > 0)
5
The first part becomes 4 and the second part evaluates to "True" if there is a remainder, which in addition True = 1; False = 0. So if there is no remainder, then it stays the same integer, but if there is a remainder it adds 1.
If working with integers, one way of rounding up is to take advantage of the fact that // rounds down: Just do the division on the negative number, then negate the answer. No import, floating point, or conditional needed.
rounded_up = -(-numerator // denominator)
For example:
>>> print(-(-101 // 5))
21
Interesting Python 2.x issue to keep in mind:
>>> import math
>>> math.ceil(4500/1000)
4.0
>>> math.ceil(4500/1000.0)
5.0
The problem is that dividing two ints in python produces another int and that's truncated before the ceiling call. You have to make one value a float (or cast) to get a correct result.
In javascript, the exact same code produces a different result:
console.log(Math.ceil(4500/1000));
5
You might also like numpy:
>>> import numpy as np
>>> np.ceil(2.3)
3.0
I'm not saying it's better than math, but if you were already using numpy for other purposes, you can keep your code consistent.
Anyway, just a detail I came across. I use numpy a lot and was surprised it didn't get mentioned, but of course the accepted answer works perfectly fine.
Use math.ceil to round up:
>>> import math
>>> math.ceil(5.4)
6.0
NOTE: The input should be float.
If you need an integer, call int to convert it:
>>> int(math.ceil(5.4))
6
BTW, use math.floor to round down and round to round to nearest integer.
>>> math.floor(4.4), math.floor(4.5), math.floor(5.4), math.floor(5.5)
(4.0, 4.0, 5.0, 5.0)
>>> round(4.4), round(4.5), round(5.4), round(5.5)
(4.0, 5.0, 5.0, 6.0)
>>> math.ceil(4.4), math.ceil(4.5), math.ceil(5.4), math.ceil(5.5)
(5.0, 5.0, 6.0, 6.0)
I am surprised nobody suggested
(numerator + denominator - 1) // denominator
for integer division with rounding up. Used to be the common way for C/C++/CUDA (cf. divup)
The syntax may not be as pythonic as one might like, but it is a powerful library.
https://docs.python.org/2/library/decimal.html
from decimal import *
print(int(Decimal(2.3).quantize(Decimal('1.'), rounding=ROUND_UP)))
For those who want to round up a / b and get integer:
Another variant using integer division is
def int_ceil(a, b):
return (a - 1) // b + 1
>>> int_ceil(19, 5)
4
>>> int_ceil(20, 5)
4
>>> int_ceil(21, 5)
5
Note: a and b must be non-negative integers
Here is a way using modulo and bool
n = 2.3
int(n) + bool(n%1)
Output:
3
Try this:
a = 211.0
print(int(a) + ((int(a) - a) != 0))
Be shure rounded value should be float
a = 8
b = 21
print math.ceil(a / b)
>>> 0
but
print math.ceil(float(a) / b)
>>> 1.0
The above answers are correct, however, importing the math module just for this one function usually feels like a bit of an overkill for me. Luckily, there is another way to do it:
g = 7/5
g = int(g) + (not g.is_integer())
True and False are interpreted as 1 and 0 in a statement involving numbers in python. g.is_interger() basically translates to g.has_no_decimal() or g == int(g). So the last statement in English reads round g down and add one if g has decimal.
In case anyone is looking to round up to a specific decimal place:
import math
def round_up(n, decimals=0):
multiplier = 10 ** decimals
return math.ceil(n * multiplier) / multiplier
Without importing math // using basic envionment:
a) method / class method
def ceil(fl):
return int(fl) + (1 if fl-int(fl) else 0)
def ceil(self, fl):
return int(fl) + (1 if fl-int(fl) else 0)
b) lambda:
ceil = lambda fl:int(fl)+(1 if fl-int(fl) else 0)
>>> def roundup(number):
... return round(number+.5)
>>> roundup(2.3)
3
>>> roundup(19.00000000001)
20
This function requires no modules.
x * -1 // 1 * -1
Confusing but it works: For x=7.1, you get 8.0. For x = -1.1, you get -1.0
No need to import a module.
For those who doesn't want to use import.
For a given list or any number:
x = [2, 2.1, 2.5, 3, 3.1, 3.5, 2.499,2.4999999999, 3.4999999,3.99999999999]
You must first evaluate if the number is equal to its integer, which always rounds down. If the result is True, you return the number, if is not, return the integer(number) + 1.
w = lambda x: x if x == int(x) else int(x)+1
[w(i) for i in z]
>>> [2, 3, 3, 3, 4, 4, 3, 3, 4, 4]
Math logic:
If the number has decimal part: round_up - round_down == 1, always.
If the number doens't have decimal part: round_up - round_down == 0.
So:
round_up == x + round_down
With:
x == 1 if number != round_down
x == 0 if number == round_down
You are cutting the number in 2 parts, the integer and decimal. If decimal isn't 0, you add 1.
PS:I explained this in details since some comments above asked for that and I'm still noob here, so I can't comment.
If you don't want to import anything, you can always write your own simple function as:
def RoundUP(num):
if num== int(num):
return num
return int(num + 1)
To do it without any import:
>>> round_up = lambda num: int(num + 1) if int(num) != num else int(num)
>>> round_up(2.0)
2
>>> round_up(2.1)
3
I know this is from quite a while back, but I found a quite interesting answer, so here goes:
-round(-x-0.5)
This fixes the edges cases and works for both positive and negative numbers, and doesn't require any function import
Cheers
I'm surprised I haven't seen this answer yet round(x + 0.4999), so I'm going to put it down. Note that this works with any Python version. Changes made to the Python rounding scheme has made things difficult. See this post.
Without importing, I use:
def roundUp(num):
return round(num + 0.49)
testCases = list(x*0.1 for x in range(0, 50))
print(testCases)
for test in testCases:
print("{:5.2f} -> {:5.2f}".format(test, roundUp(test)))
Why this works
From the docs
For the built-in types supporting round(), values are rounded to the closest multiple of 10 to the power minus n; if two multiples are equally close, rounding is done toward the even choice
Therefore 2.5 gets rounded to 2 and 3.5 gets rounded to 4. If this was not the case then rounding up could be done by adding 0.5, but we want to avoid getting to the halfway point. So, if you add 0.4999 you will get close, but with enough margin to be rounded to what you would normally expect. Of course, this will fail if the x + 0.4999 is equal to [n].5000, but that is unlikely.
You could use round like this:
cost_per_person = round(150 / 2, 2)
You can use floor devision and add 1 to it.
2.3 // 2 + 1
when you operate 4500/1000 in python, result will be 4, because for default python asume as integer the result, logically:
4500/1000 = 4.5 --> int(4.5) = 4
and ceil of 4 obviouslly is 4
using 4500/1000.0 the result will be 4.5 and ceil of 4.5 --> 5
Using javascript you will recieve 4.5 as result of 4500/1000, because javascript asume only the result as "numeric type" and return a result directly as float
Good Luck!!
I think you are confusing the working mechanisms between int() and round().
int() always truncates the decimal numbers if a floating number is given; whereas round(), in case of 2.5 where 2 and 3 are both within equal distance from 2.5, Python returns whichever that is more away from the 0 point.
round(2.5) = 3
int(2.5) = 2
My share
I have tested print(-(-101 // 5)) = 21 given example above.
Now for rounding up:
101 * 19% = 19.19
I can not use ** so I spread the multiply to division:
(-(-101 //(1/0.19))) = 20
I'm basically a beginner at Python, but if you're just trying to round up instead of down why not do:
round(integer) + 1

Categories