I've run into a specific problem and thought of an solution. But since the solution is pretty involved, I was wondering if others have encountered something similar and could comment on best practises or propose alternatives.
The problem is as follows:
I have a webapp written in Django which has some screen in which data from multiple tables is collected, grouped and aggregated in time intervals.
It's basically a big excel like matrix where we have data aggregated in time intervals on one axis, against resources for the aggregated data per interval on the other axis.
It involves many inner and left joins to gather all data, and because of the "report" like character of the presented data, I use raw sql to query everything together.
The problem is that multiple users can concurrently view & edit data in these intervals. They can also edit data on finer or coarser granularities than other users working with the same data, but in sub/overlapping intervals. Currently, when a user edits some data, a django request is fired, the data is altered, the affected intervals are aggregated & grouped again and presented back. But because of the volatile nature of this data, other users might have changed something before them. Also grouping/aggregating and rerendering the table each time is a very heavy operation (depending on amount of data and range of the intervals). This gets worse with concurrent users editting..
My proposed solution:
It's clear a http request/response mechanism is not really ideal for this kind of thing; The grouping/aggregation is pretty heavyweight, not ideal to do this per request, the concurrency would ideally be channeled amongst users, and feedback should be realtime like googledocs instead of full page refreshes.
I was thinking about making a daemon process which reads in flat data of interestfrom the dbms on request and caches this in memory. All changes to the data would then occur in memory with a write-through to the dbms. This daemon channels access to the data through a lock, so the daemon can handle which users can overwrite others changes.
The flat data is aggregated and grouped using python code and only the slices required by the user are returned; user/daemon communication would run over websockets. The daemon would provide a subscriber/publisher channel, where users interested in specific slices of data are notified when something changes. This daemon could be implemented using a framework like twisted. But I'm not sure an event driven approach would work here, as we want to "channel" all incomming requests... Maybe these should be put in a queue and be run in a seperate thread? Would it be better to have twisted run in a thread next to my scheduler, or should the twisted main loop spin off a thread that works on this queue? My understanding is that threading works best for IO, and python heavy code basically blocks other threads. I have both (websockets/dbms and processing data), would that work?
Has anyone done something similar before?
Thanks in advance!
Karl
The scheme Google implemented for the now abandoned Wave product's concurrent editing features is documented, http://www.waveprotocol.org/whitepapers/operational-transform. This aspect of Wave seemed like a success, even though Wave itself was quickly abandoned.
As far as the questions you asked about implementing your proposed scheme:
An event driven system is perfectly capable of implementing this idea. Being event driven is a way to organize your code. It doesn't prevent you from implementing any particular functionality.
Threading doesn't work best for very much, particularly in Python.
It has significant disadvantages for CPU-bound work, since CPython only runs a single Python thread at a time (regardless of available hardware resources). This means a multi-threaded CPU-bound Python program is typically no faster, or even slower, than the single-threaded equivalent.
For IO, this shortcoming is less of a limitation, because IO does not involve running Python code on CPython (the IO APIs are all implemented in C). This means you can do IO in multiple threads concurrently, so threading is potentially a benefit. However, doing IO concurrently in a single thread is exactly what Twisted is for. Threading offers no benefits over doing the IO in a single thread, as long as you're doing the IO non-blockingly (or perhaps asychronously).
Hello world.
I tried something similar and you might be interested in the solution. Here is my question:
python Socket.IO client for sending broadcast messages to TornadIO2 server
And this is the answer:
https://stackoverflow.com/a/10950702/675065
He also wrote a blog post about the solution:
http://blog.y3xz.com/blog/2012/06/08/a-modern-python-stack-for-a-real-time-web-application/
The software stack consists of:
SockJS Client
SockJS Tornado Server
Redis Pub/Sub
Django Redis Client: Brukva
I implemented this myself and it works like a charm.
Related
I'm working on a web application that will receive a request from a user and have to hit a number of external APIs to compose the answer to that request. This could be done directly from the main web thread using something like gevent to fan out the request.
Alternatively, I was thinking, I could put incoming requests into a queue and use workers to distribute the load. The idea would be to try to keep it real time, while splitting up the requests amongst several workers. Each of these workers would be querying only one of the many external APIs. The response they receive would then go through a series transformations, be saved into a DB, be transformed to a common schema and saved in a common DB to finally be composed into one big response that would be returned through the web request. The web request is most likely going to be blocking all this time, with a user waiting, so keeping
the queueing and dequeueing as fast as possible is important.
The external API calls can easily be turned into individual tasks. I think the linking
from one api task to a transformation to a DB saving task could be done using a chain, etc, and the final result combining all results returned to the web thread using a chord.
Some questions:
Can this (and should this) be done using celery?
I'm using django. Should I try to use django-celery over plain celery?
Each one of those tasks might spawn off other tasks - such as logging what just
happened or other types of branching off. Is this possible?
Could tasks be returning the data they get - i.e. potentially Kb of data through celery (redis as underlying in this case) or should they write to the DB, and just pass pointers to that data around?
Each task is mostly I/O bound, and was initially just going to use gevent from the web thread to fan out the requests and skip the whole queuing design, but it turns out that it would be reused for a different component. Trying to keep the whole round trip through the Qs real time will probably require many workers making sure the queueus are mostly empty. Or is it? Would running the gevent worker pool help with this?
Do I have to write gevent specific tasks or will using the gevent pool deal with network IO automagically?
Is it possible to assign priority to certain tasks?
What about keeping them in order?
Should I skip celery and just use kombu?
It seems like celery is geared more towards "tasks" that can be deferred and are
not time sensitive. Am I nuts for trying to keep this real time?
What other technologies should I look at?
Update: Trying to hash this out a bit more. I did some reading on Kombu and it seems to be able to do what I'm thinking of, although at a much lower level than celery. Here is a diagram of what I had in mind.
What seems to be possible with raw queues as accessible with Kombu is the ability for a number of workers to subscribe to a broadcast message. The type and number does not need to be known by the publisher if using a queue. Can something similar be achieved using Celery? It seems like if you want to make a chord, you need to know at runtime what tasks are going to be involved in the chord, whereas in this scenario you can simply add listeners to the broadcast, and simply make sure they announce they are in the running to add responses to the final queue.
Update 2: I see there is the ability to broadcast Can you combine this with a chord? In general, can you combine celery with raw kombu? This is starting to sound like a question about smoothies.
I will try to answer as many of the questions as possible.
Can this (and should this) be done using celery?
Yes you can
I'm using django. Should I try to use django-celery over plain celery?
Django has a good support for celery and would make the life much easier during development
Each one of those tasks might spawn off other tasks - such as logging
what just happened or other types of branching off. Is this possible?
You can start subtasks from withing a task with ignore_result = true for only side effects
Could tasks be returning the data they get - i.e. potentially Kb of
data through celery (redis as underlying in this case) or should they
write to the DB, and just pass pointers to that data around?
I would suggest putting the results in db and then passing id around would make your broker and workers happy. Less data transfer/pickling etc.
Each task is mostly I/O bound, and was initially just going to use
gevent from the web thread to fan out the requests and skip the whole
queuing design, but it turns out that it would be reused for a
different component. Trying to keep the whole round trip through the
Qs real time will probably require many workers making sure the
queueus are mostly empty. Or is it? Would running the gevent worker
pool help with this?
Since the process is io bound then gevent will definitely help here. However, how much the concurrency should be for gevent pool'd worker, is something that I'm looking for answer too.
Do I have to write gevent specific tasks or will using the gevent pool
deal with network IO automagically?
Gevent does the monkey patching automatically when you use it in pool. But the libraries that you use should play well with gevent. Otherwise, if your parsing some data with simplejson (which is written in c) then that would block other gevent greenlets.
Is it possible to assign priority to certain tasks?
You cannot assign specific priorities to certain tasks, but route them to different queue and then have those queues being listened to by varying number of workers. The more the workers for a particular queue, the higher would be the priority of that tasks on that queue.
What about keeping them in order?
Chain is one way to maintain order. Chord is a good way to summarize. Celery takes care of it, so you dont have to worry about it. Even when using gevent pool, it would at the end be possible to reason about the order of the tasks execution.
Should I skip celery and just use kombu?
You can, if your use case will not change to something more complex over time and also if you are willing to manage your processes through celeryd + supervisord by yourself. Also, if you don't care about the task monitoring that comes with tools such as celerymon, flower, etc.
It seems like celery is geared more towards "tasks" that can be
deferred and are not time sensitive.
Celery supports scheduled tasks as well. If that is what you meant by that statement.
Am I nuts for trying to keep this real time?
I don't think so. As long as your consumers are fast enough, it will be as good as real time.
What other technologies should I look at?
Pertaining to celery, you should choose result store wisely. My suggestion would be to use cassandra. It is good for realtime data (both write and query wise). You can also use redis or mongodb. They come with their own set of problems as result store. But then a little tweaking in configuration can go a long way.
If you mean something completely different from celery, then you can look into asyncio (python3.5) and zeromq for achieving the same. I can't comment more on that though.
I am writing an implementation of a NAT. My algorithm is as follows:
Packet comes in
Check against lookup table if external, add to lookup table if internal
Swap the source address and send the packet on its way
I have been reading about Twisted. I was curious if Twisted takes advantage of multicore CPUs? Assume the system has thousands of users and one packet comes right after the other. With twisted can the lookup table operations be taking place at the same time on each core. I hear with threads the GIL will not allow this anyway. Perhaps I could benifit from multiprocessing>
Nginix is asynchronous and happily serves thousands of users at the same time.
Using threads with twisted is discouraged. It has very good performance when used asynchronously, but the code you write for the request handlers must not block. So if your handler is a pretty big piece of code, break it up into smaller parts and utilize twisted's famous Deferreds to attach the other parts via callbacks. It certainly requires a somewhat different thinking than most programmers are used to, but it has benefits. If the code has blocking parts, like database operations, or accessing other resources via network to get some result, try finding asynchronous libraries for those tasks too, so you can use Deferreds in those cases also. If you can't use asynchronous libraries you may finally use the deferToThread function, which will run the function you want to call in a different thread and return a Deferred for it, and fire your callback when finished, but it's better to use that as a last resort, if nothing else can be done.
Here is the official tutorial for Deferreds:
http://twistedmatrix.com/documents/10.1.0/core/howto/deferredindepth.html
And another nice guide, which can help to get used to think in "async mode":
http://ezyang.com/twisted/defer2.html
I need to read and plot data in real time from multiple Android phones simultaneously. I'm trying to build a server (in python) that each phone can connect to simultaneously, which will receive the data streams from each phone and plot in real time, using matplotlib. I'm not very experienced in socket programming, although I know the basics (single request servers and such). How should I go about doing this? I looked at asyncore, SocketServer, and other modules, but I'm not sure I grasp how to allow multiple long standing connections.
I was thinking I should create a new thread for each phone (although I'm not sure if it's safe to pass a socket to a new thread), but I also want to be able to plot using subplots (eg, 4 plots side by side), although this is not that important.
I just need a point in the right direction. Small code samples appreciated to illustrate the concept.
Using threads due to the Python's implementation of threading might lead to a degraded performance, depending on what your threads do.
I'd suggest using a framework for building asynchronous server. A one such framework is Gevent. Using asynchronous event loop you can do calculations while other "threads" (in case of gevent, greenlets) are waiting for I/O and thus getting better performance. The model is also ideal for long-lasting idle connections.
I'm working on a simple experiment in Python. I have a "master" process, in charge of all the others, and every single process has a connection via unix socket to the master process. I would like to be able for the master process to be able to monitor all of the sockets for a response - but there could theoretically be almost a hundred of them. How would threads impact the memory and performance of the application? What would be the best solution? Thanks a lot!
One hundred simultaneous threads might be pushing the reasonable limits of threading. If you find this is the cleanest way to organize your code, I'd say give it a try, but threading really doesn't scale very far.
What works better is to use a technique like select to wait for one of the sockets to be readable / writable / or has an error to report. This mechanism lets you go to sleep until something interesting happens, handle as many sockets have content to handle, and then go back to sleep again, all in a single thread of execution. Removing the multi-threading can often reduce chances for errors, and this style of programming should get you into the hundreds of connections no trouble. (If you want to go beyond about 100, I'd use the poll functionality instead of select -- constantly rebuilding the list of interesting file descriptors takes time that poll does not require.)
Something to consider is the Python Twisted Framework. They've gone to some length to provide a consistent way to hook callbacks onto events for this exact sort of programming. (If you're familiar with node.js, it's a bit like that, but Python.) I must admit a slight aversion to Twisted -- I never got very far in their documentation without being utterly baffled -- but a lot of people made it further in the docs than I did. You might find it a better fit than I have.
The easiest way to conduct comparative tests of threads versus processes for socket handling is to use the SocketServer in Python's standard library. You can easily switch approaches (while keeping everything else the same) by inheriting from either ThreadingMixIn or ForkingMixIn. Here is a simple example to get you started.
Another alternative is a select/poll approach using non-blocking sockets in a single process and a single thread.
If you're interested in software that is already fully developed and highly evolved, consider these high-performance Python based server packages:
The Twisted framework uses the async single process, single thread style.
The Tornado framework is similar (less evolved, less full featured, but easier to understand)
And Gunicorn which is a high-performance forking server.
My question is: which python framework should I use to build my server?
Notes:
This server talks HTTP with it's clients: GET and POST (via pyAMF)
Clients "submit" "tasks" for processing and, then, sometime later, retrieve the associated "task_result"
submit and retrieve might be separated by days - different HTTP connections
The "task" is a lump of XML describing a problem to be solved, and a "task_result" is a lump of XML describing an answer.
When a server gets a "task", it queues it for processing
The server manages this queue and, when tasks get to the top, organises that they are processed.
the processing is performed by a long running (15 mins?) external program (via subprocess) which is feed the task XML and which produces a "task_result" lump of XML which the server picks up and stores (for later Client retrieval).
it serves a couple of basic HTML pages showing the Queue and processing status (admin purposes only)
I've experimented with twisted.web, using SQLite as the database and threads to handle the long running processes.
But I can't help feeling that I'm missing a simpler solution. Am I? If you were faced with this, what technology mix would you use?
I'd recommend using an existing message queue. There are many to choose from (see below), and they vary in complexity and robustness.
Also, avoid threads: let your processing tasks run in a different process (why do they have to run in the webserver?)
By using an existing message queue, you only need to worry about producing messages (in your webserver) and consuming them (in your long running tasks). As your system grows you'll be able to scale up by just adding webservers and consumers, and worry less about your queuing infrastructure.
Some popular python implementations of message queues:
http://code.google.com/p/stomper/
http://code.google.com/p/pyactivemq/
http://xph.us/software/beanstalkd/
I'd suggest the following. (Since it's what we're doing.)
A simple WSGI server (wsgiref or werkzeug). The HTTP requests coming in will naturally form a queue. No further queueing needed. You get a request, you spawn the subprocess as a child and wait for it to finish. A simple list of children is about all you need.
I used a modification of the main "serve forever" loop in wsgiref to periodically poll all of the children to see how they're doing.
A simple SQLite database can track request status. Even this may be overkill because your XML inputs and results can just lay around in the file system.
That's it. Queueing and threads don't really enter into it. A single long-running external process is too complex to coordinate. It's simplest if each request is a separate, stand-alone, child process.
If you get immense bursts of requests, you might want a simple governor to prevent creating thousands of children. The governor could be a simple queue, built using a list with append() and pop(). Every request goes in, but only requests that fit will in some "max number of children" limit are taken out.
My reaction is to suggest Twisted, but you've already looked at this. Still, I stick by my answer. Without knowing you personal pain-points, I can at least share some things that helped me reduce almost all of the deferred-madness that arises when you have several dependent, blocking actions you need to perform for a client.
Inline callbacks (lightly documented here: http://twistedmatrix.com/documents/8.2.0/api/twisted.internet.defer.html) provide a means to make long chains of deferreds much more readable (to the point of looking like straight-line code). There is an excellent example of the complexity reduction this affords here: http://blog.mekk.waw.pl/archives/14-Twisted-inlineCallbacks-and-deferredGenerator.html
You don't always have to get your bulk processing to integrate nicely with Twisted. Sometimes it is easier to break a large piece of your program off into a stand-alone, easily testable/tweakable/implementable command line tool and have Twisted invoke this tool in another process. Twisted's ProcessProtocol provides a fairly flexible way of launching and interacting with external helper programs. Furthermore, if you suddenly decide you want to cloudify your application, it is not all that big of a deal to use a ProcessProtocol to simply run your bulk processing on a remote server (random EC2 instances perhaps) via ssh, assuming you have the keys setup already.
You can have a look at celery
It seems any python web framework will suit your needs. I work with a similar system on a daily basis and I can tell you, your solution with threads and SQLite for queue storage is about as simple as you're going to get.
Assuming order doesn't matter in your queue, then threads should be acceptable. It's important to make sure you don't create race conditions with your queues or, for example, have two of the same job type running simultaneously. If this is the case, I'd suggest a single threaded application to do the items in the queue one by one.