I am considering to use OpenCV's Kmeans implementation since it says to be faster...
Now I am using package cv2 and function kmeans,
I can not understand the parameters' description in their reference:
Python: cv2.kmeans(data, K, criteria, attempts, flags[, bestLabels[, centers]]) → retval, bestLabels, centers
samples – Floating-point matrix of input samples, one row per sample.
clusterCount – Number of clusters to split the set by.
labels – Input/output integer array that stores the cluster indices for every sample.
criteria – The algorithm termination criteria, that is, the maximum number of iterations and/or the desired accuracy. The accuracy is specified as criteria.epsilon. As soon as each of the cluster centers moves by less than criteria.epsilon on some iteration, the algorithm stops.
attempts – Flag to specify the number of times the algorithm is executed using different initial labelings. The algorithm returns the labels that yield the best compactness (see the last function parameter).
flags –
Flag that can take the following values:
KMEANS_RANDOM_CENTERS Select random initial centers in each attempt.
KMEANS_PP_CENTERS Use kmeans++ center initialization by Arthur and Vassilvitskii [Arthur2007].
KMEANS_USE_INITIAL_LABELS During the first (and possibly the only) attempt, use the user-supplied labels instead of computing them from the initial centers. For the second and further attempts, use the random or semi-random centers. Use one of KMEANS_*_CENTERS flag to specify the exact method.
centers – Output matrix of the cluster centers, one row per each cluster center.
what is the argument flags[, bestLabels[, centers]]) mean? and what about his one: → retval, bestLabels, centers ?
Here's my code:
import cv, cv2
import scipy.io
import numpy
# read data from .mat file
mat = scipy.io.loadmat('...')
keys = mat.keys()
values = mat.viewvalues()
data_1 = mat[keys[0]]
nRows = data_1.shape[1]
nCols = data_1.shape[0]
samples = cv.CreateMat(nRows, nCols, cv.CV_32FC1)
labels = cv.CreateMat(nRows, 1, cv.CV_32SC1)
centers = cv.CreateMat(nRows, 100, cv.CV_32FC1)
#centers = numpy.
for i in range(0, nCols):
for j in range(0, nRows):
samples[j, i] = data_1[i, j]
cv2.kmeans(data_1.transpose,
100,
criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_MAX_ITER, 0.1, 10),
attempts=cv2.KMEANS_PP_CENTERS,
flags=cv2.KMEANS_PP_CENTERS,
)
And I encounter such error:
flags=cv2.KMEANS_PP_CENTERS,
TypeError: <unknown> is not a numpy array
How should I understand the parameter list and the usage of cv2.kmeans? Thanks
the documentation on this function is almost impossible to find. I wrote the following Python code in a bit of a hurry, but it works on my machine. It generates two multi-variate Gaussian Distributions with different means and then classifies them using cv2.kmeans(). You may refer to this blog post to get some idea of the parameters.
Handle imports:
import cv
import cv2
import numpy as np
import numpy.random as r
Generate some random points and shape them appropriately:
samples = cv.CreateMat(50, 2, cv.CV_32FC1)
random_points = r.multivariate_normal((100,100), np.array([[150,400],[150,150]]), size=(25))
random_points_2 = r.multivariate_normal((300,300), np.array([[150,400],[150,150]]), size=(25))
samples_list = np.append(random_points, random_points_2).reshape(50,2)
random_points_list = np.array(samples_list, np.float32)
samples = cv.fromarray(random_points_list)
Plot the points before and after classification:
blank_image = np.zeros((400,400,3))
blank_image_classified = np.zeros((400,400,3))
for point in random_points_list:
cv2.circle(blank_image, (int(point[0]),int(point[1])), 1, (0,255,0),-1)
temp, classified_points, means = cv2.kmeans(data=np.asarray(samples), K=2, bestLabels=None,
criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_MAX_ITER, 1, 10), attempts=1,
flags=cv2.KMEANS_RANDOM_CENTERS) #Let OpenCV choose random centers for the clusters
for point, allocation in zip(random_points_list, classified_points):
if allocation == 0:
color = (255,0,0)
elif allocation == 1:
color = (0,0,255)
cv2.circle(blank_image_classified, (int(point[0]),int(point[1])), 1, color,-1)
cv2.imshow("Points", blank_image)
cv2.imshow("Points Classified", blank_image_classified)
cv2.waitKey()
Here you can see the original points:
Here are the points after they have been classified:
I hope that this answer may help you, it is not a complete guide to k-means, but it will at least show you how to pass the parameters to OpenCV.
The problem here is your data_1.transpose is not a numpy array.
OpenCV 2.3.1 and higher python bindings do not take anything except numpy array as image/array parameters. so, data_1.transpose has to be a numpy array.
Generally, all the points in OpenCV are of type numpy.ndarray
eg.
array([[[100., 433.]],
[[157., 377.]],
.
.
[[147., 247.]], dtype=float32)
where each element of array is
array([[100., 433.]], dtype=float32)
and the element of that array is
array([100., 433.], dtype=float32)
Related
I am a medical physics student trying to simulate photon detection - I succeeded (below) but I want to make it better by speeding it up: it currently takes 50 seconds to run and I want it to run in some fraction of that time. I assume someone more knowledgeable in Python could optimize it to complete within less than 10 seconds (without reducing num_photons_detected values). Thank you very much for trying out this little optimization challenge.
from random import seed
from random import random
import random
import matplotlib.pyplot as plt
import numpy as np
rows, cols = (25, 25)
num_photons_detected = [10**3, 10**4, 10**5, 10**6, 10**7]
lesionPercentAboveNoiseLevel = [1, 0.20, 0.10, 0.05]
index_range = np.array([i for i in range(rows)])
for l in range(len(lesionPercentAboveNoiseLevel)):
pixels = np.array([[0.0 for i in range(cols)] for j in range(rows)])
for k in range(len(num_photons_detected)):
random.seed(a=None, version=2)
photons_random_pixel_choice = np.array([random.choice(index_range) for z in range(rows)])
counts = 0
while num_photons_detected[k] > counts:
for i in photons_random_pixel_choice:
photons_random_pixel_choice = np.array([random.choice(index_range) for z in range(rows)]) #further ensures random pixel selection
for j in photons_random_pixel_choice:
pixels[i,j] +=1
counts +=1
plt.imshow(pixels, cmap="gray") #in the resulting images/graphs, x is on the vertical and y on the horizontal
plt.show()
I think that, aside from efficiency issues, a problem with the code is that it does not select the positions of photons truly at random. Instead, it selects rows numbers, and then for each selected row, it picks column numbers where photons will be observed in that row. As a result, if a row number is not selected, there will be no photons in that row at all, and if the same row is selected several times, there will be many photons in it. This is visible in the produced plots which have a clear pattern of lighter and darker rows:
Assuming that this is unintended and that each pixel should have equal chances of being selected, here is a function generating an array of a given size, with a given number of randomly selected pixels:
import numpy as np
def generate_photons(rows, cols, num_photons):
rng = np.random.default_rng()
indices = rng.choice(rows*cols, num_photons)
np.add.at(pix:=np.zeros(rows*cols), indices, 1)
return pix.reshape(rows, cols)
You can use it to produce images with specified parameters. E.g.:
import matplotlib.pyplot as plt
pixels = generate_photons(rows=25, cols=25, num_photons=10**4)
plt.imshow(pixels, cmap="gray")
plt.show()
gives:
photons_random_pixel_choice = np.array([random.choice(index_range) for z in range(rows)])
It seems like the goal here is:
Use a pre-made sequence of integers, 0 to 24 inclusive, to select one of those values.
Repeat that process 25 times in a list comprehension, to get a Python list of 25 random values in that range.
Make a 1-d Numpy array from those results.
This is very much missing the point of using Numpy. If we want integers in a range, then we can directly ask for those. But more importantly, we should let Numpy do the looping as much as possible when using Numpy data structures. This is where it pays to read the documentation:
size: int or tuple of ints, optional
Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are drawn. Default is None, in which case a single value is returned.
So, just make it directly: photons_random_pixel_choice = random.integers(rows, size=(rows,)).
What are the ways to count and extract all subimages given a master image?
Sample 1
Input:
Output should be 8 subgraphs.
Sample 2
Input:
Output should have 6 subgraphs.
Note: These image samples are taken from internet. Images can be of random dimensions.
Is there a way to draw lines of separation in these image and then split based on those details ?
e.g :
I don't think, there'll be a general solution to extract all single figures properly from arbitrary tables of figures (as shown in the two examples) – at least using some kind of "simple" image-processing techniques.
For "perfect" tables with constant grid layout and constant colour space between single figures (as shown in the two examples), the following approach might be an idea:
Calculate the mean standard deviation in x and y direction, and threshold using some custom parameter. The mean standard deviation within the constant colour spaces should be near zero. A custom parameter will be needed here, since there'll be artifacts, e.g. from JPG compression, which effects might be more or less severe.
Do some binary closing on the mean standard deviations using custom parameters. There might be small constant colour spaces around captions or similar, cf. the second example. Again, custom parameters will be needed here, too.
From the resulting binary "signal", we can extract the start and stop positions for each subimage, thus the subimage itself by slicing from the original image. Attention: That works only, if the tables show a constant grid layout!
That'd be some code for the described approach:
import cv2
import numpy as np
from skimage.morphology import binary_closing
def extract_from_table(image, std_thr, kernel_x, kernel_y):
# Threshold on mean standard deviation in x and y direction
std_x = np.mean(np.std(image, axis=1), axis=1) > std_thr
std_y = np.mean(np.std(image, axis=0), axis=1) > std_thr
# Binary closing to close small whitespaces, e.g. around captions
std_xx = binary_closing(std_x, np.ones(kernel_x))
std_yy = binary_closing(std_y, np.ones(kernel_y))
# Find start and stop positions of each subimage
start_y = np.where(np.diff(np.int8(std_xx)) == 1)[0]
stop_y = np.where(np.diff(np.int8(std_xx)) == -1)[0]
start_x = np.where(np.diff(np.int8(std_yy)) == 1)[0]
stop_x = np.where(np.diff(np.int8(std_yy)) == -1)[0]
# Extract subimages
return [image[y1:y2, x1:x2, :]
for y1, y2 in zip(start_y, stop_y)
for x1, x2 in zip(start_x, stop_x)]
for file in (['image1.jpg', 'image2.png']):
img = cv2.imread(file)
cv2.imshow('image', img)
subimages = extract_from_table(img, 5, 21, 11)
print('{} subimages found.'.format(len(subimages)))
for i in subimages:
cv2.imshow('subimage', i)
cv2.waitKey(0)
The print output is:
8 subimages found.
6 subimages found.
Also, each subimage is shown for visualization purposes.
For both images, the same parameters were suitable, but that's just some coincidence here!
----------------------------------------
System information
----------------------------------------
Platform: Windows-10-10.0.16299-SP0
Python: 3.9.1
NumPy: 1.20.1
OpenCV: 4.5.1
scikit-image: 0.18.1
----------------------------------------
I could only extract the sub-images using simple array slicing technique. I am not sure if this is what you are looking for. But if one knows the table columns and rows, I think you can extract the sub-images.
image = cv2.imread('table.jpg')
p = 2 #number of rows
q = 4 #number of columns
width, height, channels = image.shape
width_patch = width//p
height_patch = height//q
x=0
for i in range(0, width - width_patch, width_patch):
for j in range(0, height - height_patch, height_patch):
crop = image[i:i+width_patch, j:j+height_patch]
cv2.imwrite("image_{0}.jpg".format(x),crop)
x+=1
# cv2.imshow('crop', crop)
# cv2.waitKey(0)```
I've created a class of which I pass an image (2D array, 1280x720). It's suppose to iterate through, looking for the highest value:
import bumpy as np
class myCv:
def maxIntLoc(self,image):
intensity = image[0,0] #columns, rows
coordinates = (0,0)
for y in xrange(0,len(image)):
for x in xrange(0,len(image[0])):
if np.all(image[x,y] > intensity):
intensity = image[x,y]
coordinates = (x,y)
return (intensity,coordinates)
Yet when I run it I get the error:
if np.all(image[x,y] > intensity):
IndexError: index 720 is out of bounds for axis 0 with size 720
Any help would be great as I'm new to Python.
Thanks,
Shaun
Regardless of the index error that you are experience, which has been addressed by others, iterating through pixels/voxels is not a valid method for manipulating images. The issue becomes particularly evident in multi-dimensional images, where you face the curse of dimensionality.
The correct way to do this is to use vectorisation in programming languages that support it (e.g. Python, Julia, MATLAB). Through this method, you will achieve the results you're looking for much more efficiently (and thousands of times faster). Click here to find out more about vectorisation (aka. array programming). In Python, this can be achieved either using generators, which are not suitable for images as they don't really produce the results until called; or using NumPy arrays.
Here is an example:
Masking image matrices by vectorisation
from numpy.random import randint
from matplotlib.pyplot import figure, imshow, title, grid, show
def mask_img(img, thresh, replacement):
# Copy of the image for masking. Use of |.copy()| is essential to
# prevent memory mapping.
masked = initial_image.copy()
# Replacement is the value to replace anything that
# (in this case) is bellow the threshold.
masked[initial_image<thresh] = replacement # Mask using vectorisation methods.
return masked
# Initial image to be masked (arbitrary example here).
# In this example, we assign a 100 x 100 matrix of random integers
# between 1 and 256 as our sample image.
initial_image = randint(0, 256, [100, 100])
threshold = 150 # Threshold
# Masking process.
masked_image = mask_img(initial_image, threshold, 0)
# Plots.
fig = figure(figsize=[16,9])
fig.add_subplot(121)
imshow(initial_image, interpolation='None', cmap='gray')
title('Initial image')
grid('off')
fig.add_subplot(122)
imshow(masked_image, interpolation='None', cmap='gray')
title('Masked image')
grid('off')
show()
Which returns:
Of course you can put the masking process (function) in a loop to do this on a batch of images. You can modify the indices and do it on 3D, 4D (e.g. MRI), or 5D (e.g. CAT scan) images too, without the need to iterate over each individual pixel or voxel.
Hope this helps.
In python, like most programming languages, indexes start at 0.
So you can access only pixels from 0 to 719.
Check with a debug print that len(image) and len(image[0]) are indeed returning 1280 and 720.
I have an array where discreet sinewave values are recorded and stored. I want to find the max and min of the waveform. Since the sinewave data is recorded voltages using a DAQ, there will be some noise, so I want to do a weighted average. Assuming self.yArray contains my sinewave values, here is my code so far:
filterarray = []
filtersize = 2
length = len(self.yArray)
for x in range (0, length-(filtersize+1)):
for y in range (0,filtersize):
summation = sum(self.yArray[x+y])
ave = summation/filtersize
filterarray.append(ave)
My issue seems to be in the second for loop, where depending on my averaging window size (filtersize), I want to sum up the values in the window to take the average of them. I receive an error saying:
summation = sum(self.yArray[x+y])
TypeError: 'float' object is not iterable
I am an EE with very little experience in programming, so any help would be greatly appreciated!
The other answers correctly describe your error, but this type of problem really calls out for using numpy. Numpy will run faster, be more memory efficient, and is more expressive and convenient for this type of problem. Here's an example:
import numpy as np
import matplotlib.pyplot as plt
# make a sine wave with noise
times = np.arange(0, 10*np.pi, .01)
noise = .1*np.random.ranf(len(times))
wfm = np.sin(times) + noise
# smoothing it with a running average in one line using a convolution
# using a convolution, you could also easily smooth with other filters
# like a Gaussian, etc.
n_ave = 20
smoothed = np.convolve(wfm, np.ones(n_ave)/n_ave, mode='same')
plt.plot(times, wfm, times, -.5+smoothed)
plt.show()
If you don't want to use numpy, it should also be noted that there's a logical error in your program that results in the TypeError. The problem is that in the line
summation = sum(self.yArray[x+y])
you're using sum within the loop where your also calculating the sum. So either you need to use sum without the loop, or loop through the array and add up all the elements, but not both (and it's doing both, ie, applying sum to the indexed array element, that leads to the error in the first place). That is, here are two solutions:
filterarray = []
filtersize = 2
length = len(self.yArray)
for x in range (0, length-(filtersize+1)):
summation = sum(self.yArray[x:x+filtersize]) # sum over section of array
ave = summation/filtersize
filterarray.append(ave)
or
filterarray = []
filtersize = 2
length = len(self.yArray)
for x in range (0, length-(filtersize+1)):
summation = 0.
for y in range (0,filtersize):
summation = self.yArray[x+y]
ave = summation/filtersize
filterarray.append(ave)
self.yArray[x+y] is returning a single item out of the self.yArray list. If you are trying to get a subset of the yArray, you can use the slice operator instead:
summation = sum(self.yArray[x:y])
to return an iterable that the sum builtin can use.
A bit more information about python slices can be found here (scroll down to the "Sequences" section): http://docs.python.org/2/reference/datamodel.html#the-standard-type-hierarchy
You could use numpy, like:
import numpy
filtersize = 2
ysums = numpy.cumsum(numpy.array(self.yArray, dtype=float))
ylags = numpy.roll(ysums, filtersize)
ylags[0:filtersize] = 0.0
moving_avg = (ysums - ylags) / filtersize
Your original code attempts to call sum on the float value stored at yArray[x+y], where x+y is evaluating to some integer representing the index of that float value.
Try:
summation = sum(self.yArray[x:y])
Indeed numpy is the way to go. One of the nice features of python is list comprehensions, allowing you to do away with the typical nested for loop constructs. Here goes an example, for your particular problem...
import numpy as np
step=2
res=[np.sum(myarr[i:i+step],dtype=np.float)/step for i in range(len(myarr)-step+1)]
I am standing in front of a huge problem. Using the python libraries NumPy and SciPy, I identified several features in large array. For this purpose, I created a 3x3 neighbor structure and used it for a connected component analysis --> see docs.
struct = scipy.ndimage.generate_binary_structure(2,2)
labeled_array, num_features = ndimage.label(array,struct)
My problem now is that I want to iterate through all identified features in a loop. Someone has an idea how to address individual features in the resulting NumPy array?
Here's an example of handling features identified by ndimage.label. Whether this helps you or not depends on what you want to do with the features.
import numpy as np
import scipy.ndimage as ndi
import matplotlib.pyplot as plt
# Make a small array for the demonstration.
# The ndimage.label() function treats 0 as the "background".
a = np.zeros((16, 16), dtype=int)
a[:6, :8] = 1
a[9:, :5] = 1
a[8:, 13:] = 2
a[5:13, 6:12] = 3
struct = ndi.generate_binary_structure(2, 2)
lbl, n = ndi.label(a, struct)
# Plot the original array.
plt.figure(figsize=(11, 4))
plt.subplot(1, n + 1, 1)
plt.imshow(a, interpolation='nearest')
plt.title("Original")
plt.axis('off')
# Plot the isolated features found by label().
for i in range(1, n + 1):
# Make an array of zeros the same shape as `a`.
feature = np.zeros_like(a, dtype=int)
# Set the elements that are part of feature i to 1.
# Feature i consists of elements in `lbl` where the value is i.
# This statement uses numpy's "fancy indexing" to set the corresponding
# elements of `feature` to 1.
feature[lbl == i] = 1
# Make an image plot of the feature.
plt.subplot(1, n + 1, i + 1)
plt.imshow(feature, interpolation='nearest', cmap=plt.cm.copper)
plt.title("Feature {:d}".format(i))
plt.axis('off')
plt.show()
Here's the image generated by the script:
Just a quick note on an alternative way to solve the above mentioned problem. Instead of using the NumPy "fanzy indexing" one could also use the ndimage "find_objects" function.
example:
# Returns a list of slices for the labeled array. The slices represent the position of features in the labeled area
s = ndi.find_objects(lbl, max_label=0)
# Then you can simply output the patches
for i in n:
print a[s[i]]
I will leave the question open because i couldn't solve an additional arising problem. I want to get the size of the features (already solved, quite easy via ndi.sum() ) as well as the number of nonlabeled cells in direct vicinity of the feature (ergo counting the number of zeros around the feature).