Python Variable Declaration - python

I want to clarify how variables are declared in Python.
I have seen variable declaration as
class writer:
path = ""
sometimes, there is no explicit declaration but just initialization using __init__:
def __init__(self, name):
self.name = name
I understand the purpose of __init__, but is it advisable to declare variable in any other functions?
How can I create a variable to hold a custom type?
class writer:
path = "" # string value
customObj = ??

Okay, first things first.
There is no such thing as "variable declaration" or "variable initialization" in Python.
There is simply what we call "assignment", but should probably just call "naming".
Assignment means "this name on the left-hand side now refers to the result of evaluating the right-hand side, regardless of what it referred to before (if anything)".
foo = 'bar' # the name 'foo' is now a name for the string 'bar'
foo = 2 * 3 # the name 'foo' stops being a name for the string 'bar',
# and starts being a name for the integer 6, resulting from the multiplication
As such, Python's names (a better term than "variables", arguably) don't have associated types; the values do. You can re-apply the same name to anything regardless of its type, but the thing still has behaviour that's dependent upon its type. The name is simply a way to refer to the value (object). This answers your second question: You don't create variables to hold a custom type. You don't create variables to hold any particular type. You don't "create" variables at all. You give names to objects.
Second point: Python follows a very simple rule when it comes to classes, that is actually much more consistent than what languages like Java, C++ and C# do: everything declared inside the class block is part of the class. So, functions (def) written here are methods, i.e. part of the class object (not stored on a per-instance basis), just like in Java, C++ and C#; but other names here are also part of the class. Again, the names are just names, and they don't have associated types, and functions are objects too in Python. Thus:
class Example:
data = 42
def method(self): pass
Classes are objects too, in Python.
So now we have created an object named Example, which represents the class of all things that are Examples. This object has two user-supplied attributes (In C++, "members"; in C#, "fields or properties or methods"; in Java, "fields or methods"). One of them is named data, and it stores the integer value 42. The other is named method, and it stores a function object. (There are several more attributes that Python adds automatically.)
These attributes still aren't really part of the object, though. Fundamentally, an object is just a bundle of more names (the attribute names), until you get down to things that can't be divided up any more. Thus, values can be shared between different instances of a class, or even between objects of different classes, if you deliberately set that up.
Let's create an instance:
x = Example()
Now we have a separate object named x, which is an instance of Example. The data and method are not actually part of the object, but we can still look them up via x because of some magic that Python does behind the scenes. When we look up method, in particular, we will instead get a "bound method" (when we call it, x gets passed automatically as the self parameter, which cannot happen if we look up Example.method directly).
What happens when we try to use x.data?
When we examine it, it's looked up in the object first. If it's not found in the object, Python looks in the class.
However, when we assign to x.data, Python will create an attribute on the object. It will not replace the class' attribute.
This allows us to do object initialization. Python will automatically call the class' __init__ method on new instances when they are created, if present. In this method, we can simply assign to attributes to set initial values for that attribute on each object:
class Example:
name = "Ignored"
def __init__(self, name):
self.name = name
# rest as before
Now we must specify a name when we create an Example, and each instance has its own name. Python will ignore the class attribute Example.name whenever we look up the .name of an instance, because the instance's attribute will be found first.
One last caveat: modification (mutation) and assignment are different things!
In Python, strings are immutable. They cannot be modified. When you do:
a = 'hi '
b = a
a += 'mom'
You do not change the original 'hi ' string. That is impossible in Python. Instead, you create a new string 'hi mom', and cause a to stop being a name for 'hi ', and start being a name for 'hi mom' instead. We made b a name for 'hi ' as well, and after re-applying the a name, b is still a name for 'hi ', because 'hi ' still exists and has not been changed.
But lists can be changed:
a = [1, 2, 3]
b = a
a += [4]
Now b is [1, 2, 3, 4] as well, because we made b a name for the same thing that a named, and then we changed that thing. We did not create a new list for a to name, because Python simply treats += differently for lists.
This matters for objects because if you had a list as a class attribute, and used an instance to modify the list, then the change would be "seen" in all other instances. This is because (a) the data is actually part of the class object, and not any instance object; (b) because you were modifying the list and not doing a simple assignment, you did not create a new instance attribute hiding the class attribute.

This might be 6 years late, but in Python 3.5 and above, you can give a hint about a variable type like this:
variable_name: type_name
or this:
variable_name # type: shinyType
This hint has no effect in the core Python interpreter, but many tools will use it to aid the programmer in writing correct code.
So in your case(if you have a CustomObject class defined), you can do:
customObj: CustomObject
See this or that for more info.

There's no need to declare new variables in Python. If we're talking about variables in functions or modules, no declaration is needed. Just assign a value to a name where you need it: mymagic = "Magic". Variables in Python can hold values of any type, and you can't restrict that.
Your question specifically asks about classes, objects and instance variables though. The idiomatic way to create instance variables is in the __init__ method and nowhere else — while you could create new instance variables in other methods, or even in unrelated code, it's just a bad idea. It'll make your code hard to reason about or to maintain.
So for example:
class Thing(object):
def __init__(self, magic):
self.magic = magic
Easy. Now instances of this class have a magic attribute:
thingo = Thing("More magic")
# thingo.magic is now "More magic"
Creating variables in the namespace of the class itself leads to different behaviour altogether. It is functionally different, and you should only do it if you have a specific reason to. For example:
class Thing(object):
magic = "Magic"
def __init__(self):
pass
Now try:
thingo = Thing()
Thing.magic = 1
# thingo.magic is now 1
Or:
class Thing(object):
magic = ["More", "magic"]
def __init__(self):
pass
thing1 = Thing()
thing2 = Thing()
thing1.magic.append("here")
# thing1.magic AND thing2.magic is now ["More", "magic", "here"]
This is because the namespace of the class itself is different to the namespace of the objects created from it. I'll leave it to you to research that a bit more.
The take-home message is that idiomatic Python is to (a) initialise object attributes in your __init__ method, and (b) document the behaviour of your class as needed. You don't need to go to the trouble of full-blown Sphinx-level documentation for everything you ever write, but at least some comments about whatever details you or someone else might need to pick it up.

For scoping purpose, I use:
custom_object = None

Variables have scope, so yes it is appropriate to have variables that are specific to your function. You don't always have to be explicit about their definition; usually you can just use them. Only if you want to do something specific to the type of the variable, like append for a list, do you need to define them before you start using them. Typical example of this.
list = []
for i in stuff:
list.append(i)
By the way, this is not really a good way to setup the list. It would be better to say:
list = [i for i in stuff] # list comprehension
...but I digress.
Your other question.
The custom object should be a class itself.
class CustomObject(): # always capitalize the class name...this is not syntax, just style.
pass
customObj = CustomObject()

As of Python 3, you can explicitly declare variables by type.
For instance, to declare an integer one can do it as follows:
x: int = 3
or:
def f(x: int):
return x
see this question for more detailed info about it:
Explicitly declaring a variable type in Python

Related

How to get the name of an object from a class in Python? [duplicate]

This question already has answers here:
How to convert variable into string in python
(9 answers)
Getting an instance name inside class __init__() [duplicate]
(10 answers)
Closed 6 years ago.
I know this is a weird idea. The idea would be something like this:
class AnyClass:
def __init__(self):
# print object name
Then create a new object
test = AnyClass()
And finally get this output:
'test'
That is not the idea behind this, but is an easy example of what I'm trying to...
PS: I'm not trying to get the class name, just the object name (if possible)
PS2: I know I can get the name with test.__name__ but I'm trying to get the name inside the class, not outside.
Consider this:
>>> a = dict()
>>> b = a
Both a and b reference the exact same object.
>>> a is b
True
When you do a . operation on an object, you're looking up an attribute on that object. An object can be referenced in many different locations; it makes no sense for it to store all those reference names, especially when those names are only bound within certain contexts. For example
def generator():
a = dict()
yield a
b = next(generator())
Both a and b refer to the same dict object, but you can't use a to reference the dict anywhere else besides in the generator function.
Within a specific context, you can test the bound names and see if they refer to a specific object.
test = MyObject()
for name, obj in locals().items():
if test is obj:
print name
First: you don't want to do this, there is no reason to do this, and if you think you need to do this, you're wrong.
Second: you can't do it in the __init__ method because the name reference test referring to the new AnyClass instance object hasn't been added to the memory space ("bound") yet. However, you could do it like this.
class AnyClass():
def echo_name(self):
{v:k for k,v in locals().items()}[self]
test = AnyClass()
test.echo_name()
This will return the first variable encountered in the locals() dictionary that is assigned to the test object. There is no guarantee for the order in which those variables will be returned.
To explain a bit further about why it won't work in the __init__ method, when you do this:
test = AnyClass()
A new instance of AnyClassis constructed according to the instructions of the class definition (including the definitions of any parent or metaclass). This construction happens in phases, the last phase of which is executing the __init__ method. Prior to __init__, other methods that will be executed, if they exist, are __new__, and also the the __new__, __init__, and __call__ methods of the metaclass (if one exists).
So at the point in time the code in the body of the __init__ method is being executed, the object is still being constructed. Therefore there is, as of yet, nothing in the locals() dictionary assigned to the name 'test'. There is only a member called 'self'. And, obviously, if you reverse-lookup the self object in the locals() dictionary looking for a registered name, the name you will get is the name 'self'. Which... isn't useful.

Why doesn't Python allow referencing a class inside its definition?

Python (3 and 2) doesn't allow you to reference a class inside its body (except in methods):
class A:
static_attribute = A()
This raises a NameError in the second line because 'A' is not defined, while this
class A:
def method(self):
return A('argument')
works fine.
In other languages, for example Java, the former is no problem and it is advantageous in many situations, like implementing singletons.
Why isn't this possible in Python? What are the reasons for this decision?
EDIT:
I edited my other question so it asks only for ways to "circumvent" this restriction, while this questions asks for its motivation / technical details.
Python is a dynamically typed language, and executes statements as you import the module. There is no compiled definition of a class object, the object is created by executing the class statement.
Python essentially executes the class body like a function, taking the resulting local namespace to form the body. Thus the following code:
class Foo(object):
bar = baz
translates roughly to:
def _Foo_body():
bar = baz
return locals()
Foo = type('Foo', (object,), _Foo_body())
As a result, the name for the class is not assigned to until the class statement has completed executing. You can't use the name inside the class statement until that statement has completed, in the same way that you can't use a function until the def statement has completed defining it.
This does mean you can dynamically create classes on the fly:
def class_with_base(base_class):
class Foo(base_class):
pass
return Foo
You can store those classes in a list:
classes = [class_with_base(base) for base in list_of_bases]
Now you have a list of classes with no global names referring to them anywhere. Without a global name, I can't rely on such a name existing in a method either; return Foo won't work as there is no Foo global for that to refer to.
Next, Python supports a concept called a metaclass, which produces classes just like a class produces instances. The type() function above is the default metaclass, but you are free to supply your own for a class. A metaclass is free to produce whatever it likes really, even things that are bit classes! As such Python cannot, up front, know what kind of object a class statement will produce and can't make assumptions about what it'll end up binding the name used to. See What is a metaclass in Python?
All this is not something you can do in a statically typed language like Java.
A class statement is executed just like any other statement. Your first example is (roughly) equivalent to
a = A()
A = type('A', (), {'static_attribute': a})
The first line obviously raises a NameError, because A isn't yet bound to anything.
In your second example, A isn't referenced until method is actually called, by which time A does refer to the class.
Essentially, a class does not exist until its entire definition is compiled in its entirety. This is similar to end blocks that are explicitly written in other languages, and Python utilizes implicit end blocks which are determined by indentation.
The other answers are great at explaining why you can't reference the class by name within the class, but you can use class methods to access the class.
The #classmethod decorator annotes a method that will be passed the class type, instead of the usual class instance (self). This is similar to Java's static method (there's also a #staticmethod decorator, which is a little different).
For a singleton, you can access a class instance to store an object instance (Attributes defined at the class level are the fields defined as static in a Java class):
class A(object):
instance = None
#classmethod
def get_singleton(cls):
if cls.instance is None:
print "Creating new instance"
cls.instance = cls()
return cls.instance
>>> a1 = A.get_singleton()
Creating new instance
>>> a2 = A.get_singleton()
>>> print a1 is a2
True
You can also use class methods to make java-style "static" methods:
class Name(object):
def __init__(self, name):
self.name = name
#classmethod
def make_as_victoria(cls):
return cls("Victoria")
#classmethod
def make_as_stephen(cls):
return cls("Stephen")
>>> victoria = Name.make_as_victoria()
>>> stephen = Name.make_as_stephen()
>>> print victoria.name
Victoria
>>> print stephen.name
Stephen
The answer is "just because".
It has nothing to do with the type system of Python, or it being dynamic. It has to do with the order in which a newly introduced type is initialized.
Some months ago I developed an object system for the language TXR, in which this works:
1> (defstruct foo nil (:static bar (new foo)))
#
2> (new foo)
#S(foo)
3> *2.bar
#S(foo)
Here, bar is a static slot ("class variable") in foo. It is initialized by an expression which constructs a foo.
Why that works can be understood from the function-based API for the instantiation of a new type, where the static class initialization is performed by a function which is passed in. The defstruct macro compiles a call to make-struct-type in which the (new foo) expression ends up in the body of the anonymous function that is passed for the static-initfun argument. This function is called after the type is registered under the foo symbol already.
We could easily patch the C implementation of make_struct_type so that this breaks. The last few lines of that function are:
sethash(struct_type_hash, name, stype);
if (super) {
mpush(stype, mkloc(su->dvtypes, super));
memcpy(st->stslot, su->stslot, sizeof (val) * su->nstslots);
}
call_stinitfun_chain(st, stype);
return stype;
}
The call_stinifun_chain does the initialization which ends up evaluating (new foo) and storing it in the bar static slot, and the sethash call is what registers the type under its name.
If we simply reverse the order in which these functions are called, the language and type system will still be the same, and almost everything will work as before. Yet, the (:static bar (new foo)) slot specifier will fail.
I put the calls in that order because I wanted the language-controlled aspects of the type to be as complete as possible before exposing it to the user-definable initializations.
I can't think of any reason for foo not to be known at the time when that struct type is being initialized, let alone a good reason. It is legitimate for static construction to create an instance. For example, we could use it to create a "singleton".
This looks like a bug in Python.

Creating a global variable (from a string) from within a class

Context: I'm making a Ren'py game. The value is Character(). Yes, I know this is a dumb idea outside of this context.
I need to create a variable from an input string inside of a class that exists outside of the class' scope:
class Test:
def __init__(self):
self.dict = {} # used elsewhere to give the inputs for the function below.
def create_global_var(self, variable, value):
# the equivalent of exec("global {0}; {0} = {1}".format(str(variable), str(value)))
# other functions in the class that require this.
Test().create_global_var("abc", "123") # hence abc = 123
I have tried vars()[], globals()[variable] = value, etc, and they simply do not work (they don't even define anything) Edit: this was my problem.
I know that the following would work equally as well, but I want the variables in the correct scope:
setattr(self.__class__, variable, value) # d.abc = 123, now. but incorrect scope.
How can I create a variable in the global scope from within a class, using a string as the variable name, without using attributes or exec in python?
And yes, i'll be sanity checking.
First things first: what we call the "global" scope in Python is actually the "module" scope
(on the good side, it diminishes the "evils" of using global vars).
Then, for creating a global var dynamically, although I still can't see why that would
be better than using a module-level dictionary, just do:
globals()[variable] = value
This creates a variable in the current module. If you need to create a module variable on the module from which the method was called, you can peek at the globals dictionary from the caller frame using:
from inspect import currentframe
currentframe(1).f_globals[variable] = name
Now, the this seems especially useless since you may create a variable with a dynamic name, but you can't access it dynamically (unless using the globals dictionary again)
Even in your test example, you create the "abc" variable passing the method a string, but then you have to access it by using a hardcoded "abc" - the language itself is designed to discourage this (hence the difference to Javascript, where array indexes and object attributes are interchangeable, while in Python you have distinct Mapping objects)
My suggestion is that you use a module-level explicit dictionary and create all your
dynamic variables as key/value pairs there:
names = {}
class Test(object):
def __init__(self):
self.dict = {} # used elsewhere to give the inputs for the function below.
def create_global_var(self, variable, value):
names[variable] = value
(on a side note, in Python 2 always inherit your classes from "object")
You can use setattr(__builtins__, 'abc', '123') for this.
Do mind you that this is most likely a design problem and you should rethink the design.

Using globals() to create class object

I'm new in programming so please don't kill me for asking stupid questions.
I've been trying to understand all that class business in Python and I got to the point where could not find answer for my question just by google it.
In my program I need to call a class from within other class based on string returned by function. I found two solutions: one by using getattr() and second one by using globals() / locals().
Decided to go for second solution and got it working but I'm really don't understand how it's working.
So there is the code example:
class Test(object):
def __init__(self):
print "WORKS!"
room = globals()['Test']
room()
type(room()) gives:
<class '__main__.Test'>
type(room) gives:
<type 'type'> # What????
It looks like room() is a class object, but shouldn't that be room instead of room()?
Please help me because it is a little bit silly if I write a code which I don't understand myself.
What happens here is the following:
class Test(object):
def __init__(self):
print "WORKS!"
room = globals()['Test']
Here you got Test as room the way you wanted. Verify this:
room is Test
should give True.
type(room()) gives:
<class '__main__.Test'>
You do one step an go it backwards: room() returns the same as Test() would - an instance of that class. type() "undoes" this step resp. gets the type of the object - this is, of course, Test.
type(room) gives:
<type 'type'> # What????
Of course - it is the type of a (new style) class. The same as type(Test).
Be aware, however, that for
In my program I need to call a class from within other class based on string returned by function. I found two solutions: one by using getattr() and second one by using globals() / locals().
it could be better to create an explicitly separate dict. Here you have full control over which objects/classes/... are allowed in that context and which are not.
First of all, I'd go with getattr instead.
In your example, room equals Test and is a class. Its type is type.
When you call room(), you instantiate Test, so room() evaluates to an instance of Test, whose type is Test.
Classes are objects too, in Python. All this does:
class Test(object):
def __init__(self):
print "WORKS!"
is create a class object and bind it to the name Test. Much as this:
x = []
creates a list object and binds it to the name x.
Test() isn't magic syntax for creating an instance. The Test is perfectly ordinary variable lookup, and the () is perfectly ordinary "call with empty arguments". It just so happens that calling a class will create an instance of that class.
If follows then that your problem of instantiating a class chosen based on having the name of the class as a string boils down to the much simpler problem of finding an object stored in a variable. It's exactly the same problem as getting that list bound to the name x, given the string "x". Once you've got a reference to the class in any old variable, you can simply call it to create your instance.
globals() returns a dictionary mapping the names of globals to their values. So globals()['Test'] will get you the class Test just as easily as globals()['x'] will get you the list. However it's usually not considered great style to use globals() like this; your module probably contains a large number of callables (including a bunch imported from other modules) that you don't want to be accidentally invoked if the function can be made to return their name. Given that classes are just ordinary objects, you can put them in a dictionary of your own making:
classes = {
'Test': Test,
'SomethingElse': Something,
...
}
This involves a bit more typing, but it's also easier to see what the intended usage is, and it gives you a bit more flexibility, since you can also easily pass this dictionary to other modules and have the instantiation take place elsewhere (you could do that with globals(), but then you're getting very weird).
Now, for the type(room) being type. Again, this is just a simple consequence of the fact that classes themselves are also objects. If a class is an object, then it should also be an instance of some class. What class is that? type, the "type of types". Much as any class defines the common behaviour of all its instances, the class type defines the common behaviour of all classes.
And just to make your brain hurt, type is an instance of itself (since type is also a class, and type is the class of classes). And it's a subclass of object (since all type instances are object instances, but not all object instances are type instances), and also an instance of object (since object is the root class of which everything is an instance).
You can generally ignore type as an advanced topic, however. :)

Python objects - avoiding creation of attribute with unknown name

Wishing to avoid a situation like this:
>>> class Point:
x = 0
y = 0
>>> a = Point()
>>> a.X = 4 #whoops, typo creates new attribute capital x
I created the following object to be used as a superclass:
class StrictObject(object):
def __setattr__(self, item, value):
if item in dir(self):
object.__setattr__(self, item, value)
else:
raise AttributeError("Attribute " + item + " does not exist.")
While this seems to work, the python documentation says of dir():
Note: Because dir() is supplied primarily as a convenience for use at an interactive prompt, it tries to supply an interesting set of names more than it tries to supply a rigorously or consistently defined set of names, and its detailed behavior may change across releases. For example, metaclass attributes are not in the result list when the argument is a class.
Is there a better way to check if an object has an attribute?
Much better ways.
The most common way is "we're all consenting adults". That means, you don't do any checking, and you leave it up to the user. Any checking you do makes the code less flexible in it's use.
But if you really want to do this, there is __slots__ by default in Python 3.x, and for new-style classes in Python 2.x:
By default, instances of both old and new-style classes have a dictionary for attribute storage. This wastes space for objects having very few instance variables. The space consumption can become acute when creating large numbers of instances.
The default can be overridden by defining __slots__ in a new-style class definition. The __slots__ declaration takes a sequence of instance variables and reserves just enough space in each instance to hold a value for each variable. Space is saved because __dict__ is not created for each instance.
Without a __dict__ variable, instances cannot be assigned new variables not listed in the __slots__ definition. Attempts to assign to an unlisted variable name raises AttributeError. If dynamic assignment of new variables is desired, then add '__dict__' to the sequence of strings in the __slots__ declaration.
For example:
class Point(object):
__slots__ = ("x", "y")
point = Point()
point.x = 5 # OK
point.y = 1 # OK
point.X = 4 # AttributeError is raised
And finally, the proper way to check if an object has a certain attribute is not to use dir, but to use the built-in function hasattr(object, name).
I don't think it's a good idea to write code to prevent such errors. These "static" checks should be the job of your IDE. Pylint will warn you about assigning attributes outside of __init__ thus preventing typo errors. It also shows many other problems and potential problems and it can easily be used from PyDev.
In such situation you should look what the python standard library may offer you. Did you consider the namedtuple?
from collections import namedtuple
Point = namedtuple("Point", "x, y")
a = Point(1,3)
print a.x, a.y
Because Point is now immutable your problem just can't happen, but the draw-back is naturally you can't e.g. just add +1 to a, but have to create a complete new Instance.
x,y = a
b = Point(x+1,y)

Categories