Python threading.Timer only repeats once - python

def On_Instrumentation_StartAnimation():
"""
Syntax : On_Instrumentation_StartAnimation()
Purpose : Fired if the animation is started
Parameters : None
"""
print "----------------------------------------------------------------------------------------"
localtime = time.asctime(time.localtime(time.time()))
global start
start = time.clock()
print "The user entered Animation Mode at local time: ", localtime
print("This data has also been written to 'c:\dSPACE71\cdlog\cdlog.txt'")
threading.Timer(2, ExecuteDemo).start()
ExecuteDemo()
# Printing to the text file
file1 = open('c:\dSPACE71\cdlog\cdlog.txt', 'a')
file1.write("\n----------------------------------------------------------------------------------------")
file1.write("\nThe user entered Animation Mode at local time: ")
file1.write(localtime)
file1.close()
def ExecuteDemo()
.
.
.
Current_value = Current.Read()
localtime = time.asctime(time.localtime(time.time()))
print "The current reading at localtime:", localtime, "is", str(Current_value) + "."
# Printing to the text file
file1 = open('c:\dSPACE71\cdlog\cdlog.txt', 'a')
file1.write("\n----------------------------------------------------------------------------------------")
file1.write("\nThe current reading at localtime: ")
file1.write(localtime)
file1.write(" is: ")
file1.write(str(Current_value))
file1.close()
.
.
.
As you can hopefully see, I'm trying to repeat the ExecuteDemo() function every 2 seconds after the StartAnimation function is called. But my problem here is that my ExecuteDemo() only runs twice. How can I get it to keep repeating? Am I missing something?

From the documentation:
class threading.Timer
A thread that executes a function after a specified interval has passed.
This means Threading.Timer will call a function after a specified period of time. And as you noticed, it gets called only once. The solution here will to have the timer set once again at the end of the ExecuteDemo(..) function.
def ExecuteDemo():
.
.
.
threading.Timer(2, ExecuteDemo).start()
In my opinion, the above method is a little inefficient. It is like every 2 seconds a new thread is being created, and once it executes the function, it dies before creating the next thread.
I would suggest something like this:
def ExecuteDemoCaller():
#while True: # or something..
while someCondition:
ExecuteDemo()
time.sleep(2)

From the docs:
class threading.Timer(interval, function, args=[], kwargs={})¶
Create a timer that will run function with arguments args and keyword
arguments kwargs, after interval seconds have passed.
I couldn't find anything about repeatedly calling something. Maybe someone else has a better answer, or maybe you have to do handroll it (which wouldn't be too hard).

Timer doesn't repeat. You can just set another timer at the end of your callback function.

class setInterval(threading.Thread):
def __init__(self, interval, function, args=[], kwargs={}):
threading.Thread.__init__(self)
self.interval = interval
self.function = function
self.args = args
self.kwargs = kwargs
self.finished = threading.Event()
self.flag_run = True
def cancel(self):
self.finished.set()
def run(self):
while self.flag_run:
self.finished.wait(self.interval)
if not self.finished.is_set(): self.function(*self.args, **self.kwargs)
else: self.flag_run = False
self.finished.set()
After 10 minutes reading of "threading.py" I use this code

Related

Is there any way to extend threading.Timer in python

For threading.Timer Object, is there any way to update the timer time after calling start method ?
for example
timer = threading.Timer(5, function)
timer.start()
#after calling start method, i want to extend the timer time before expired.
as i looked through the document of threading.Timer, there isn't way.
so do i have to call cancel method then call again start method?
The Timer object is really quite simple:
def Timer(*args, **kwargs):
return _Timer(*args, **kwargs)
class _Timer(Thread):
"""Call a function after a specified number of seconds:
t = Timer(30.0, f, args=[], kwargs={})
t.start()
t.cancel() # stop the timer's action if it's still waiting
"""
def __init__(self, interval, function, args=[], kwargs={}):
Thread.__init__(self)
self.interval = interval
self.function = function
self.args = args
self.kwargs = kwargs
self.finished = Event()
def cancel(self):
"""Stop the timer if it hasn't finished yet"""
self.finished.set()
def run(self):
self.finished.wait(self.interval)
if not self.finished.is_set():
self.function(*self.args, **self.kwargs)
self.finished.set()
It's just waiting calling wait with a timeout on a threading.Event object, then either runs the provided method or exits if cancel was called. You could implement your own version of Timer that supports extending the wait, but the default one definitely doesn't support it.
Nobody posted any code examples, so figure I might as well. Here I did as suggested as above where the timer is cancelled and then restarted. Using this solution will at first cause "hello world" to print every 5 seconds, and then on a rerun will increase that to every second in frequency. It also prints some Epoch times to demonstrate concurrency
import time
import threading
def printit(runs):
if runs == 1:
timer = threading.Timer(5.0, printit, [runs])
timer.start()
runs += 1
else:
timer = threading.Timer(1.0, printit, [runs])
timer.start()
print("Hello, World!")
timer.cancel()
timer = threading.Timer(1.0, printit, [runs])
timer.start()
if __name__ == '__main__':
runs = 1
printit(runs)
now = time.time()
print('The current time is: ' + str(now))
time.sleep(7)
current = time.time()
print('The current time is: ' + str(current))
Cancel the timer and start a new one.

Getting the time remaining before event.wait is done in Python

I'm writing a Python script in which i have a thread running that calculates some values and creates a graph every hour. What I would like to do is have a function in that thread that tells me how much time there is remaining before the next update happens. My current implementation is as follows:
class StatsUpdater(threading.Thread):
def __init__(self, updateTime):
threading.Thread.__init__(self)
self.event = threading.Event()
self.updateTime = updateTime
def run(self):
while not self.event.is_set():
self.updateStats()
self.event.wait(self.updateTime)
def updateStats(self):
print "Updating Stats"
tables = SQLInterface.listTables()
for table in tables:
PlotTools.createAndSave(table)
def stop(self):
self.event.set()
So what i would like is adding another function in that class that gives me back the time remaining gefore self.event.wait(self.updateTime) times out, something like this:
def getTimeout(self):
return self.event.timeRemaining()
Is this possible somehow?
There's no support for getting the remaining time directly but you can sleep several times and keep track of how much time remains.
def __init__(self, updateTime):
threading.Thread.__init__(self)
self.event = threading.Event()
self.updateTime = updateTime
self.wait_time=None
def run(self):
while not self.event.is_set():
self.updateStats()
try:
self.wait_time=self.updateTime
inttime=int(self.updateTime)
remaining=inttime-self.updateTime
self.event.wait(remaining)
for t in reversed(range(inttime)):
self.wait_time=t+1
self.event.wait(1)
finally:
self.wait_time=0
And then use
def getTimeout(self):
return self.wait_time
Alright, i have a compromis to my problem. I implemented a variable in StatsUpdater.run:
self.lastUpdateTime = int(time.time())
right before i do the update function.
Now when I call getTimeout(), I do:
def getTimeout(self):
timePassed = int(time.time() - self.lastUpdateTime
return self.updateTime - timePassed
This way, I don't have a calculation intensive thread running and calculation
a small sum every second but i still get a pretty good indication of when the next update is since the ammount of time between updates is also known ;)

Equivalent of setInterval in python

I have recently posted a question about how to postpone execution of a function in Python (kind of equivalent to Javascript setTimeout) and it turns out to be a simple task using threading.Timer (well, simple as long as the function does not share state with other code, but that would create problems in any event-driven environment).
Now I am trying to do better and emulate setInterval. For those who are not familiar with Javascript, setInterval allows to repeat a call to a function every x seconds, without blocking the execution of other code. I have created this example decorator:
import time, threading
def setInterval(interval, times = -1):
# This will be the actual decorator,
# with fixed interval and times parameter
def outer_wrap(function):
# This will be the function to be
# called
def wrap(*args, **kwargs):
# This is another function to be executed
# in a different thread to simulate setInterval
def inner_wrap():
i = 0
while i != times:
time.sleep(interval)
function(*args, **kwargs)
i += 1
threading.Timer(0, inner_wrap).start()
return wrap
return outer_wrap
to be used as follows
#setInterval(1, 3)
def foo(a):
print(a)
foo('bar')
# Will print 'bar' 3 times with 1 second delays
and it seems to me it is working fine. My problem is that
it seems overly complicated, and I fear I may have missed a simpler/better mechanism
the decorator can be called without the second parameter, in which case it will go on forever. When I say foreover, I mean forever - even calling sys.exit() from the main thread will not stop it, nor will hitting Ctrl+c. The only way to stop it is to kill python process from the outside. I would like to be able to send a signal from the main thread that would stop the callback. But I am a beginner with threads - how can I communicate between them?
EDIT In case anyone wonders, this is the final version of the decorator, thanks to the help of jd
import threading
def setInterval(interval, times = -1):
# This will be the actual decorator,
# with fixed interval and times parameter
def outer_wrap(function):
# This will be the function to be
# called
def wrap(*args, **kwargs):
stop = threading.Event()
# This is another function to be executed
# in a different thread to simulate setInterval
def inner_wrap():
i = 0
while i != times and not stop.isSet():
stop.wait(interval)
function(*args, **kwargs)
i += 1
t = threading.Timer(0, inner_wrap)
t.daemon = True
t.start()
return stop
return wrap
return outer_wrap
It can be used with a fixed amount of repetitions as above
#setInterval(1, 3)
def foo(a):
print(a)
foo('bar')
# Will print 'bar' 3 times with 1 second delays
or can be left to run until it receives a stop signal
import time
#setInterval(1)
def foo(a):
print(a)
stopper = foo('bar')
time.sleep(5)
stopper.set()
# It will stop here, after printing 'bar' 5 times.
Your solution looks fine to me.
There are several ways to communicate with threads. To order a thread to stop, you can use threading.Event(), which has a wait() method that you can use instead of time.sleep().
stop_event = threading.Event()
...
stop_event.wait(1.)
if stop_event.isSet():
return
...
For your thread to exit when the program is terminated, set its daemon attribute to True before calling start(). This applies to Timer() objects as well because they subclass threading.Thread. See http://docs.python.org/library/threading.html#threading.Thread.daemon
Maybe these are the easiest setInterval equivalent in python:
import threading
def set_interval(func, sec):
def func_wrapper():
set_interval(func, sec)
func()
t = threading.Timer(sec, func_wrapper)
t.start()
return t
Maybe a bit simpler is to use recursive calls to Timer:
from threading import Timer
import atexit
class Repeat(object):
count = 0
#staticmethod
def repeat(rep, delay, func):
"repeat func rep times with a delay given in seconds"
if Repeat.count < rep:
# call func, you might want to add args here
func()
Repeat.count += 1
# setup a timer which calls repeat recursively
# again, if you need args for func, you have to add them here
timer = Timer(delay, Repeat.repeat, (rep, delay, func))
# register timer.cancel to stop the timer when you exit the interpreter
atexit.register(timer.cancel)
timer.start()
def foo():
print "bar"
Repeat.repeat(3,2,foo)
atexit allows to signal stopping with CTRL-C.
this class Interval
class ali:
def __init__(self):
self.sure = True;
def aliv(self,func,san):
print "ali naber";
self.setInterVal(func, san);
def setInterVal(self,func, san):
# istenilen saniye veya dakika aralığında program calışır.
def func_Calistir():
func(func,san); #calışıcak fonksiyon.
self.t = threading.Timer(san, func_Calistir)
self.t.start()
return self.t
a = ali();
a.setInterVal(a.aliv,5);

Run certain code every n seconds [duplicate]

This question already has answers here:
How to repeatedly execute a function every x seconds?
(22 answers)
Closed 7 years ago.
The community reviewed whether to reopen this question 3 months ago and left it closed:
Original close reason(s) were not resolved
Is there a way to, for example, print Hello World! every n seconds?
For example, the program would go through whatever code I had, then once it had been 5 seconds (with time.sleep()) it would execute that code. I would be using this to update a file though, not print Hello World.
For example:
startrepeat("print('Hello World')", .01) # Repeats print('Hello World') ever .01 seconds
for i in range(5):
print(i)
>> Hello World!
>> 0
>> 1
>> 2
>> Hello World!
>> 3
>> Hello World!
>> 4
import threading
def printit():
threading.Timer(5.0, printit).start()
print "Hello, World!"
printit()
# continue with the rest of your code
https://docs.python.org/3/library/threading.html#timer-objects
My humble take on the subject, a generalization of Alex Martelli's answer, with start() and stop() control:
from threading import Timer
class RepeatedTimer(object):
def __init__(self, interval, function, *args, **kwargs):
self._timer = None
self.interval = interval
self.function = function
self.args = args
self.kwargs = kwargs
self.is_running = False
self.start()
def _run(self):
self.is_running = False
self.start()
self.function(*self.args, **self.kwargs)
def start(self):
if not self.is_running:
self._timer = Timer(self.interval, self._run)
self._timer.start()
self.is_running = True
def stop(self):
self._timer.cancel()
self.is_running = False
Usage:
from time import sleep
def hello(name):
print "Hello %s!" % name
print "starting..."
rt = RepeatedTimer(1, hello, "World") # it auto-starts, no need of rt.start()
try:
sleep(5) # your long-running job goes here...
finally:
rt.stop() # better in a try/finally block to make sure the program ends!
Features:
Standard library only, no external dependencies
start() and stop() are safe to call multiple times even if the timer has already started/stopped
function to be called can have positional and named arguments
You can change interval anytime, it will be effective after next run. Same for args, kwargs and even function!
Save yourself a schizophrenic episode and use the Advanced Python scheduler:
http://pythonhosted.org/APScheduler
The code is so simple:
from apscheduler.scheduler import Scheduler
sched = Scheduler()
sched.start()
def some_job():
print "Every 10 seconds"
sched.add_interval_job(some_job, seconds = 10)
....
sched.shutdown()
def update():
import time
while True:
print 'Hello World!'
time.sleep(5)
That'll run as a function. The while True: makes it run forever. You can always take it out of the function if you need.
Here is a simple example compatible with APScheduler 3.00+:
# note that there are many other schedulers available
from apscheduler.schedulers.background import BackgroundScheduler
sched = BackgroundScheduler()
def some_job():
print('Every 10 seconds')
# seconds can be replaced with minutes, hours, or days
sched.add_job(some_job, 'interval', seconds=10)
sched.start()
...
sched.shutdown()
Alternatively, you can use the following. Unlike many of the alternatives, this timer will execute the desired code every n seconds exactly (irrespective of the time it takes for the code to execute). So this is a great option if you cannot afford any drift.
import time
from threading import Event, Thread
class RepeatedTimer:
"""Repeat `function` every `interval` seconds."""
def __init__(self, interval, function, *args, **kwargs):
self.interval = interval
self.function = function
self.args = args
self.kwargs = kwargs
self.start = time.time()
self.event = Event()
self.thread = Thread(target=self._target)
self.thread.start()
def _target(self):
while not self.event.wait(self._time):
self.function(*self.args, **self.kwargs)
#property
def _time(self):
return self.interval - ((time.time() - self.start) % self.interval)
def stop(self):
self.event.set()
self.thread.join()
# start timer
timer = RepeatedTimer(10, print, 'Hello world')
# stop timer
timer.stop()
Here's a version that doesn't create a new thread every n seconds:
from threading import Event, Thread
def call_repeatedly(interval, func, *args):
stopped = Event()
def loop():
while not stopped.wait(interval): # the first call is in `interval` secs
func(*args)
Thread(target=loop).start()
return stopped.set
The event is used to stop the repetitions:
cancel_future_calls = call_repeatedly(5, print, "Hello, World")
# do something else here...
cancel_future_calls() # stop future calls
See Improve current implementation of a setInterval python
You can start a separate thread whose sole duty is to count for 5 seconds, update the file, repeat. You wouldn't want this separate thread to interfere with your main thread.

Python Equivalent of setInterval()?

Does Python have a function similar to JavaScript's setInterval()?
I would like to have:
def set_interval(func, interval):
...
That will call func every interval time units.
This might be the correct snippet you were looking for:
import threading
def set_interval(func, sec):
def func_wrapper():
set_interval(func, sec)
func()
t = threading.Timer(sec, func_wrapper)
t.start()
return t
This is a version where you could start and stop.
It is not blocking.
There is also no glitch as execution time error is not added (important for long time execution with very short interval as audio for example)
import time, threading
StartTime=time.time()
def action() :
print('action ! -> time : {:.1f}s'.format(time.time()-StartTime))
class setInterval :
def __init__(self,interval,action) :
self.interval=interval
self.action=action
self.stopEvent=threading.Event()
thread=threading.Thread(target=self.__setInterval)
thread.start()
def __setInterval(self) :
nextTime=time.time()+self.interval
while not self.stopEvent.wait(nextTime-time.time()) :
nextTime+=self.interval
self.action()
def cancel(self) :
self.stopEvent.set()
# start action every 0.6s
inter=setInterval(0.6,action)
print('just after setInterval -> time : {:.1f}s'.format(time.time()-StartTime))
# will stop interval in 5s
t=threading.Timer(5,inter.cancel)
t.start()
Output is :
just after setInterval -> time : 0.0s
action ! -> time : 0.6s
action ! -> time : 1.2s
action ! -> time : 1.8s
action ! -> time : 2.4s
action ! -> time : 3.0s
action ! -> time : 3.6s
action ! -> time : 4.2s
action ! -> time : 4.8s
Just keep it nice and simple.
import threading
def setInterval(func,time):
e = threading.Event()
while not e.wait(time):
func()
def foo():
print "hello"
# using
setInterval(foo,5)
# output:
hello
hello
.
.
.
EDIT : This code is non-blocking
import threading
class ThreadJob(threading.Thread):
def __init__(self,callback,event,interval):
'''runs the callback function after interval seconds
:param callback: callback function to invoke
:param event: external event for controlling the update operation
:param interval: time in seconds after which are required to fire the callback
:type callback: function
:type interval: int
'''
self.callback = callback
self.event = event
self.interval = interval
super(ThreadJob,self).__init__()
def run(self):
while not self.event.wait(self.interval):
self.callback()
event = threading.Event()
def foo():
print "hello"
k = ThreadJob(foo,event,2)
k.start()
print "It is non-blocking"
Change Nailxx's answer a bit and you got the answer!
from threading import Timer
def hello():
print "hello, world"
Timer(30.0, hello).start()
Timer(30.0, hello).start() # after 30 seconds, "hello, world" will be printed
The sched module provides these abilities for general Python code. However, as its documentation suggests, if your code is multithreaded it might make more sense to use the threading.Timer class instead.
I think this is what you're after:
#timertest.py
import sched, time
def dostuff():
print "stuff is being done!"
s.enter(3, 1, dostuff, ())
s = sched.scheduler(time.time, time.sleep)
s.enter(3, 1, dostuff, ())
s.run()
If you add another entry to the scheduler at the end of the repeating method, it'll just keep going.
I use sched to create setInterval function gist
import functools
import sched, time
s = sched.scheduler(time.time, time.sleep)
def setInterval(sec):
def decorator(func):
#functools.wraps(func)
def wrapper(*argv, **kw):
setInterval(sec)(func)
func(*argv, **kw)
s.enter(sec, 1, wrapper, ())
return wrapper
s.run()
return decorator
#setInterval(sec=3)
def testInterval():
print ("test Interval ")
testInterval()
Simple setInterval utils
from threading import Timer
def setInterval(timer, task):
isStop = task()
if not isStop:
Timer(timer, setInterval, [timer, task]).start()
def hello():
print "do something"
return False # return True if you want to stop
if __name__ == "__main__":
setInterval(2.0, hello) # every 2 seconds, "do something" will be printed
The above method didn't quite do it for me as I needed to be able to cancel the interval. I turned the function into a class and came up with the following:
class setInterval():
def __init__(self, func, sec):
def func_wrapper():
self.t = threading.Timer(sec, func_wrapper)
self.t.start()
func()
self.t = threading.Timer(sec, func_wrapper)
self.t.start()
def cancel(self):
self.t.cancel()
Most of the answers above do not shut down the Thread properly. While using Jupyter notebook I noticed that when an explicit interrupt was sent, the threads were still running and worse, they would keep multiplying starting at 1 thread running,2, 4 etc. My method below is based on the answer by #doom but cleanly handles interrupts by running an infinite loop in the Main thread to listen for SIGINT and SIGTERM events
No drift
Cancelable
Handles SIGINT and SIGTERM very well
Doesnt make a new thread for every run
Feel free to suggest improvements
import time
import threading
import signal
# Record the time for the purposes of demonstration
start_time=time.time()
class ProgramKilled(Exception):
"""
An instance of this custom exception class will be thrown everytime we get an SIGTERM or SIGINT
"""
pass
# Raise the custom exception whenever SIGINT or SIGTERM is triggered
def signal_handler(signum, frame):
raise ProgramKilled
# This function serves as the callback triggered on every run of our IntervalThread
def action() :
print('action ! -> time : {:.1f}s'.format(time.time()-start_time))
# https://stackoverflow.com/questions/2697039/python-equivalent-of-setinterval
class IntervalThread(threading.Thread) :
def __init__(self,interval,action, *args, **kwargs) :
super(IntervalThread, self).__init__()
self.interval=interval
self.action=action
self.stopEvent=threading.Event()
self.start()
def run(self) :
nextTime=time.time()+self.interval
while not self.stopEvent.wait(nextTime-time.time()) :
nextTime+=self.interval
self.action()
def cancel(self) :
self.stopEvent.set()
def main():
# Handle SIGINT and SIFTERM with the help of the callback function
signal.signal(signal.SIGTERM, signal_handler)
signal.signal(signal.SIGINT, signal_handler)
# start action every 1s
inter=IntervalThread(1,action)
print('just after setInterval -> time : {:.1f}s'.format(time.time()-start_time))
# will stop interval in 500s
t=threading.Timer(500,inter.cancel)
t.start()
# https://www.g-loaded.eu/2016/11/24/how-to-terminate-running-python-threads-using-signals/
while True:
try:
time.sleep(1)
except ProgramKilled:
print("Program killed: running cleanup code")
inter.cancel()
break
if __name__ == "__main__":
main()
In the above solutions if a situation arises where program is shutdown, there is no guarantee that it will shutdown gracefully,Its always recommended to shut a program via a soft kill, neither did most of them have a function to stop I found a nice article on medium written by Sankalp which solves both of these issues (run periodic tasks in python) refer the attached link to get a deeper insight.
In the below sample a library named signal is used to track the kill is soft kill or a hard kill
import threading, time, signal
from datetime import timedelta
WAIT_TIME_SECONDS = 1
class ProgramKilled(Exception):
pass
def foo():
print time.ctime()
def signal_handler(signum, frame):
raise ProgramKilled
class Job(threading.Thread):
def __init__(self, interval, execute, *args, **kwargs):
threading.Thread.__init__(self)
self.daemon = False
self.stopped = threading.Event()
self.interval = interval
self.execute = execute
self.args = args
self.kwargs = kwargs
def stop(self):
self.stopped.set()
self.join()
def run(self):
while not self.stopped.wait(self.interval.total_seconds()):
self.execute(*self.args, **self.kwargs)
if __name__ == "__main__":
signal.signal(signal.SIGTERM, signal_handler)
signal.signal(signal.SIGINT, signal_handler)
job = Job(interval=timedelta(seconds=WAIT_TIME_SECONDS), execute=foo)
job.start()
while True:
try:
time.sleep(1)
except ProgramKilled:
print "Program killed: running cleanup code"
job.stop()
break
#output
#Tue Oct 16 17:47:51 2018
#Tue Oct 16 17:47:52 2018
#Tue Oct 16 17:47:53 2018
#^CProgram killed: running cleanup code
setInterval should be run on multiple thread, and not freeze the task when it running loop.
Here is my RUNTIME package that support multithread feature:
setTimeout(F,ms) : timming to fire function in independence thread.
delayF(F,ms) : similar setTimeout(F,ms).
setInterval(F,ms) : asynchronous loop
.pause, .resume : pause and resume the interval
clearInterval(interval) : clear the interval
It's short and simple. Note that python need lambda if you input direct the function, but lambda is not support command block, so you should define the function content before put it in the setInterval.
### DEMO PYTHON MULTITHREAD ASYNCHRONOUS LOOP ###
import time;
import threading;
import random;
def delay(ms):time.sleep(ms/1000); # Controil while speed
def setTimeout(R,delayMS):
t=threading.Timer(delayMS/1000,R)
t.start();
return t;
def delayF(R,delayMS):
t=threading.Timer(delayMS/1000,R)
t.start();
return t;
class THREAD:
def __init__(this):
this.R_onRun=None;
this.thread=None;
def run(this):
this.thread=threading.Thread(target=this.R_onRun);
this.thread.start();
def isRun(this): return this.thread.isAlive();
class setInterval :
def __init__(this,R_onRun,msInterval) :
this.ms=msInterval;
this.R_onRun=R_onRun;
this.kStop=False;
this.thread=THREAD();
this.thread.R_onRun=this.Clock;
this.thread.run();
def Clock(this) :
while not this.kStop :
this.R_onRun();
delay(this.ms);
def pause(this) :
this.kStop=True;
def stop(this) :
this.kStop=True;
def resume(this) :
if (this.kStop) :
this.kStop=False;
this.thread.run();
def clearInterval(Timer): Timer.stop();
# EXAMPLE
def p():print(random.random());
tm=setInterval(p,20);
tm2=setInterval(lambda:print("AAAAA"),20);
delayF(tm.pause,1000);
delayF(tm.resume,2000);
delayF(lambda:clearInterval(tm),3000);
Save to file .py and run it. You will see it print both random number and string "AAAAA". The print number thread will pause printing after 1 second and resume print again for 1 second then stop, while the print string keep printing text not corrupt.
In case you use OpenCV for graphic animation with those setInterval for boost animate speed, you must have 1 main thread to apply waitKey, otherwise the window will freeze no matter how slow delay or you applied waitKey in sub thread:
def p:... # Your drawing task
setInterval(p,1); # Subthread1 running draw
setInterval(p,1); # Subthread2 running draw
setInterval(p,1); # Subthread3 running draw
while True: cv2.waitKey(10); # Main thread which waitKey have effect
You can also try out this method:
import time
while True:
time.sleep(5)
print("5 seconds has passed")
So it will print "5 seconds has passed" every 5 seconds.
The function sleep() suspends execution for the given number of seconds. The argument may be a floating point number to indicate a more precise sleep time.
Recently, I have the same issue as you. And I find these soluation:
1. you can use the library: threading.Time(this have introduction above)
2. you can use the library: sched(this have introduction above too)
3. you can use the library: Advanced Python Scheduler(Recommend)
Some answers above that uses func_wrapper and threading.Timer indeed work, except that it spawns a new thread every time an interval is called, which is causing memory problems.
The basic example below roughly implemented a similar mechanism by putting interval on a separate thread. It sleeps at the given interval. Before jumping into code, here are some of the limitations that you need to be aware of:
JavaScript is single threaded, so when the function inside setInterval is fired, nothing else will be working at the same time (excluding worker thread, but let's talk general use case of setInterval. Therefore, threading is safe. But here in this implementation, you may encounter race conditions unless using a threading.rLock.
The implementation below uses time.sleep to simulate intervals, but adding the execution time of func, the total time for this interval may be greater than what you expect. So depending on use cases, you may want to "sleep less" (minus time taken for calling func)
I only roughly tested this, and you should definitely not use global variables the way I did, feel free to tweak it so that it fits in your system.
Enough talking, here is the code:
# Python 2.7
import threading
import time
class Interval(object):
def __init__(self):
self.daemon_alive = True
self.thread = None # keep a reference to the thread so that we can "join"
def ticktock(self, interval, func):
while self.daemon_alive:
time.sleep(interval)
func()
num = 0
def print_num():
global num
num += 1
print 'num + 1 = ', num
def print_negative_num():
global num
print '-num = ', num * -1
intervals = {} # keep track of intervals
g_id_counter = 0 # roughly generate ids for intervals
def set_interval(interval, func):
global g_id_counter
interval_obj = Interval()
# Put this interval on a new thread
t = threading.Thread(target=interval_obj.ticktock, args=(interval, func))
t.setDaemon(True)
interval_obj.thread = t
t.start()
# Register this interval so that we can clear it later
# using roughly generated id
interval_id = g_id_counter
g_id_counter += 1
intervals[interval_id] = interval_obj
# return interval id like it does in JavaScript
return interval_id
def clear_interval(interval_id):
# terminate this interval's while loop
intervals[interval_id].daemon_alive = False
# kill the thread
intervals[interval_id].thread.join()
# pop out the interval from registry for reusing
intervals.pop(interval_id)
if __name__ == '__main__':
num_interval = set_interval(1, print_num)
neg_interval = set_interval(3, print_negative_num)
time.sleep(10) # Sleep 10 seconds on main thread to let interval run
clear_interval(num_interval)
clear_interval(neg_interval)
print "- Are intervals all cleared?"
time.sleep(3) # check if both intervals are stopped (not printing)
print "- Yup, time to get beers"
Expected output:
num + 1 = 1
num + 1 = 2
-num = -2
num + 1 = 3
num + 1 = 4
num + 1 = 5
-num = -5
num + 1 = 6
num + 1 = 7
num + 1 = 8
-num = -8
num + 1 = 9
num + 1 = 10
-num = -10
Are intervals all cleared?
Yup, time to get beers
My Python 3 module jsinterval.py will be helpful! Here it is:
"""
Threaded intervals and timeouts from JavaScript
"""
import threading, sys
__all__ = ['TIMEOUTS', 'INTERVALS', 'setInterval', 'clearInterval', 'setTimeout', 'clearTimeout']
TIMEOUTS = {}
INTERVALS = {}
last_timeout_id = 0
last_interval_id = 0
class Timeout:
"""Class for all timeouts."""
def __init__(self, func, timeout):
global last_timeout_id
last_timeout_id += 1
self.timeout_id = last_timeout_id
TIMEOUTS[str(self.timeout_id)] = self
self.func = func
self.timeout = timeout
self.threadname = 'Timeout #%s' %self.timeout_id
def run(self):
func = self.func
delx = self.__del__
def func_wrapper():
func()
delx()
self.t = threading.Timer(self.timeout/1000, func_wrapper)
self.t.name = self.threadname
self.t.start()
def __repr__(self):
return '<JS Timeout set for %s seconds, launching function %s on timeout reached>' %(self.timeout, repr(self.func))
def __del__(self):
self.t.cancel()
class Interval:
"""Class for all intervals."""
def __init__(self, func, interval):
global last_interval_id
self.interval_id = last_interval_id
INTERVALS[str(self.interval_id)] = self
last_interval_id += 1
self.func = func
self.interval = interval
self.threadname = 'Interval #%s' %self.interval_id
def run(self):
func = self.func
interval = self.interval
def func_wrapper():
timeout = Timeout(func_wrapper, interval)
self.timeout = timeout
timeout.run()
func()
self.t = threading.Timer(self.interval/1000, func_wrapper)
self.t.name = self.threadname
self.t.run()
def __repr__(self):
return '<JS Interval, repeating function %s with interval %s>' %(repr(self.func), self.interval)
def __del__(self):
self.timeout.__del__()
def setInterval(func, interval):
"""
Create a JS Interval: func is the function to repeat, interval is the interval (in ms)
of executing the function.
"""
temp = Interval(func, interval)
temp.run()
idx = int(temp.interval_id)
del temp
return idx
def clearInterval(interval_id):
try:
INTERVALS[str(interval_id)].__del__()
del INTERVALS[str(interval_id)]
except KeyError:
sys.stderr.write('No such interval "Interval #%s"\n' %interval_id)
def setTimeout(func, timeout):
"""
Create a JS Timeout: func is the function to timeout, timeout is the timeout (in ms)
of executing the function.
"""
temp = Timeout(func, timeout)
temp.run()
idx = int(temp.timeout_id)
del temp
return idx
def clearTimeout(timeout_id):
try:
TIMEOUTS[str(timeout_id)].__del__()
del TIMEOUTS[str(timeout_id)]
except KeyError:
sys.stderr.write('No such timeout "Timeout #%s"\n' %timeout_id)
CODE EDIT:
Fixed the memory leak (spotted by #benjaminz). Now ALL threads are cleaned up upon end. Why does this leak happen? It happens because of the implicit (or even explicit) references. In my case, TIMEOUTS and INTERVALS. Timeouts self-clean automatically (after this patch) because they use function wrapper which calls the function and then self-kills. But how does this happen? Objects can't be deleted from memory unless all references are deleted too or gc module is used. Explaining: there's no way to create (in my code) unwanted references to timeouts/intervals. They have only ONE referrer: the TIMEOUTS/INTERVALS dicts. And, when interrupted or finished (only timeouts can finish uninterrupted) they delete the only existing reference to themselves: their corresponding dict element. Classes are perfectly encapsulated using __all__, so no space for memory leaks.
Here is a low time drift solution that uses a thread to periodically signal an Event object. The thread's run() does almost nothing while waiting for a timeout; hence the low time drift.
# Example of low drift (time) periodic execution of a function.
import threading
import time
# Thread that sets 'flag' after 'timeout'
class timerThread (threading.Thread):
def __init__(self , timeout , flag):
threading.Thread.__init__(self)
self.timeout = timeout
self.stopFlag = False
self.event = threading.Event()
self.flag = flag
# Low drift run(); there is only the 'if'
# and 'set' methods between waits.
def run(self):
while not self.event.wait(self.timeout):
if self.stopFlag:
break
self.flag.set()
def stop(self):
stopFlag = True
self.event.set()
# Data.
printCnt = 0
# Flag to print.
printFlag = threading.Event()
# Create and start the timer thread.
printThread = timerThread(3 , printFlag)
printThread.start()
# Loop to wait for flag and print time.
while True:
global printCnt
# Wait for flag.
printFlag.wait()
# Flag must be manually cleared.
printFlag.clear()
print(time.time())
printCnt += 1
if printCnt == 3:
break;
# Stop the thread and exit.
printThread.stop()
printThread.join()
print('Done')
fall asleep until the next interval of seconds length starts: (not concurrent)
def sleep_until_next_interval(self, seconds):
now = time.time()
fall_asleep = seconds - now % seconds
time.sleep(fall_asleep)
while True:
sleep_until_next_interval(10) # 10 seconds - worktime
# work here
simple and no drift.
I have written my code to make a very very flexible setInterval in python. Here you are:
import threading
class AlreadyRunning(Exception):
pass
class IntervalNotValid(Exception):
pass
class setInterval():
def __init__(this, func=None, sec=None, args=[]):
this.running = False
this.func = func # the function to be run
this.sec = sec # interval in second
this.Return = None # The returned data
this.args = args
this.runOnce = None # asociated with run_once() method
this.runOnceArgs = None # asociated with run_once() method
if (func is not None and sec is not None):
this.running = True
if (not callable(func)):
raise TypeError("non-callable object is given")
if (not isinstance(sec, int) and not isinstance(sec, float)):
raise TypeError("A non-numeric object is given")
this.TIMER = threading.Timer(this.sec, this.loop)
this.TIMER.start()
def start(this):
if (not this.running):
if (not this.isValid()):
raise IntervalNotValid("The function and/or the " +
"interval hasn't provided or invalid.")
this.running = True
this.TIMER = threading.Timer(this.sec, this.loop)
this.TIMER.start()
else:
raise AlreadyRunning("Tried to run an already run interval")
def stop(this):
this.running = False
def isValid(this):
if (not callable(this.func)):
return False
cond1 = not isinstance(this.sec, int)
cond2 = not isinstance(this.sec, float)
if (cond1 and cond2):
return False
return True
def loop(this):
if (this.running):
this.TIMER = threading.Timer(this.sec, this.loop)
this.TIMER.start()
function_, Args_ = this.func, this.args
if (this.runOnce is not None): # someone has provide the run_once
runOnce, this.runOnce = this.runOnce, None
result = runOnce(*(this.runOnceArgs))
this.runOnceArgs = None
# if and only if the result is False. not accept "None"
# nor zero.
if (result is False):
return # cancel the interval right now
this.Return = function_(*Args_)
def change_interval(this, sec):
cond1 = not isinstance(sec, int)
cond2 = not isinstance(sec, float)
if (cond1 and cond2):
raise TypeError("A non-numeric object is given")
# prevent error when providing interval to a blueprint
if (this.running):
this.TIMER.cancel()
this.sec = sec
# prevent error when providing interval to a blueprint
# if the function hasn't provided yet
if (this.running):
this.TIMER = threading.Timer(this.sec, this.loop)
this.TIMER.start()
def change_next_interval(this, sec):
if (not isinstance(sec, int) and not isinstance(sec, float)):
raise TypeError("A non-numeric object is given")
this.sec = sec
def change_func(this, func, args=[]):
if (not callable(func)):
raise TypeError("non-callable object is given")
this.func = func
this.args = args
def run_once(this, func, args=[]):
this.runOnce = func
this.runOnceArgs = args
def get_return(this):
return this.Return
You can get many features and flexibility. Running this code won't freeze your code, you can change the interval at run time, you can change the function at run time, you can pass arguments, you can get the returned object from your function, and many more. You can make your tricks too!
here's a very simple and basic example to use it:
import time
def interval(name="world"):
print(f"Hello {name}!")
# function named interval will be called every two seconds
# output: "Hello world!"
interval1 = setInterval(interval, 2)
# function named interval will be called every 1.5 seconds
# output: "Hello Jane!"
interval2 = setInterval(interval, 1.5, ["Jane"])
time.sleep(5) #stop all intervals after 5 seconds
interval1.stop()
interval2.stop()
Check out my Github project to see more examples and follow next updates :D
https://github.com/Hzzkygcs/setInterval-python
Here's something easy peazy:
import time
delay = 10 # Seconds
def setInterval():
print('I print in intervals!')
time.sleep(delay)
setInterval()
Things work differently in Python: you need to either sleep() (if you want to block the current thread) or start a new thread. See http://docs.python.org/library/threading.html
From Python Documentation:
from threading import Timer
def hello():
print "hello, world"
t = Timer(30.0, hello)
t.start() # after 30 seconds, "hello, world" will be printed

Categories