Generate "random" matrix of certain rank over a fixed set of elements - python

I'd like to generate matrices of size mxn and rank r, with elements coming from a specified finite set, e.g. {0,1} or {1,2,3,4,5}. I want them to be "random" in some very loose sense of that word, i.e. I want to get a variety of possible outputs from the algorithm with distribution vaguely similar to the distribution of all matrices over that set of elements with the specified rank.
In fact, I don't actually care that it has rank r, just that it's close to a matrix of rank r (measured by the Frobenius norm).
When the set at hand is the reals, I've been doing the following, which is perfectly adequate for my needs: generate matrices U of size mxr and V of nxr, with elements independently sampled from e.g. Normal(0, 2). Then U V' is an mxn matrix of rank r (well, <= r, but I think it's r with high probability).
If I just do that and then round to binary / 1-5, though, the rank increases.
It's also possible to get a lower-rank approximation to a matrix by doing an SVD and taking the first r singular values. Those values, though, won't lie in the desired set, and rounding them will again increase the rank.
This question is related, but accepted answer isn't "random," and the other answer suggests SVD, which doesn't work here as noted.
One possibility I've thought of is to make r linearly independent row or column vectors from the set and then get the rest of the matrix by linear combinations of those. I'm not really clear, though, either on how to get "random" linearly independent vectors, or how to combine them in a quasirandom way after that.
(Not that it's super-relevant, but I'm doing this in numpy.)
Update: I've tried the approach suggested by EMS in the comments, with this simple implementation:
real = np.dot(np.random.normal(0, 1, (10, 3)), np.random.normal(0, 1, (3, 10)))
bin = (real > .5).astype(int)
rank = np.linalg.matrix_rank(bin)
niter = 0
while rank > des_rank:
cand_changes = np.zeros((21, 5))
for n in range(20):
i, j = random.randrange(5), random.randrange(5)
v = 1 - bin[i,j]
x = bin.copy()
x[i, j] = v
x_rank = np.linalg.matrix_rank(x)
cand_changes[n,:] = (i, j, v, x_rank, max((rank + 1e-4) - x_rank, 0))
cand_changes[-1,:] = (0, 0, bin[0,0], rank, 1e-4)
cdf = np.cumsum(cand_changes[:,-1])
cdf /= cdf[-1]
i, j, v, rank, score = cand_changes[np.searchsorted(cdf, random.random()), :]
bin[i, j] = v
niter += 1
if niter % 1000 == 0:
print(niter, rank)
It works quickly for small matrices but falls apart for e.g. 10x10 -- it seems to get stuck at rank 6 or 7, at least for hundreds of thousands of iterations.
It seems like this might work better with a better (ie less-flat) objective function, but I don't know what that would be.
I've also tried a simple rejection method for building up the matrix:
def fill_matrix(m, n, r, vals):
assert m >= r and n >= r
trans = False
if m > n: # more columns than rows I think is better
m, n = n, m
trans = True
get_vec = lambda: np.array([random.choice(vals) for i in range(n)])
vecs = []
n_rejects = 0
# fill in r linearly independent rows
while len(vecs) < r:
v = get_vec()
if np.linalg.matrix_rank(np.vstack(vecs + [v])) > len(vecs):
vecs.append(v)
else:
n_rejects += 1
print("have {} independent ({} rejects)".format(r, n_rejects))
# fill in the rest of the dependent rows
while len(vecs) < m:
v = get_vec()
if np.linalg.matrix_rank(np.vstack(vecs + [v])) > len(vecs):
n_rejects += 1
if n_rejects % 1000 == 0:
print(n_rejects)
else:
vecs.append(v)
print("done ({} total rejects)".format(n_rejects))
m = np.vstack(vecs)
return m.T if trans else m
This works okay for e.g. 10x10 binary matrices with any rank, but not for 0-4 matrices or much larger binaries with lower rank. (For example, getting a 20x20 binary matrix of rank 15 took me 42,000 rejections; with 20x20 of rank 10, it took 1.2 million.)
This is clearly because the space spanned by the first r rows is too small a portion of the space I'm sampling from, e.g. {0,1}^10, in these cases.
We want the intersection of the span of the first r rows with the set of valid values.
So we could try sampling from the span and looking for valid values, but since the span involves real-valued coefficients that's never going to find us valid vectors (even if we normalize so that e.g. the first component is in the valid set).
Maybe this can be formulated as an integer programming problem, or something?

My friend, Daniel Johnson who commented above, came up with an idea but I see he never posted it. It's not very fleshed-out, but you might be able to adapt it.
If A is m-by-r and B is r-by-n and both have rank r then AB has rank r. Now, we just have to pick A and B such that AB has values only in the given set. The simplest case is S = {0,1,2,...,j}.
One choice would be to make A binary with appropriate row/col sums
that guaranteed the correct rank and B with column sums adding to no
more than j (so that each term in the product is in S) and row sums
picked to cause rank r (or at least encourage it as rejection can be
used).
I just think that we can come up with two independent sampling
schemes on A and B that are less complicated and quicker than trying
to attack the whole matrix at once. Unfortunately, all my matrix
sampling code is on the other computer. I know it generalized easily
to allowing entries in a bigger set than {0,1} (i.e. S), but I can't
remember how the computation scaled with m*n.

I am not sure how useful this solution will be, but you can construct a matrix that will allow you to search for the solution on another matrix with only 0 and 1 as entries. If you search randomly on the binary matrix, it is equivalent to randomly modifying the elements of the final matrix, but it is possible to come up with some rules to do better than a random search.
If you want to generate an m-by-n matrix over the element set E with elements ei, 0<=i<k, you start off with the m-by-k*m matrix, A:
Clearly, this matrix has rank m. Now, you can construct another matrix, B, that has 1s at certain locations to pick the elements from the set E. The structure of this matrix is:
Each Bi is a k-by-n matrix. So, the size of AB is m-by-n and rank(AB) is min(m, rank(B)). If we want the output matrix to have only elements from our set, E, then each column of Bi has to have exactly one element set to 1, and the rest set to 0.
If you want to search for a certain rank on B randomly, you need to start off with a valid B with max rank, and rotate a random column j of a random Bi by a random amount. This is equivalent to changing column i row j of A*B to a random element from our set, so it is not a very useful method.
However, you can do certain tricks with the matrices. For example, if k is 2, and there are no overlaps on first rows of B0 and B1, you can generate a linearly dependent row by adding the first rows of these two sub-matrices. The second row will also be linearly dependent on rows of these two matrices. I am not sure if this will easily generalize to k larger than 2, but I am sure there will be other tricks you can employ.
For example, one simple method to generate at most rank k (when m is k+1) is to get a random valid B0, keep rotating all rows of this matrix up to get B1 to Bm-2, set first row of Bm-1 to all 1, and the remaining rows to all 0. The rank cannot be less than k (assuming n > k), because B_0 columns have exactly 1 nonzero element. The remaining rows of the matrices are all linear combinations (in fact exact copies for almost all submatrices) of these rows. The first row of the last submatrix is the sum of all rows of the first submatrix, and the remaining rows of it are all zeros. For larger values of m, you can use permutations of rows of B0 instead of simple rotation.
Once you generate one matrix that satisfies the rank constraint, you may get away with randomly shuffling the rows and columns of it to generate others.

How about like this?
rank = 30
n1 = 100; n2 = 100
from sklearn.decomposition import NMF
model = NMF(n_components=rank, init='random', random_state=0)
U = model.fit_transform(np.random.randint(1, 5, size=(n1, n2)))
V = model.components_
M = np.around(U) # np.around(V)

Related

Heuristic to choose five column arrays that maximise the dot product

I have a sparse 60000x10000 matrix M where each element is either a 1 or 0. Each column in the matrix is a different combination of signals (ie. 1s and 0s). I want to choose five column vectors from M and take the Hadamard (ie. element-wise) product of them; I call the resulting vector the strategy vector. After this step, I compute the dot product of this strategy vector with a target vector (that does not change). The target vector is filled with 1s and -1s such that having a 1 in a specific row of the strategy vector is either rewarded or penalised.
Is there some heuristic or linear algebra method that I could use to help me pick the five vectors from the matrix M that result in a high dot product? I don't have any experience with Google's OR tools nor Scipy's optimization methods so I am not too sure if they can be applied to my problem. Advice on this would be much appreciated! :)
Note: the five column vectors given as the solution does not need to be the optimal one; I'd rather have something that does not take months/years to run.
First of all, thanks for a good question. I don't get to practice numpy that often. Also, I don't have much experience in posting to SE, so any feedback, code critique, and opinions relating to the answer are welcome.
This was an attempt at finding an optimal solution at first, but I didn't manage to deal with the complexity. The algorithm should, however, give you a greedy solution that might prove to be adequate.
Colab Notebook (Python code + Octave validation)
Core Idea
Note: During runtime, I've transposed the matrix. So, the column vectors in the question correspond to row vectors in the algorithm.
Notice that you can multiply the target with one vector at a time, effectively getting a new target, but with some 0s in it. These will never change, so you can filter out some computations by removing those rows (columns, in the algorithm) in further computations entirely - both from the target and the matrix. - you're then left with a valid target again (only 1s and -1 in it).
That's the basic idea of the algorithm. Given:
n: number of vectors you need to pick
b: number of best vectors to check
m: complexity of matrix operations to check one vector
Do an exponentially-complex O((n*m)^b) depth-first search, but decrease the complexity of the calculations in deeper layers by reducing target/matrix size, while cutting down a few search paths with some heuristics.
Heuristics used
The best score achieved so far is known in every recursion step. Compute an optimistic vector (turn -1 to 0) and check what scores can still be achieved. Do not search in levels where the score cannot be surpassed.
This is useless if the best vectors in the matrix have 1s and 0s equally distributed. The optimistic scores are just too high. However, it gets better with more sparsity.
Ignore duplicates. Basically, do not check duplicate vectors in the same layer. Because we reduce the matrix size, the chance for ending up with duplicates increases in deeper recursion levels.
Further Thoughts on Heuristics
The most valuable ones are those that eliminate the vector choices at the start. There's probably a way to find vectors that are worse-or-equal than others, with respect to their affects on the target. Say, if v1 only differs from v2 by an extra 1, and target has a -1 in that row, then v1 is worse-or-equal than v2.
The problem is that we need to find more than 1 vector, and can't readily discard the rest. If we have 10 vectors, each worse-or-equal than the one before, we still have to keep 5 at the start (in case they're still the best option), then 4 in the next recursion level, 3 in the following, etc.
Maybe it's possible to produce a tree and pass it on in into recursion? Still, that doesn't help trim down the search space at the start... Maybe it would help to only consider 1 or 2 of the vectors in the worse-or-equal chain? That would explore more diverse solutions, but doesn't guarantee that it's more optimal.
Warning: Note that the MATRIX and TARGET in the example are in int8. If you use these for the dot product, it will overflow. Though I think all operations in the algorithm are creating new variables, so are not affected.
Code
# Given:
TARGET = np.random.choice([1, -1], size=60000).astype(np.int8)
MATRIX = np.random.randint(0, 2, size=(10000,60000), dtype=np.int8)
# Tunable - increase to search more vectors, at the cost of time.
# Performs better if the best vectors in the matrix are sparse
MAX_BRANCHES = 3 # can give more for sparser matrices
# Usage
score, picked_vectors_idx = pick_vectors(TARGET, MATRIX, 5)
# Function
def pick_vectors(init_target, init_matrix, vectors_left_to_pick: int, best_prev_result=float("-inf")):
assert vectors_left_to_pick >= 1
if init_target.shape == (0, ) or len(init_matrix.shape) <= 1 or init_matrix.shape[0] == 0 or init_matrix.shape[1] == 0:
return float("inf"), None
target = init_target.copy()
matrix = init_matrix.copy()
neg_matrix = np.multiply(target, matrix)
neg_matrix_sum = neg_matrix.sum(axis=1)
if vectors_left_to_pick == 1:
picked_id = np.argmax(neg_matrix_sum)
score = neg_matrix[picked_id].sum()
return score, [picked_id]
else:
sort_order = np.argsort(neg_matrix_sum)[::-1]
sorted_sums = neg_matrix_sum[sort_order]
sorted_neg_matrix = neg_matrix[sort_order]
sorted_matrix = matrix[sort_order]
best_score = best_prev_result
best_picked_vector_idx = None
# Heuristic 1 (H1) - optimistic target.
# Set a maximum score that can still be achieved
optimistic_target = target.copy()
optimistic_target[target == -1] = 0
if optimistic_target.sum() <= best_score:
# This check can be removed - the scores are too high at this point
return float("-inf"), None
# Heuristic 2 (H2) - ignore duplicates
vecs_tried = set()
# MAIN GOAL: for picked_id, picked_vector in enumerate(sorted_matrix):
for picked_id, picked_vector in enumerate(sorted_matrix[:MAX_BRANCHES]):
# H2
picked_tuple = tuple(picked_vector)
if picked_tuple in vecs_tried:
continue
else:
vecs_tried.add(picked_tuple)
# Discard picked vector
new_matrix = np.delete(sorted_matrix, picked_id, axis=0)
# Discard matrix and target rows where vector is 0
ones = np.argwhere(picked_vector == 1).squeeze()
new_matrix = new_matrix[:, ones]
new_target = target[ones]
if len(new_matrix.shape) <= 1 or new_matrix.shape[0] == 0:
return float("-inf"), None
# H1: Do not compute if best score cannot be improved
new_optimistic_target = optimistic_target[ones]
optimistic_matrix = np.multiply(new_matrix, new_optimistic_target)
optimistic_sums = optimistic_matrix.sum(axis=1)
optimistic_viable_vector_idx = optimistic_sums > best_score
if optimistic_sums.max() <= best_score:
continue
new_matrix = new_matrix[optimistic_viable_vector_idx]
score, next_picked_vector_idx = pick_vectors(new_target, new_matrix, vectors_left_to_pick - 1, best_prev_result=best_score)
if score <= best_score:
continue
# Convert idx of trimmed-down matrix into sorted matrix IDs
for i, returned_id in enumerate(next_picked_vector_idx):
# H1: Loop until you hit the required number of 'True'
values_passed = 0
j = 0
while True:
value_picked: bool = optimistic_viable_vector_idx[j]
if value_picked:
values_passed += 1
if values_passed-1 == returned_id:
next_picked_vector_idx[i] = j
break
j += 1
# picked_vector index
if returned_id >= picked_id:
next_picked_vector_idx[i] += 1
best_score = score
# Convert from sorted matrix to input matrix IDs before returning
matrix_id = sort_order[picked_id]
next_picked_vector_idx = [sort_order[x] for x in next_picked_vector_idx]
best_picked_vector_idx = [matrix_id] + next_picked_vector_idx
return best_score, best_picked_vector_idx
Maybe it's too naive, but the first thing that occurs to me is to choose the 5 columns with the shortest distance to the target:
import scipy
import numpy as np
from sklearn.metrics.pairwise import pairwise_distances
def sparse_prod_axis0(A):
"""Sparse equivalent of np.prod(arr, axis=0)
From https://stackoverflow.com/a/44321026/3381305
"""
valid_mask = A.getnnz(axis=0) == A.shape[0]
out = np.zeros(A.shape[1], dtype=A.dtype)
out[valid_mask] = np.prod(A[:, valid_mask].A, axis=0)
return np.matrix(out)
def get_strategy(M, target, n=5):
"""Guess n best vectors.
"""
dists = np.squeeze(pairwise_distances(X=M, Y=target))
idx = np.argsort(dists)[:n]
return sparse_prod_axis0(M[idx])
# Example data.
M = scipy.sparse.rand(m=6000, n=1000, density=0.5, format='csr').astype('bool')
target = np.atleast_2d(np.random.choice([-1, 1], size=1000))
# Try it.
strategy = get_strategy(M, target, n=5)
result = strategy # target.T
It strikes me that you could add another step of taking the top few percent from the M–target distances and check their mutual distances — but this could be quite expensive.
I have not checked how this compares to an exhaustive search.

K Means in Python from Scratch

I have a python code for a k-means algorithm.
I am having a hard time understanding what it does.
Lines like C = X[numpy.random.choice(X.shape[0], k, replace=False), :] are very confusing to me.
Could someone explain what this code is actually doing?
Thank you
def k_means(data, k, num_of_features):
# Make a matrix out of the data
X = data.as_matrix()
# Get k random points from the data
C = X[numpy.random.choice(X.shape[0], k, replace=False), :]
# Remove the last col
C = [C[j][:-1] for j in range(len(C))]
# Turn it into a numpy array
C = numpy.asarray(C)
# To store the value of centroids when it updates
C_old = numpy.zeros(C.shape)
# Make an array that will assign clusters to each point
clusters = numpy.zeros(len(X))
# Error func. - Distance between new centroids and old centroids
error = dist(C, C_old, None)
# Loop will run till the error becomes zero of 5 tries
tries = 0
while error != 0 and tries < 1:
# Assigning each value to its closest cluster
for i in range(len(X)):
# Get closest cluster in terms of distance
clusters[i] = dist1(X[i][:-1], C)
# Storing the old centroid values
C_old = deepcopy(C)
# Finding the new centroids by taking the average value
for i in range(k):
# Get all of the points that match the cluster you are on
points = [X[j][:-1] for j in range(len(X)) if clusters[j] == i]
# If there were no points assigned to cluster, put at origin
if not points:
C[i][:] = numpy.zeros(C[i].shape)
else:
# Get the average of all the points and put that centroid there
C[i] = numpy.mean(points, axis=0)
# Erro is the distance between where the centroids use to be and where they are now
error = dist(C, C_old, None)
# Increase tries
tries += 1
return sil_coefficient(X,clusters,k)
(Expanded answer, will format later)
X is the data, as a matrix.
Using the [] notation, we are taking slices, or selecting single element, from the matrix. You may want to review numpy array indexing. https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
numpy.random.choice selects k elements at random from the size of the first dimension of the data matrix without replacement.
Notice, that in indexing, using the [] syntax, we see we have two entries. The numpy.random.choice, and ":".
":" indicates that we are taking everything along that axis.
Thus, X[numpy.random.choice(X.shape[0], k, replace=False), :] means we select an element along the first axis and take every element along the second which shares that first index. Effectively, we are selecting a random row of a matrix.
(The comments expalain this code quite well, I would suggest you read into numpy indexing an list comprehensions for further elucidation).
C[C[j][:-1] for j in range(len(c))]
The part after "C[" uses a list comprehension in order to select parts of the matrix C.
C[j] represents the rows of the matrix C.
We use the [:-1] to take up to, but not including the final element of the row. We do this for each row in the matrix C. This removes the last column of the matrix.
C = numpy.asarray(C). This converts the matrix to a numpy array so we can do special numpy things with it.
C_old = numpy.zeros(C.shape). This creates a zero matrix, to later be populated, which is the same size as C. We are initializing this array to be populated later.
clusters = numpy.zeros(len(x)). This creates a zero vector whose dimension is the same as the number of rows in the matrix X. This vector will be populated later. We are initializing this array to be populated later.
error = dist(C, C_old, None). Take the distance between the two matrices. I believe this function to be defined elsewhere in your script.
tries = 0. Set the tires counter to 0.
while...do this block while this condition is true.
for i in [0...(number of rows in X - 1)]:
clusters[i] = dist1(X[i][:-1], C); Put which cluster the ith row of X is closest to in the ith position of clusters.
C_old = deepcopy(C) - Create a copy of C which is new. Don't just move pointers.
for each (0..number of means - 1):
points = [X[j][:-1] for j in range(len(X)) if clusters[j] == i]. This is a list comprehension. Create a list of the rows of X, with all but the last entry, but only include the row if it belongs to the jth cluster.
if not points. If nothing belongs to a cluster.
C[i][:] = numpy.zeros(C[i].shape). Create a vector of zeros, to be populated later, and use this vector as the ith row of the clusters matrix, C.
else:
C[i] = np.mean(points, axis=0). Assign the ith row of the clusters matrix, C, to be the average point in the cluster. We sum across the rows (axis=0). This is us updating our clusters.

0-1 Knapsack: Find Solution Set in Space-Optimised Implementation

I want to solve a 0-1 Knapsack problem with a maximum weight of ~ 200k and over 100k elements and eventual determination of the item set rather than only the optimal weight.
Researching 0-1 Knapsack, I read that a common way to solve this problem is via dynamic programming and creating a table containing optimal solutions for subproblems, thus splitting up the original problem into smaller parts and later backtracing on the table to determine the item set. The maximum profit, without regard for the items taken, can be calculated in a memory efficient manner (as outlined here).
The obvious issue here is that for the dimensions I have in mind, this approach would consume more memory than is feasible (requiring O(n*W) space, with n being the number of elements and W being the maximum capacity). Researching further I found mention (here for example, also see "Knapsack Problems" by Kellerer, Pferschy and Pisinger) of a memory efficient way to solve 0-1 Knapsack.
We start by splitting up the item set up into two subsets, roughly equal in size. We treat both subsets as their own knapsack problem given the original maximum weight W and determine the last row of the maximum profit calculation for both subsets in the memory-efficient way (detailed above).
The next step is to find out where to optimally split the two subsets. To do this, we determine the maximum profit for weight w1 and w2 of the two rows. As I understand, it is critical to maintain w1 + w2 = W, so I iterate through the first row and take the index on the opposite end of the current index. My current implementation for this step looks like this:
def split(weights, values, n, w, i):
# s1 is the bigger subset size if n is not even
s1 = n // 2 + (n&1)
s2 = n // 2
row1 = maximum_profit(weights, values, s1, w)
row2 = maximum_profit(weights[s1:], values[s1:], s2, w)
max_profits_for_capacity = [x + y for x, y in zip(row1, row2[::-1])]
max_profits = max(max_profits_for_capacity)
optimal_weight_index = max_profits_for_capacity.index(max_value)
c1 = row1[optimal_weight_index]
c2 = row2[w-optimal_weight_index-1]
c1 and c2 are the maximum profits for each of the subsets then while maintaining c1 + c2 = W. With these values we recurse into each of the subsets:
split(weights[:s1], values[:s1], s1, c1, i)
split(weights[s1:], values[s1:], s2, c2, i+s1)
This is where the descriptions lose me. Eventually this code will recurse to n == 1 with a value of w. How do I determine if an element is included given an item index i and a maximum (local) capacity w?
I can provide a small example data set to illustrate the workings of my code in detail and where it goes wrong. Thank you very much.
First, I guess you have a mistake saying about c, w and their relation as capacity, but getting c1 and c2 from profit lists.
To the question, by the returning value of your split function you can define what type of question you are answering.
As you take the split direct to n == 1 point and you want to get the indices of the picked items into knapsack, you can simply at this step return the value consisting of [0] or [1] as the output:
if n == 1:
if weights[0] < w:
return [1]
return [0]
[1] means picking the item into resulting set
[0] otherwise
then concatenate them into one during other steps of recurse of your split function like:
def split(..):
..
# since it is lists concatenation
return split(weights[:s1], values[:s1], s1, c1, i) + split(weights[s1:], values[s1:], s2, c2, i+s1)
In result you will get list of size n (for the number of items you make splits) with zeroes and ones.
Total complexity would be:
O(nWlogn) for time, since we make splits till the n == 1 step
O(W) for memory, since we store always only a part of the resulting list when recurse

Generating n binary vectors where each vector has a Hamming distance of d from every other vector

I'm trying to generate n binary vectors of some arbitrary length l, where each vector i has a Hamming distance of d (where d is even) from every other vector j. I'm not sure if there are any theoretical relationships between n, l, and d, but I'm wondering if there are any implementations for this task. My current implementation is shown below. Sometimes I am successful, other times the code hangs, which indicates either a) it's not possible to find n such vectors given l and d, or b) the search takes a long time especially for large values of l.
My questions are:
Are there any efficient implementations of this task?
What kind of theoretical relationships exist between n, l, and d?
import numpy as np
def get_bin(n):
return ''.join([str(np.random.randint(0, 2)) for _ in range(n)])
def hamming(s1, s2):
return sum(c1 != c2 for c1, c2 in zip(s1, s2))
def generate_codebook(n, num_codes, d):
codebooks = []
seen = []
while len(codebooks) < num_codes:
code = get_bin(n)
if code in seen:
continue
else:
if len(codebooks) == 0:
codebooks.append(code)
print len(codebooks), code
else:
if all(map(lambda x: int(hamming(code, x)) == d, codebooks)):
codebooks.append(code)
print len(codebooks), code
seen.append(code)
codebook_vectorized = map(lambda x: map(lambda b: int(b), x), codebooks)
return np.array(codebook_vectorized)
Example:
codebook = generate_codebook(4,3,2)
codebook
1 1111
2 1001
3 0101
Let's build a graph G where every L-bit binary vector v is a vertex. And there is an edge (vi, vj) only when a Hamming distance between vi and vj is equal to d. Now we need to find a clique of size n is this graph.
Clique is a subset of vertices of an undirected graph such that every
two distinct vertices in the clique are adjacent.
The task of finding a clique of given size in an arbitrary graph is NP-complete. You can read about this problem and some algorithms in this wikipedia article.
There are many special cases of this problem. For example, for perfect graphs there is a polynomial algorithm. Don't know if it is possible to show that our graph is one of these special cases.
Not a real solution, but more of a partial discussion about the relationship between l, d and n and the process of generating vectors. In any case, you may consider posting the question (or a similar one, in more formal terms) to Mathematics Stack Exchange. I have been reasoning as I was writing, but I hope I didn't make a mistake.
Let's say we have l = 6. Since the Hamming distance depends only on position-wise differences, you can decide to start by putting one first arbitrary vector in your set (if there are solutions, some may not include it, but at least one should). So let's begin with an initial v1 = 000000. Now, if d = 1 then obviously n can only be 1 or 2 (with 111111). If d = 1, you will find that n can also only be 1 or 2; for example, you could add 000001, but any other possible vector will have a distance of 2 or more with at least one the vectors you have.
Let's say d = 4. You need to change 4 positions and keep the other 2, so you have 4-combinations from a 6-element set, which is 15 choices, 001111, 010111, etc. - you can see now that the binomial coefficient C(n, d) plus 1 is an upper bound for n. Let's pick v2 = 001111, and say that the kept positions are T = [1, 2] and the changed ones are S = [3, 4, 5, 6]. Now to go on, we could consider making changes to v2; however, in order to keep the right distances we must follow these rules:
We must make 4 changes to v2.
If we change a position in a position in S, we must make another change in a position in T (and viceversa). Otherwise, the distance to v1 would not be kept.
Logically, if d were odd you would be done now (only sets of two elements could be formed), but fortunately you already said that your distance numbers are even. So we divide our number by two, which is 2, and need to pick 2 elements from S, C(4, 2) = 6, and 2 elements from T, C(2, 2) = 1, giving us 6 * 1 = 6 options - you should note now that C(d, d/2) * C(l - d, d/2) + 2 is a new, lower upper bound for n, if d is even. Let's pick v3 = 111100. v3 has now four kinds of positions: positions that have changed with respect to both v1 and v2, P1 = [1, 2], positions that have not changed with respect to either v1 or v2, P2 = [] (none in this case), positions that have changed with respect to v1 but not with respect to v2, P3 = [3, 4], and positions that have changed with respect to v2 but not with respect to v1, P4 = [5, 6]. Same deal, we need 4 changes, but now each change we make to a P1 position must imply a change in a P2 position, and each change we make to a P3 position must imply a change in a P4 position. The only remaining option is v4 = 110011, and that would be it, the maximum n would be 4.
So, thinking about the problem from a combinatoric point of view, after each change you will have an exponentially increasing number of "types of positions" (2 after the first change, 4 after the second, 8, 16...) defined in terms of whether they are equal or not in each of the previously added vectors, and these can be arranged in couples through a "symmetry" or "complement" relationship. On each step, you can (I think, and this is the part of this reasoning that I am less sure about) greedily choose a set of changes from these couples and compute the sizes of the "types of positions" for the next step. If this is all correct, you should be able to write an algorithm based on this to generate and/or count the possible sets of vectors for some particular l and d and n if given.

How to generate a matrix with random entries and with constraints on row and columns?

How to generate a matrix that its entries are random real numbers between zero and one inclusive with the additional constraint : The sum of each row must be less than or equal to one and the sum of each column must be less than or equal to one.
Examples:
matrix = [0.3, 0.4, 0.2;
0.7, 0.0, 0.3;
0.0, 0.5, 0.1]
If you want a matrix that is uniformly distributed and fulfills those constraints, you probably need a rejection method. In Matlab it would be:
n = 3;
done = false;
while ~done
matrix = rand(n);
done = all(sum(matrix,1)<=1) & all(sum(matrix,2)<=1);
end
Note that this will be slow for large n.
If you're looking for a Python way, this is simply a transcription of Luis Mendo's rejection method. For simplicity, I'll be using NumPy:
import numpy as np
n = 3
done = False
while not done:
matrix = np.random.rand(n,n)
done = np.all(np.logical_and(matrix.sum(axis=0) <= 1, matrix.sum(axis=1) <= 1))
If you don't have NumPy, then you can generate your 2D matrix as a list of lists instead:
import random
n = 3
done = False
while not done:
# Create matrix as a list of lists
matrix = [[random.random() for _ in range(n)] for _ in range(n)]
# Compute the row sums and check for each to be <= 1
row_sums = [sum(matrix[i]) <= 1 for i in range(n)]
# Compute the column sums and check for each to be <= 1
col_sums = [sum([matrix[j][i] for j in range(n)]) <= 1 for i in range(n)]
# Only quit of all row and column sums are less than 1
done = all(row_sums) and all(col_sums)
The rejection method will surely give you a uniform solution, but it might take a long time to generate a good matrix, especially if your matrix is large. So another, but more tedious approach is to generate each element such that the sum can only be 1 in each direction. For this you always generate a new element between 0 and the remainder until 1:
n = 3
matrix = zeros(n+1); %dummy line in first row/column
for k1=2:n+1
for k2=2:n+1
matrix(k1,k2)=rand()*(1-max(sum(matrix(k1,1:k2-1)),sum(matrix(1:k1-1,k2))));
end
end
matrix = matrix(2:end,2:end)
It's a bit tricky because for each element you check the row-sum and column-sum until that point, and use the larger of the two for generating a new element (in order to stay below a sum of 1 in both directions). For practical reasons I padded the matrix with a zero line and column at the beginning to avoid indexing problems with k1-1 and k2-1.
Note that as #LuisMendo pointed out, this will have a different distribution as the rejection method. But if your constraints do not consider the distribution, this could do as well (and this will give you a matrix from a single run).

Categories