Printing names of variables passed to a function - python

In some circumstances, I want to print debug-style output like this:
# module test.py
def f()
a = 5
b = 8
debug(a, b) # line 18
I want the debug function to print the following:
debug info at test.py: 18
function f
a = 5
b = 8
I am thinking it should be possible by using inspect module to locate the stack frame, then finding the appropriate line, looking up the source code in that line, getting the names of the arguments from there. The function name can be obtained by moving one stack frame up. (The values of the arguments is easy to obtain: they are passed directly to the function debug.)
Am I on the right track? Is there any recipe I can refer to?

You could do something along the following lines:
import inspect
def debug(**kwargs):
st = inspect.stack()[1]
print '%s:%d %s()' % (st[1], st[2], st[3])
for k, v in kwargs.items():
print '%s = %s' % (k, v)
def f():
a = 5
b = 8
debug(a=a, b=b) # line 12
f()
This prints out:
test.py:12 f()
a = 5
b = 8

You're generally doing it right, though it would be easier to use AOP for this kinds of tasks. Basically, instead of calling "debug" every time with every variable, you could just decorate the code with aspects which do certain things upon certain events, like upon entering the function to print passed variables and it's name.
Please refer to this site and old so post for more info.

Yeah, you are in the correct track. You may want to look at inspect.getargspec which would return a named tuple of args, varargs, keywords, defaults passed to the function.
import inspect
def f():
a = 5
b = 8
debug(a, b)
def debug(a, b):
print inspect.getargspec(debug)
f()

This is really tricky. Let me try and give a more complete answer reusing this code, and the hint about getargspec in Senthil's answer which got me triggered somehow. Btw, getargspec is deprecated in Python 3.0 and getfullarcspec should be used instead.
This works for me on a Python 3.1.2 both with explicitly calling the debug function and with using a decorator:
# from: https://stackoverflow.com/a/4493322/923794
def getfunc(func=None, uplevel=0):
"""Return tuple of information about a function
Go's up in the call stack to uplevel+1 and returns information
about the function found.
The tuple contains
name of function, function object, it's frame object,
filename and line number"""
from inspect import currentframe, getouterframes, getframeinfo
#for (level, frame) in enumerate(getouterframes(currentframe())):
# print(str(level) + ' frame: ' + str(frame))
caller = getouterframes(currentframe())[1+uplevel]
# caller is tuple of:
# frame object, filename, line number, function
# name, a list of lines of context, and index within the context
func_name = caller[3]
frame = caller[0]
from pprint import pprint
if func:
func_name = func.__name__
else:
func = frame.f_locals.get(func_name, frame.f_globals.get(func_name))
return (func_name, func, frame, caller[1], caller[2])
def debug_prt_func_args(f=None):
"""Print function name and argument with their values"""
from inspect import getargvalues, getfullargspec
(func_name, func, frame, file, line) = getfunc(func=f, uplevel=1)
argspec = getfullargspec(func)
#print(argspec)
argvals = getargvalues(frame)
print("debug info at " + file + ': ' + str(line))
print(func_name + ':' + str(argvals)) ## reformat to pretty print arg values here
return func_name
def df_dbg_prt_func_args(f):
"""Decorator: dpg_prt_func_args - Prints function name and arguments
"""
def wrapped(*args, **kwargs):
debug_prt_func_args(f)
return f(*args, **kwargs)
return wrapped
Usage:
#df_dbg_prt_func_args
def leaf_decor(*args, **kwargs):
"""Leaf level, simple function"""
print("in leaf")
def leaf_explicit(*args, **kwargs):
"""Leaf level, simple function"""
debug_prt_func_args()
print("in leaf")
def complex():
"""A complex function"""
print("start complex")
leaf_decor(3,4)
print("middle complex")
leaf_explicit(12,45)
print("end complex")
complex()
and prints:
start complex
debug info at debug.py: 54
leaf_decor:ArgInfo(args=[], varargs='args', keywords='kwargs', locals={'args': (3, 4), 'f': <function leaf_decor at 0x2aaaac048d98>, 'kwargs': {}})
in leaf
middle complex
debug info at debug.py: 67
leaf_explicit:ArgInfo(args=[], varargs='args', keywords='kwargs', locals={'args': (12, 45), 'kwargs': {}})
in leaf
end complex
The decorator cheats a bit: Since in wrapped we get the same arguments as the function itself it doesn't matter that we find and report the ArgSpec of wrapped in getfunc and debug_prt_func_args. This code could be beautified a bit, but it works alright now for the simple debug testcases I used.
Another trick you can do: If you uncomment the for-loop in getfunc you can see that inspect can give you the "context" which really is the line of source code where a function got called. This code is obviously not showing the content of any variable given to your function, but sometimes it already helps to know the variable name used one level above your called function.
As you can see, with the decorator you don't have to change the code inside the function.
Probably you'll want to pretty print the args. I've left the raw print (and also a commented out print statement) in the function so it's easier to play around with.

Related

Is there a way to give a function access to the (external-scope) name of the variable being passed in? [duplicate]

This question already has answers here:
Getting the name of a variable as a string
(32 answers)
Closed 4 months ago.
Is it possible to get the original variable name of a variable passed to a function? E.g.
foobar = "foo"
def func(var):
print var.origname
So that:
func(foobar)
Returns:
>>foobar
EDIT:
All I was trying to do was make a function like:
def log(soup):
f = open(varname+'.html', 'w')
print >>f, soup.prettify()
f.close()
.. and have the function generate the filename from the name of the variable passed to it.
I suppose if it's not possible I'll just have to pass the variable and the variable's name as a string each time.
EDIT: To make it clear, I don't recommend using this AT ALL, it will break, it's a mess, it won't help you in any way, but it's doable for entertainment/education purposes.
You can hack around with the inspect module, I don't recommend that, but you can do it...
import inspect
def foo(a, f, b):
frame = inspect.currentframe()
frame = inspect.getouterframes(frame)[1]
string = inspect.getframeinfo(frame[0]).code_context[0].strip()
args = string[string.find('(') + 1:-1].split(',')
names = []
for i in args:
if i.find('=') != -1:
names.append(i.split('=')[1].strip())
else:
names.append(i)
print names
def main():
e = 1
c = 2
foo(e, 1000, b = c)
main()
Output:
['e', '1000', 'c']
To add to Michael Mrozek's answer, you can extract the exact parameters versus the full code by:
import re
import traceback
def func(var):
stack = traceback.extract_stack()
filename, lineno, function_name, code = stack[-2]
vars_name = re.compile(r'\((.*?)\).*$').search(code).groups()[0]
print vars_name
return
foobar = "foo"
func(foobar)
# PRINTS: foobar
Looks like Ivo beat me to inspect, but here's another implementation:
import inspect
def varName(var):
lcls = inspect.stack()[2][0].f_locals
for name in lcls:
if id(var) == id(lcls[name]):
return name
return None
def foo(x=None):
lcl='not me'
return varName(x)
def bar():
lcl = 'hi'
return foo(lcl)
bar()
# 'lcl'
Of course, it can be fooled:
def baz():
lcl = 'hi'
x='hi'
return foo(lcl)
baz()
# 'x'
Moral: don't do it.
Another way you can try if you know what the calling code will look like is to use traceback:
def func(var):
stack = traceback.extract_stack()
filename, lineno, function_name, code = stack[-2]
code will contain the line of code that was used to call func (in your example, it would be the string func(foobar)). You can parse that to pull out the argument
You can't. It's evaluated before being passed to the function. All you can do is pass it as a string.
#Ivo Wetzel's answer works in the case of function call are made in one line, like
e = 1 + 7
c = 3
foo(e, 100, b=c)
In case that function call is not in one line, like:
e = 1 + 7
c = 3
foo(e,
1000,
b = c)
below code works:
import inspect, ast
def foo(a, f, b):
frame = inspect.currentframe()
frame = inspect.getouterframes(frame)[1]
string = inspect.findsource(frame[0])[0]
nodes = ast.parse(''.join(string))
i_expr = -1
for (i, node) in enumerate(nodes.body):
if hasattr(node, 'value') and isinstance(node.value, ast.Call)
and hasattr(node.value.func, 'id') and node.value.func.id == 'foo' # Here goes name of the function:
i_expr = i
break
i_expr_next = min(i_expr + 1, len(nodes.body)-1)
lineno_start = nodes.body[i_expr].lineno
lineno_end = nodes.body[i_expr_next].lineno if i_expr_next != i_expr else len(string)
str_func_call = ''.join([i.strip() for i in string[lineno_start - 1: lineno_end]])
params = str_func_call[str_func_call.find('(') + 1:-1].split(',')
print(params)
You will get:
[u'e', u'1000', u'b = c']
But still, this might break.
You can use python-varname package
from varname import nameof
s = 'Hey!'
print (nameof(s))
Output:
s
Package below:
https://github.com/pwwang/python-varname
For posterity, here's some code I wrote for this task, in general I think there is a missing module in Python to give everyone nice and robust inspection of the caller environment. Similar to what rlang eval framework provides for R.
import re, inspect, ast
#Convoluted frame stack walk and source scrape to get what the calling statement to a function looked like.
#Specifically return the name of the variable passed as parameter found at position pos in the parameter list.
def _caller_param_name(pos):
#The parameter name to return
param = None
#Get the frame object for this function call
thisframe = inspect.currentframe()
try:
#Get the parent calling frames details
frames = inspect.getouterframes(thisframe)
#Function this function was just called from that we wish to find the calling parameter name for
function = frames[1][3]
#Get all the details of where the calling statement was
frame,filename,line_number,function_name,source,source_index = frames[2]
#Read in the source file in the parent calling frame upto where the call was made
with open(filename) as source_file:
head=[source_file.next() for x in xrange(line_number)]
source_file.close()
#Build all lines of the calling statement, this deals with when a function is called with parameters listed on each line
lines = []
#Compile a regex for matching the start of the function being called
regex = re.compile(r'\.?\s*%s\s*\(' % (function))
#Work backwards from the parent calling frame line number until we see the start of the calling statement (usually the same line!!!)
for line in reversed(head):
lines.append(line.strip())
if re.search(regex, line):
break
#Put the lines we have groked back into sourcefile order rather than reverse order
lines.reverse()
#Join all the lines that were part of the calling statement
call = "".join(lines)
#Grab the parameter list from the calling statement for the function we were called from
match = re.search('\.?\s*%s\s*\((.*)\)' % (function), call)
paramlist = match.group(1)
#If the function was called with no parameters raise an exception
if paramlist == "":
raise LookupError("Function called with no parameters.")
#Use the Python abstract syntax tree parser to create a parsed form of the function parameter list 'Name' nodes are variable names
parameter = ast.parse(paramlist).body[0].value
#If there were multiple parameters get the positional requested
if type(parameter).__name__ == 'Tuple':
#If we asked for a parameter outside of what was passed complain
if pos >= len(parameter.elts):
raise LookupError("The function call did not have a parameter at postion %s" % pos)
parameter = parameter.elts[pos]
#If there was only a single parameter and another was requested raise an exception
elif pos != 0:
raise LookupError("There was only a single calling parameter found. Parameter indices start at 0.")
#If the parameter was the name of a variable we can use it otherwise pass back None
if type(parameter).__name__ == 'Name':
param = parameter.id
finally:
#Remove the frame reference to prevent cyclic references screwing the garbage collector
del thisframe
#Return the parameter name we found
return param
If you want a Key Value Pair relationship, maybe using a Dictionary would be better?
...or if you're trying to create some auto-documentation from your code, perhaps something like Doxygen (http://www.doxygen.nl/) could do the job for you?
I wondered how IceCream solves this problem. So I looked into the source code and came up with the following (slightly simplified) solution. It might not be 100% bullet-proof (e.g. I dropped get_text_with_indentation and I assume exactly one function argument), but it works well for different test cases. It does not need to parse source code itself, so it should be more robust and simpler than previous solutions.
#!/usr/bin/env python3
import inspect
from executing import Source
def func(var):
callFrame = inspect.currentframe().f_back
callNode = Source.executing(callFrame).node
source = Source.for_frame(callFrame)
expression = source.asttokens().get_text(callNode.args[0])
print(expression, '=', var)
i = 1
f = 2.0
dct = {'key': 'value'}
obj = type('', (), {'value': 42})
func(i)
func(f)
func(s)
func(dct['key'])
func(obj.value)
Output:
i = 1
f = 2.0
s = string
dct['key'] = value
obj.value = 42
Update: If you want to move the "magic" into a separate function, you simply have to go one frame further back with an additional f_back.
def get_name_of_argument():
callFrame = inspect.currentframe().f_back.f_back
callNode = Source.executing(callFrame).node
source = Source.for_frame(callFrame)
return source.asttokens().get_text(callNode.args[0])
def func(var):
print(get_name_of_argument(), '=', var)
If you want to get the caller params as in #Matt Oates answer answer without using the source file (ie from Jupyter Notebook), this code (combined from #Aeon answer) will do the trick (at least in some simple cases):
def get_caller_params():
# get the frame object for this function call
thisframe = inspect.currentframe()
# get the parent calling frames details
frames = inspect.getouterframes(thisframe)
# frame 0 is the frame of this function
# frame 1 is the frame of the caller function (the one we want to inspect)
# frame 2 is the frame of the code that calls the caller
caller_function_name = frames[1][3]
code_that_calls_caller = inspect.findsource(frames[2][0])[0]
# parse code to get nodes of abstract syntact tree of the call
nodes = ast.parse(''.join(code_that_calls_caller))
# find the node that calls the function
i_expr = -1
for (i, node) in enumerate(nodes.body):
if _node_is_our_function_call(node, caller_function_name):
i_expr = i
break
# line with the call start
idx_start = nodes.body[i_expr].lineno - 1
# line with the end of the call
if i_expr < len(nodes.body) - 1:
# next expression marks the end of the call
idx_end = nodes.body[i_expr + 1].lineno - 1
else:
# end of the source marks the end of the call
idx_end = len(code_that_calls_caller)
call_lines = code_that_calls_caller[idx_start:idx_end]
str_func_call = ''.join([line.strip() for line in call_lines])
str_call_params = str_func_call[str_func_call.find('(') + 1:-1]
params = [p.strip() for p in str_call_params.split(',')]
return params
def _node_is_our_function_call(node, our_function_name):
node_is_call = hasattr(node, 'value') and isinstance(node.value, ast.Call)
if not node_is_call:
return False
function_name_correct = hasattr(node.value.func, 'id') and node.value.func.id == our_function_name
return function_name_correct
You can then run it as this:
def test(*par_values):
par_names = get_caller_params()
for name, val in zip(par_names, par_values):
print(name, val)
a = 1
b = 2
string = 'text'
test(a, b,
string
)
to get the desired output:
a 1
b 2
string text
Since you can have multiple variables with the same content, instead of passing the variable (content), it might be safer (and will be simpler) to pass it's name in a string and get the variable content from the locals dictionary in the callers stack frame. :
def displayvar(name):
import sys
return name+" = "+repr(sys._getframe(1).f_locals[name])
If it just so happens that the variable is a callable (function), it will have a __name__ property.
E.g. a wrapper to log the execution time of a function:
def time_it(func, *args, **kwargs):
start = perf_counter()
result = func(*args, **kwargs)
duration = perf_counter() - start
print(f'{func.__name__} ran in {duration * 1000}ms')
return result

How to get through decorator to get the underlying function arguments information?

I write get_function_arg_data(func) as below code to get the function func's arguments information:
def get_function_arg_data(func):
import inspect
func_data = inspect.getargspec(func)
args_name = func_data.args #func argument list
args_default = func_data.defaults #funcargument default data list
return args_name, args_default
def showduration(user_function):
''' show time duration decorator'''
import time
def wrapped_f(*args, **kwargs):
t1 = time.clock()
result = user_function(*args, **kwargs)
print "%s()_Time: %0.5f"%(user_function.__name__, time.clock()-t1)
return result
return wrapped_f
def foo(para1, para2=5, para3=7):
for i in range(1000):
s = para1+para2+para3
return s
#showduration
def bar(para1, para2, para3):
for i in range(1000):
s=para1+para2+para3
return s
print get_function_arg_data(foo)
bar(1,2,3)
print get_function_arg_data(bar)
>>>
(['para1', 'para2', 'para3'], (5, 7))
bar()_Time: 0.00012
([], None)
>>>
get_function_arg_data() works for foo, not for bar for bar is decorated by a decorator #showduration . My question is how to penetrate the decorator to get the underlying function's information (argument list and default value) ?
Thanks for your tips.
I don't think there is, or at least know of, any general way to "penetrate" a decorated function and get at the underlying function's information because Python's concept of function decoration is so general -- if fact, generally speaking, there's nothing that requires or guarantees that the original function will be called at all (although that's usually the case).
Therefore, a more practical question would be: How could I write my own decorators which would allow me to inspect the underlying function's argument information?
One easy way, previously suggested, would be to use Michele Simionato's decorator module (and write decorators compatible with it).
A less robust, but extremely simple way of doing this would be to do what is shown below based on the code in your question:
def get_function_arg_data(func):
import inspect
func = getattr(func, '_original_f', func) # use saved original if decorated
func_data = inspect.getargspec(func)
args_name = func_data.args #func argument list
args_default = func_data.defaults #funcargument default data list
return args_name, args_default
def showduration(user_function):
'''show time duration decorator'''
import time
def wrapped_f(*args, **kwargs):
t1 = time.clock()
result = user_function(*args, **kwargs)
print "%s()_Time: %0.5f"%(user_function.__name__, time.clock()-t1)
return result
wrapped_f._original_f = user_function # save original function
return wrapped_f
def foo(para1, para2=5, para3=7):
for i in range(1000):
s = para1+para2+para3
return s
#showduration
def bar(para1, para2, para3):
for i in range(1000):
s=para1+para2+para3
return s
print 'get_function_arg_data(foo):', get_function_arg_data(foo)
print 'get_function_arg_data(bar):', get_function_arg_data(bar)
All the modification involves is saving the original function in an attribute named _original_f which is added the wrapped function returned by the decorator. The get_function_arg_data() function then simply checks for this attribute and returns information based its value rather the decorated function passed to it.
While this approach doesn't work with just any decorated function, only ones which have had the special attribute added to them, it is compatible with both Python 2 & 3.
Output produced by the code shown:
get_function_arg_data(foo): (['para1', 'para2', 'para3'], (5, 7))
get_function_arg_data(bar): (['para1', 'para2', 'para3'], None)
Assuming you've installed Michele Simionato's decorator module, you can make yourshowdurationdecorator work with it by making some minor modifications to it and to the nestedwrapped_f()function defined in it so the latter fits the signature that module's decorator.decorator() function expects:
import decorator
def showduration(user_function):
''' show time duration decorator'''
import time
def wrapped_f(user_function, *args, **kwargs):
t1 = time.clock()
result = user_function(*args, **kwargs)
print "%s()_Time: %0.5f"%(user_function.__name__, time.clock()-t1)
return result
return decorator.decorator(wrapped_f, user_function)
However, the module really shines because it will let you reduce boilerplate stuff like the above down to just:
import decorator
#decorator.decorator
def showduration(user_function, *args, **kwargs):
import time
t1 = time.clock()
result = user_function(*args, **kwargs)
print "%s()_Time: %0.5f"%(user_function.__name__, time.clock()-t1)
return result
With either set of the above changes, your sample code would output:
(['para1', 'para2', 'para3'], (5, 7))
bar()_Time: 0.00026
(['para1', 'para2', 'para3'], None)

How can I get the values of the locals of a function after it has been executed?

Suppose I have a function like f(a, b, c=None). The aim is to call the function like f(*args, **kwargs), and then construct a new set of args and kwargs such that:
If the function had default values, I should be able to acquire their values. For example, if I call it like f(1, 2), I should be able to get the tuple (1, 2, None) and/or the dictionary {'c': None}.
If the value of any of the arguments was modified inside the function, get the new value. For example, if I call it like f(1, 100000, 3) and the function does if b > 500: b = 5 modifying the local variable, I should be able to get the the tuple (1, 5, 3).
The aim here is to create a a decorator that finishes the job of a function. The original function acts as a preamble setting up the data for the actual execution, and the decorator finishes the job.
Edit: I'm adding an example of what I'm trying to do. It's a module for making proxies for other classes.
class Spam(object):
"""A fictional class that we'll make a proxy for"""
def eggs(self, start, stop, step):
"""A fictional method"""
return range(start, stop, step)
class ProxyForSpam(clsproxy.Proxy):
proxy_for = Spam
#clsproxy.signature_preamble
def eggs(self, start, stop, step=1):
start = max(0, start)
stop = min(100, stop)
And then, we'll have that:
ProxyForSpam().eggs(-10, 200) -> Spam().eggs(0, 100, 1)
ProxyForSpam().eggs(3, 4) -> Spam().eggs(3, 4, 1)
There are two recipes available here, one which requires an external library and another that uses only the standard library. They don't quite do what you want, in that they actually modify the function being executed to obtain its locals() rather than obtain the locals() after function execution, which is impossible, since the local stack no longer exists after the function finishes execution.
Another option is to see what debuggers, such as WinPDB or even the pdb module do. I suspect they use the inspect module (possibly along with others), to get the frame inside which a function is executing and retrieve locals() that way.
EDIT: After reading some code in the standard library, the file you want to look at is probably bdb.py, which should be wherever the rest of your Python standard library is. Specifically, look at set_trace() and related functions. This will give you an idea of how the Python debugger breaks into the class. You might even be able to use it directly. To get the frame to pass to set_trace() look at the inspect module.
I've stumbled upon this very need today and wanted to share my solution.
import sys
def call_function_get_frame(func, *args, **kwargs):
"""
Calls the function *func* with the specified arguments and keyword
arguments and snatches its local frame before it actually executes.
"""
frame = None
trace = sys.gettrace()
def snatch_locals(_frame, name, arg):
nonlocal frame
if frame is None and name == 'call':
frame = _frame
sys.settrace(trace)
return trace
sys.settrace(snatch_locals)
try:
result = func(*args, **kwargs)
finally:
sys.settrace(trace)
return frame, result
The idea is to use sys.trace() to catch the frame of the next 'call'. Tested on CPython 3.6.
Example usage
import types
def namespace_decorator(func):
frame, result = call_function_get_frame(func)
try:
module = types.ModuleType(func.__name__)
module.__dict__.update(frame.f_locals)
return module
finally:
del frame
#namespace_decorator
def mynamespace():
eggs = 'spam'
class Bar:
def hello(self):
print("Hello, World!")
assert mynamespace.eggs == 'spam'
mynamespace.Bar().hello()
I don't see how you could do this non-intrusively -- after the function is done executing, it doesn't exist any more -- there's no way you can reach inside something that doesn't exist.
If you can control the functions that are being used, you can do an intrusive approach like
def fn(x, y, z, vars):
'''
vars is an empty dict that we use to pass things back to the caller
'''
x += 1
y -= 1
z *= 2
vars.update(locals())
>>> updated = {}
>>> fn(1, 2, 3, updated)
>>> print updated
{'y': 1, 'x': 2, 'z': 6, 'vars': {...}}
>>>
...or you can just require that those functions return locals() -- as #Thomas K asks above, what are you really trying to do here?
Witchcraft below read on your OWN danger(!)
I have no clue what you want to do with this, it's possible but it's an awful hack...
Anyways, I HAVE WARNED YOU(!), be lucky if such things don't work in your favorite language...
from inspect import getargspec, ismethod
import inspect
def main():
#get_modified_values
def foo(a, f, b):
print a, f, b
a = 10
if a == 2:
return a
f = 'Hello World'
b = 1223
e = 1
c = 2
foo(e, 1000, b = c)
# intercept a function and retrieve the modifed values
def get_modified_values(target):
def wrapper(*args, **kwargs):
# get the applied args
kargs = getcallargs(target, *args, **kwargs)
# get the source code
src = inspect.getsource(target)
lines = src.split('\n')
# oh noes string patching of the function
unindent = len(lines[0]) - len(lines[0].lstrip())
indent = lines[0][:len(lines[0]) - len(lines[0].lstrip())]
lines[0] = ''
lines[1] = indent + 'def _temp(_args, ' + lines[1].split('(')[1]
setter = []
for k in kargs.keys():
setter.append('_args["%s"] = %s' % (k, k))
i = 0
while i < len(lines):
indent = lines[i][:len(lines[i]) - len(lines[i].lstrip())]
if lines[i].find('return ') != -1 or lines[i].find('return\n') != -1:
for e in setter:
lines.insert(i, indent + e)
i += len(setter)
elif i == len(lines) - 2:
for e in setter:
lines.insert(i + 1, indent + e)
break
i += 1
for i in range(0, len(lines)):
lines[i] = lines[i][unindent:]
data = '\n'.join(lines) + "\n"
# setup variables
frame = inspect.currentframe()
loc = inspect.getouterframes(frame)[1][0].f_locals
glob = inspect.getouterframes(frame)[1][0].f_globals
loc['_temp'] = None
# compile patched function and call it
func = compile(data, '<witchstuff>', 'exec')
eval(func, glob, loc)
loc['_temp'](kargs, *args, **kwargs)
# there you go....
print kargs
# >> {'a': 10, 'b': 1223, 'f': 'Hello World'}
return wrapper
# from python 2.7 inspect module
def getcallargs(func, *positional, **named):
"""Get the mapping of arguments to values.
A dict is returned, with keys the function argument names (including the
names of the * and ** arguments, if any), and values the respective bound
values from 'positional' and 'named'."""
args, varargs, varkw, defaults = getargspec(func)
f_name = func.__name__
arg2value = {}
# The following closures are basically because of tuple parameter unpacking.
assigned_tuple_params = []
def assign(arg, value):
if isinstance(arg, str):
arg2value[arg] = value
else:
assigned_tuple_params.append(arg)
value = iter(value)
for i, subarg in enumerate(arg):
try:
subvalue = next(value)
except StopIteration:
raise ValueError('need more than %d %s to unpack' %
(i, 'values' if i > 1 else 'value'))
assign(subarg,subvalue)
try:
next(value)
except StopIteration:
pass
else:
raise ValueError('too many values to unpack')
def is_assigned(arg):
if isinstance(arg,str):
return arg in arg2value
return arg in assigned_tuple_params
if ismethod(func) and func.im_self is not None:
# implicit 'self' (or 'cls' for classmethods) argument
positional = (func.im_self,) + positional
num_pos = len(positional)
num_total = num_pos + len(named)
num_args = len(args)
num_defaults = len(defaults) if defaults else 0
for arg, value in zip(args, positional):
assign(arg, value)
if varargs:
if num_pos > num_args:
assign(varargs, positional[-(num_pos-num_args):])
else:
assign(varargs, ())
elif 0 < num_args < num_pos:
raise TypeError('%s() takes %s %d %s (%d given)' % (
f_name, 'at most' if defaults else 'exactly', num_args,
'arguments' if num_args > 1 else 'argument', num_total))
elif num_args == 0 and num_total:
raise TypeError('%s() takes no arguments (%d given)' %
(f_name, num_total))
for arg in args:
if isinstance(arg, str) and arg in named:
if is_assigned(arg):
raise TypeError("%s() got multiple values for keyword "
"argument '%s'" % (f_name, arg))
else:
assign(arg, named.pop(arg))
if defaults: # fill in any missing values with the defaults
for arg, value in zip(args[-num_defaults:], defaults):
if not is_assigned(arg):
assign(arg, value)
if varkw:
assign(varkw, named)
elif named:
unexpected = next(iter(named))
if isinstance(unexpected, unicode):
unexpected = unexpected.encode(sys.getdefaultencoding(), 'replace')
raise TypeError("%s() got an unexpected keyword argument '%s'" %
(f_name, unexpected))
unassigned = num_args - len([arg for arg in args if is_assigned(arg)])
if unassigned:
num_required = num_args - num_defaults
raise TypeError('%s() takes %s %d %s (%d given)' % (
f_name, 'at least' if defaults else 'exactly', num_required,
'arguments' if num_required > 1 else 'argument', num_total))
return arg2value
main()
Output:
1 1000 2
{'a': 10, 'b': 1223, 'f': 'Hello World'}
There you go... I'm not responsible for any small children that get eaten by demons or something the like (or if it breaks on complicated functions).
PS: The inspect module is the pure EVIL.
Since you are trying to manipulate variables in one function, and do some job based on those variables on another function, the cleanest way to do it is having these variables to be an object's attributes.
It could be a dictionary - that could be defined inside the decorator - therefore access to it inside the decorated function would be as a "nonlocal" variable. That cleans up the default parameter tuple of this dictionary, that #bgporter proposed.:
def eggs(self, a, b, c=None):
# nonlocal parms ## uncomment in Python 3
parms["a"] = a
...
To be even more clean, you probably should have all these parameters as attributes of the instance (self) - so that no "magical" variable has to be used inside the decorated function.
As for doing it "magically" without having the parameters set as attributes of certain object explicitly, nor having the decorated function to return the parameters themselves (which is also an option) - that is, to have it to work transparently with any decorated function - I can't think of a way that does not involve manipulating the bytecode of the function itself.
If you can think of a way to make the wrapped function raise an exception at return time, you could trap the exception and check the execution trace.
If it is so important to do it automatically that you consider altering the function bytecode an option, feel free to ask me further.

Real-world examples of nested functions

I asked previously how the nested functions work, but unfortunately I still don't quite get it. To understand it better, can someone please show some real-wold, practical usage examples of nested functions?
Many thanks
Your question made me curious, so I looked in some real-world code: the Python standard library. I found 67 examples of nested functions. Here are a few, with explanations.
One very simple reason to use a nested function is simply that the function you're defining doesn't need to be global, because only the enclosing function uses it. A typical example from Python's quopri.py standard library module:
def encode(input, output, quotetabs, header = 0):
...
def write(s, output=output, lineEnd='\n'):
# RFC 1521 requires that the line ending in a space or tab must have
# that trailing character encoded.
if s and s[-1:] in ' \t':
output.write(s[:-1] + quote(s[-1]) + lineEnd)
elif s == '.':
output.write(quote(s) + lineEnd)
else:
output.write(s + lineEnd)
... # 35 more lines of code that call write in several places
Here there was some common code within the encode function, so the author simply factored it out into a write function.
Another common use for nested functions is re.sub. Here's some code from the json/encode.py standard library module:
def encode_basestring(s):
"""Return a JSON representation of a Python string
"""
def replace(match):
return ESCAPE_DCT[match.group(0)]
return '"' + ESCAPE.sub(replace, s) + '"'
Here ESCAPE is a regular expression, and ESCAPE.sub(replace, s) finds all matches of ESCAPE in s and replaces each one with replace(match).
In fact, any API, like re.sub, that accepts a function as a parameter can lead to situations where nested functions are convenient. For example, in turtle.py there's some silly demo code that does this:
def baba(xdummy, ydummy):
clearscreen()
bye()
...
tri.write(" Click me!", font = ("Courier", 12, "bold") )
tri.onclick(baba, 1)
onclick expects you to pass an event-handler function, so we define one and pass it in.
Decorators are a very popular use for nested functions. Here's an example of a decorator that prints a statement before and after any call to the decorated function.
def entry_exit(f):
def new_f(*args, **kwargs):
print "Entering", f.__name__
f(*args, **kwargs)
print "Exited", f.__name__
return new_f
#entry_exit
def func1():
print "inside func1()"
#entry_exit
def func2():
print "inside func2()"
func1()
func2()
print func1.__name__
Nested functions avoid cluttering other parts of the program with other functions and variables that only make sense locally.
A function that return Fibonacci numbers could be defined as follows:
>>> def fib(n):
def rec():
return fib(n-1) + fib(n-2)
if n == 0:
return 0
elif n == 1:
return 1
else:
return rec()
>>> map(fib, range(10))
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]
EDIT: In practice, generators would be a better solution for this, but the example shows how to take advantage of nested functions.
They are useful when using functions that take other functions as input. Say you're in a function, and want to sort a list of items based on the items' value in a dict:
def f(items):
vals = {}
for i in items: vals[i] = random.randint(0,100)
def key(i): return vals[i]
items.sort(key=key)
You can just define key right there and have it use vals, a local variable.
Another use-case is callbacks.
I have only had to use nested functions when creating decorators. A nested function is basically a way of adding some behavior to a function without knowing what the function is that you are adding behavior to.
from functools import wraps
from types import InstanceType
def printCall(func):
def getArgKwargStrings(*args, **kwargs):
argsString = "".join(["%s, " % (arg) for arg in args])
kwargsString = "".join(["%s=%s, " % (key, value) for key, value in kwargs.items()])
if not len(kwargs):
if len(argsString):
argsString = argsString[:-2]
else:
kwargsString = kwargsString[:-2]
return argsString, kwargsString
#wraps(func)
def wrapper(*args, **kwargs):
ret = None
if args and isinstance(args[0], InstanceType) and getattr(args[0], func.__name__, None):
instance, args = args[0], args[1:]
argsString, kwargsString = getArgKwargStrings(*args, **kwargs)
ret = func(instance, *args, **kwargs)
print "Called %s.%s(%s%s)" % (instance.__class__.__name__, func.__name__, argsString, kwargsString)
print "Returned %s" % str(ret)
else:
argsString, kwargsString = getArgKwargStrings(*args, **kwargs)
ret = func(*args, **kwargs)
print "Called %s(%s%s)" % (func.__name__, argsString, kwargsString)
print "Returned %s" % str(ret)
return ret
return wrapper
def sayHello(name):
print "Hello, my name is %s" % (name)
if __name__ == "__main__":
sayHelloAndPrintDebug = printCall(sayHello)
name = "Nimbuz"
sayHelloAndPrintDebug(name)
Ignore all the mumbo jumbo in the "printCall" function for right now and focus only the "sayHello" function and below. What we're doing here is we want to print out how the "sayHello" function was called everytime it is called without knowing or altering what the "sayHello" function does. So we redefine the "sayHello" function by passing it to "printCall", which returns a NEW function that does what the "sayHello" function does AND prints how the "sayHello" function was called. This is the concept of decorators.
Putting "#printCall" above the sayHello definition accomplishes the same thing:
#printCall
def sayHello(name):
print "Hello, my name is %s" % (name)
if __name__ == "__main__":
name = "Nimbuz"
sayHello(name)
Yet another (very simple) example. A function that returns another function. Note how the inner function (that is returned) can use variables from the outer function's scope.
def create_adder(x):
def _adder(y):
return x + y
return _adder
add2 = create_adder(2)
add100 = create_adder(100)
>>> add2(50)
52
>>> add100(50)
150
Python Decorators
This is actually another topic to learn, but if you look at the stuff on 'Using Functions as Decorators', you'll see some examples of nested functions.
OK, besides decorators: Say you had an application where you needed to sort a list of strings based on substrings which varied from time to time. Now the sorted functions takes a key= argument which is a function of one argument: the items (strings in this case) to be sorted. So how to tell this function which substrings to sort on? A closure or nested function, is perfect for this:
def sort_key_factory(start, stop):
def sort_key(string):
return string[start: stop]
return sort_key
Simple eh? You can expand on this by encapsulating start and stop in a tuple or a slice object and then passing a sequence or iterable of these to the sort_key_factory.

How do I get the name of a function or method from within a Python function or method?

I feel like I should know this, but I haven't been able to figure it out...
I want to get the name of a method--which happens to be an integration test--from inside it so it can print out some diagnostic text. I can, of course, just hard-code the method's name in the string, but I'd like to make the test a little more DRY if possible.
This seems to be the simplest way using module inspect:
import inspect
def somefunc(a,b,c):
print "My name is: %s" % inspect.stack()[0][3]
You could generalise this with:
def funcname():
return inspect.stack()[1][3]
def somefunc(a,b,c):
print "My name is: %s" % funcname()
Credit to Stefaan Lippens which was found via google.
The answers involving introspection via inspect and the like are reasonable. But there may be another option, depending on your situation:
If your integration test is written with the unittest module, then you could use self.id() within your TestCase.
This decorator makes the name of the method available inside the function by passing it as a keyword argument.
from functools import wraps
def pass_func_name(func):
"Name of decorated function will be passed as keyword arg _func_name"
#wraps(func)
def _pass_name(*args, **kwds):
kwds['_func_name'] = func.func_name
return func(*args, **kwds)
return _pass_name
You would use it this way:
#pass_func_name
def sum(a, b, _func_name):
print "running function %s" % _func_name
return a + b
print sum(2, 4)
But maybe you'd want to write what you want directly inside the decorator itself. Then the code is an example of a way to get the function name in a decorator. If you give more details about what you want to do in the function, that requires the name, maybe I can suggest something else.
# file "foo.py"
import sys
import os
def LINE( back = 0 ):
return sys._getframe( back + 1 ).f_lineno
def FILE( back = 0 ):
return sys._getframe( back + 1 ).f_code.co_filename
def FUNC( back = 0):
return sys._getframe( back + 1 ).f_code.co_name
def WHERE( back = 0 ):
frame = sys._getframe( back + 1 )
return "%s/%s %s()" % ( os.path.basename( frame.f_code.co_filename ),
frame.f_lineno, frame.f_code.co_name )
def testit():
print "Here in %s, file %s, line %s" % ( FUNC(), FILE(), LINE() )
print "WHERE says '%s'" % WHERE()
testit()
Output:
$ python foo.py
Here in testit, file foo.py, line 17
WHERE says 'foo.py/18 testit()'
Use "back = 1" to find info regarding two levels back down the stack, etc.
I think the traceback module might have what you're looking for. In particular, the extract_stack function looks like it will do the job.
To elaborate on #mhawke's answer:
Rather than
def funcname():
return inspect.stack()[1][3]
You can use
def funcname():
frame = inspect.currentframe().f_back
return inspect.getframeinfo(frame).function
Which, on my machine, is about 5x faster than the original version according to timeit.

Categories