Compute eigenvectors of image in python - python

I'm trying to fit a 2D Gaussian to an image. Noise is very low, so my attempt was to rotate the image such that the two principal axes do not co-vary, figure out the maximum and just compute the standard deviation in both dimensions. Weapon of choice is python.
However I got stuck at finding the eigenvectors of the image - numpy.linalg.py assumes discrete data points. I thought about taking this image to be a probability distribution, sampling a few thousand points and then computing the eigenvectors from that distribution, but I'm sure there must be a way of finding the eigenvectors (ie., semi-major and semi-minor axes of the gaussian ellipse) directly from that image. Any ideas?
Thanks a lot :)

Just a quick note, there are several tools to fit a gaussian to an image. The only thing I can think of off the top of my head is scikits.learn, which isn't completely image-oriented, but I know there are others.
To calculate the eigenvectors of the covariance matrix exactly as you had in mind is very computationally expensive. You have to associate each pixel (or a large-ish random sample) of image with an x,y point.
Basically, you do something like:
import numpy as np
# grid is your image data, here...
grid = np.random.random((10,10))
nrows, ncols = grid.shape
i,j = np.mgrid[:nrows, :ncols]
coords = np.vstack((i.reshape(-1), j.reshape(-1), grid.reshape(-1))).T
cov = np.cov(coords)
eigvals, eigvecs = np.linalg.eigh(cov)
You can instead make use of the fact that it's a regularly-sampled image and compute it's moments (or "intertial axes") instead. This will be considerably faster for large images.
As a quick example, (I'm using a part of one of my previous answers, in case you find it useful...)
import numpy as np
import matplotlib.pyplot as plt
def main():
data = generate_data()
xbar, ybar, cov = intertial_axis(data)
fig, ax = plt.subplots()
ax.imshow(data)
plot_bars(xbar, ybar, cov, ax)
plt.show()
def generate_data():
data = np.zeros((200, 200), dtype=np.float)
cov = np.array([[200, 100], [100, 200]])
ij = np.random.multivariate_normal((100,100), cov, int(1e5))
for i,j in ij:
data[int(i), int(j)] += 1
return data
def raw_moment(data, iord, jord):
nrows, ncols = data.shape
y, x = np.mgrid[:nrows, :ncols]
data = data * x**iord * y**jord
return data.sum()
def intertial_axis(data):
"""Calculate the x-mean, y-mean, and cov matrix of an image."""
data_sum = data.sum()
m10 = raw_moment(data, 1, 0)
m01 = raw_moment(data, 0, 1)
x_bar = m10 / data_sum
y_bar = m01 / data_sum
u11 = (raw_moment(data, 1, 1) - x_bar * m01) / data_sum
u20 = (raw_moment(data, 2, 0) - x_bar * m10) / data_sum
u02 = (raw_moment(data, 0, 2) - y_bar * m01) / data_sum
cov = np.array([[u20, u11], [u11, u02]])
return x_bar, y_bar, cov
def plot_bars(x_bar, y_bar, cov, ax):
"""Plot bars with a length of 2 stddev along the principal axes."""
def make_lines(eigvals, eigvecs, mean, i):
"""Make lines a length of 2 stddev."""
std = np.sqrt(eigvals[i])
vec = 2 * std * eigvecs[:,i] / np.hypot(*eigvecs[:,i])
x, y = np.vstack((mean-vec, mean, mean+vec)).T
return x, y
mean = np.array([x_bar, y_bar])
eigvals, eigvecs = np.linalg.eigh(cov)
ax.plot(*make_lines(eigvals, eigvecs, mean, 0), marker='o', color='white')
ax.plot(*make_lines(eigvals, eigvecs, mean, -1), marker='o', color='red')
ax.axis('image')
if __name__ == '__main__':
main()

Fitting a Gaussian robustly can be tricky. There was a fun article on this topic in the IEEE Signal Processing Magazine:
Hongwei Guo, "A Simple Algorithm for Fitting a Gaussian Function" IEEE
Signal Processing Magazine, September 2011, pp. 134--137
I give an implementation of the 1D case here:
http://scipy-central.org/item/28/2/fitting-a-gaussian-to-noisy-data-points
(Scroll down to see the resulting fits)

Did you try Principal Component Analysis (PCA)? Maybe the MDP package could do the job with minimal effort.

Related

Inverse of numpy.gradient function

I need to create a function which would be the inverse of the np.gradient function.
Where the Vx,Vy arrays (Velocity component vectors) are the input and the output would be an array of anti-derivatives (Arrival Time) at the datapoints x,y.
I have data on a (x,y) grid with scalar values (time) at each point.
I have used the numpy gradient function and linear interpolation to determine the gradient vector Velocity (Vx,Vy) at each point (See below).
I have achieved this by:
#LinearTriInterpolator applied to a delaunay triangular mesh
LTI= LinearTriInterpolator(masked_triang, time_array)
#Gradient requested at the mesh nodes:
(Vx, Vy) = LTI.gradient(triang.x, triang.y)
The first image below shows the velocity vectors at each point, and the point labels represent the time value which formed the derivatives (Vx,Vy)
The next image shows the resultant scalar value of the derivatives (Vx,Vy) plotted as a colored contour graph with associated node labels.
So my challenge is:
I need to reverse the process!
Using the gradient vectors (Vx,Vy) or the resultant scalar value to determine the original Time-Value at that point.
Is this possible?
Knowing that the numpy.gradient function is computed using second order accurate central differences in the interior points and either first or second order accurate one-sides (forward or backwards) differences at the boundaries, I am sure there is a function which would reverse this process.
I was thinking that taking a line derivative between the original point (t=0 at x1,y1) to any point (xi,yi) over the Vx,Vy plane would give me the sum of the velocity components. I could then divide this value by the distance between the two points to get the time taken..
Would this approach work? And if so, which numpy integrate function would be best applied?
An example of my data can be found here [http://www.filedropper.com/calculatearrivaltimefromgradientvalues060820]
Your help would be greatly appreciated
EDIT:
Maybe this simplified drawing might help understand where I'm trying to get to..
EDIT:
Thanks to #Aguy who has contibuted to this code.. I Have tried to get a more accurate representation using a meshgrid of spacing 0.5 x 0.5m and calculating the gradient at each meshpoint, however I am not able to integrate it properly. I also have some edge affects which are affecting the results that I don't know how to correct.
import numpy as np
from scipy import interpolate
from matplotlib import pyplot
from mpl_toolkits.mplot3d import Axes3D
#Createmesh grid with a spacing of 0.5 x 0.5
stepx = 0.5
stepy = 0.5
xx = np.arange(min(x), max(x), stepx)
yy = np.arange(min(y), max(y), stepy)
xgrid, ygrid = np.meshgrid(xx, yy)
grid_z1 = interpolate.griddata((x,y), Arrival_Time, (xgrid, ygrid), method='linear') #Interpolating the Time values
#Formatdata
X = np.ravel(xgrid)
Y= np.ravel(ygrid)
zs = np.ravel(grid_z1)
Z = zs.reshape(X.shape)
#Calculate Gradient
(dx,dy) = np.gradient(grid_z1) #Find gradient for points on meshgrid
Velocity_dx= dx/stepx #velocity ms/m
Velocity_dy= dy/stepx #velocity ms/m
Resultant = (Velocity_dx**2 + Velocity_dy**2)**0.5 #Resultant scalar value ms/m
Resultant = np.ravel(Resultant)
#Plot Original Data F(X,Y) on the meshgrid
fig = pyplot.figure()
ax = fig.add_subplot(projection='3d')
ax.scatter(x,y,Arrival_Time,color='r')
ax.plot_trisurf(X, Y, Z)
ax.set_xlabel('X-Coordinates')
ax.set_ylabel('Y-Coordinates')
ax.set_zlabel('Time (ms)')
pyplot.show()
#Plot the Derivative of f'(X,Y) on the meshgrid
fig = pyplot.figure()
ax = fig.add_subplot(projection='3d')
ax.scatter(X,Y,Resultant,color='r',s=0.2)
ax.plot_trisurf(X, Y, Resultant)
ax.set_xlabel('X-Coordinates')
ax.set_ylabel('Y-Coordinates')
ax.set_zlabel('Velocity (ms/m)')
pyplot.show()
#Integrate to compare the original data input
dxintegral = np.nancumsum(Velocity_dx, axis=1)*stepx
dyintegral = np.nancumsum(Velocity_dy, axis=0)*stepy
valintegral = np.ma.zeros(dxintegral.shape)
for i in range(len(yy)):
for j in range(len(xx)):
valintegral[i, j] = np.ma.sum([dxintegral[0, len(xx) // 2],
dyintegral[i, len(yy) // 2], dxintegral[i, j], - dxintegral[i, len(xx) // 2]])
valintegral = valintegral * np.isfinite(dxintegral)
Now the np.gradient is applied at every meshnode (dx,dy) = np.gradient(grid_z1)
Now in my process I would analyse the gradient values above and make some adjustments (There is some unsual edge effects that are being create which I need to rectify) and would then integrate the values to get back to a surface which would be very similar to f(x,y) shown above.
I need some help adjusting the integration function:
#Integrate to compare the original data input
dxintegral = np.nancumsum(Velocity_dx, axis=1)*stepx
dyintegral = np.nancumsum(Velocity_dy, axis=0)*stepy
valintegral = np.ma.zeros(dxintegral.shape)
for i in range(len(yy)):
for j in range(len(xx)):
valintegral[i, j] = np.ma.sum([dxintegral[0, len(xx) // 2],
dyintegral[i, len(yy) // 2], dxintegral[i, j], - dxintegral[i, len(xx) // 2]])
valintegral = valintegral * np.isfinite(dxintegral)
And now I need to calculate the new 'Time' values at the original (x,y) point locations.
UPDATE (08-09-20) : I am getting some promising results using the help from #Aguy. The results can be seen below (with the blue contours representing the original data, and the red contours representing the integrated values).
I am still working on an integration approach which can remove the inaccuarcies at the areas of min(y) and max(y)
from matplotlib.tri import (Triangulation, UniformTriRefiner,
CubicTriInterpolator,LinearTriInterpolator,TriInterpolator,TriAnalyzer)
import pandas as pd
from scipy.interpolate import griddata
import matplotlib.pyplot as plt
import numpy as np
from scipy import interpolate
#-------------------------------------------------------------------------
# STEP 1: Import data from Excel file, and set variables
#-------------------------------------------------------------------------
df_initial = pd.read_excel(
r'C:\Users\morga\PycharmProjects\venv\Development\Trial'
r'.xlsx')
Inputdata can be found here link
df_initial = df_initial .sort_values(by='Delay', ascending=True) #Update dataframe and sort by Delay
x = df_initial ['X'].to_numpy()
y = df_initial ['Y'].to_numpy()
Arrival_Time = df_initial ['Delay'].to_numpy()
# Createmesh grid with a spacing of 0.5 x 0.5
stepx = 0.5
stepy = 0.5
xx = np.arange(min(x), max(x), stepx)
yy = np.arange(min(y), max(y), stepy)
xgrid, ygrid = np.meshgrid(xx, yy)
grid_z1 = interpolate.griddata((x, y), Arrival_Time, (xgrid, ygrid), method='linear') # Interpolating the Time values
# Calculate Gradient (velocity ms/m)
(dy, dx) = np.gradient(grid_z1) # Find gradient for points on meshgrid
Velocity_dx = dx / stepx # x velocity component ms/m
Velocity_dy = dy / stepx # y velocity component ms/m
# Integrate to compare the original data input
dxintegral = np.nancumsum(Velocity_dx, axis=1) * stepx
dyintegral = np.nancumsum(Velocity_dy, axis=0) * stepy
valintegral = np.ma.zeros(dxintegral.shape) # Makes an array filled with 0's the same shape as dx integral
for i in range(len(yy)):
for j in range(len(xx)):
valintegral[i, j] = np.ma.sum(
[dxintegral[0, len(xx) // 2], dyintegral[i, len(xx) // 2], dxintegral[i, j], - dxintegral[i, len(xx) // 2]])
valintegral[np.isnan(dx)] = np.nan
min_value = np.nanmin(valintegral)
valintegral = valintegral + (min_value * -1)
##Plot Results
fig = plt.figure()
ax = fig.add_subplot()
ax.scatter(x, y, color='black', s=7, zorder=3)
ax.set_xlabel('X-Coordinates')
ax.set_ylabel('Y-Coordinates')
ax.contour(xgrid, ygrid, valintegral, levels=50, colors='red', zorder=2)
ax.contour(xgrid, ygrid, grid_z1, levels=50, colors='blue', zorder=1)
ax.set_aspect('equal')
plt.show()
TL;DR;
You have multiple challenges to address in this issue, mainly:
Potential reconstruction (scalar field) from its gradient (vector field)
But also:
Observation in a concave hull with non rectangular grid;
Numerical 2D line integration and numerical inaccuracy;
It seems it can be solved by choosing an adhoc interpolant and a smart way to integrate (as pointed out by #Aguy).
MCVE
In a first time, let's build a MCVE to highlight above mentioned key points.
Dataset
We recreate a scalar field and its gradient.
import numpy as np
from scipy import interpolate
import matplotlib.pyplot as plt
def f(x, y):
return x**2 + x*y + 2*y + 1
Nx, Ny = 21, 17
xl = np.linspace(-3, 3, Nx)
yl = np.linspace(-2, 2, Ny)
X, Y = np.meshgrid(xl, yl)
Z = f(X, Y)
zl = np.arange(np.floor(Z.min()), np.ceil(Z.max())+1, 2)
dZdy, dZdx = np.gradient(Z, yl, xl, edge_order=1)
V = np.hypot(dZdx, dZdy)
The scalar field looks like:
axe = plt.axes(projection='3d')
axe.plot_surface(X, Y, Z, cmap='jet', alpha=0.5)
axe.view_init(elev=25, azim=-45)
And, the vector field looks like:
axe = plt.contour(X, Y, Z, zl, cmap='jet')
axe.axes.quiver(X, Y, dZdx, dZdy, V, units='x', pivot='tip', cmap='jet')
axe.axes.set_aspect('equal')
axe.axes.grid()
Indeed gradient is normal to potential levels. We also plot the gradient magnitude:
axe = plt.contour(X, Y, V, 10, cmap='jet')
axe.axes.set_aspect('equal')
axe.axes.grid()
Raw field reconstruction
If we naively reconstruct the scalar field from the gradient:
SdZx = np.cumsum(dZdx, axis=1)*np.diff(xl)[0]
SdZy = np.cumsum(dZdy, axis=0)*np.diff(yl)[0]
Zhat = np.zeros(SdZx.shape)
for i in range(Zhat.shape[0]):
for j in range(Zhat.shape[1]):
Zhat[i,j] += np.sum([SdZy[i,0], -SdZy[0,0], SdZx[i,j], -SdZx[i,0]])
Zhat += Z[0,0] - Zhat[0,0]
We can see the global result is roughly correct, but levels are less accurate where the gradient magnitude is low:
Interpolated field reconstruction
If we increase the grid resolution and pick a specific interpolant (usual when dealing with mesh grid), we can get a finer field reconstruction:
r = np.stack([X.ravel(), Y.ravel()]).T
Sx = interpolate.CloughTocher2DInterpolator(r, dZdx.ravel())
Sy = interpolate.CloughTocher2DInterpolator(r, dZdy.ravel())
Nx, Ny = 200, 200
xli = np.linspace(xl.min(), xl.max(), Nx)
yli = np.linspace(yl.min(), yl.max(), Nx)
Xi, Yi = np.meshgrid(xli, yli)
ri = np.stack([Xi.ravel(), Yi.ravel()]).T
dZdxi = Sx(ri).reshape(Xi.shape)
dZdyi = Sy(ri).reshape(Xi.shape)
SdZxi = np.cumsum(dZdxi, axis=1)*np.diff(xli)[0]
SdZyi = np.cumsum(dZdyi, axis=0)*np.diff(yli)[0]
Zhati = np.zeros(SdZxi.shape)
for i in range(Zhati.shape[0]):
for j in range(Zhati.shape[1]):
Zhati[i,j] += np.sum([SdZyi[i,0], -SdZyi[0,0], SdZxi[i,j], -SdZxi[i,0]])
Zhati += Z[0,0] - Zhati[0,0]
Which definitely performs way better:
So basically, increasing the grid resolution with an adhoc interpolant may help you to get more accurate result. The interpolant also solve the need to get a regular rectangular grid from a triangular mesh to perform integration.
Concave and convex hull
You also have pointed out inaccuracy on the edges. Those are the result of the combination of the interpolant choice and the integration methodology. The integration methodology fails to properly compute the scalar field when it reach concave region with few interpolated points. The problem disappear when choosing a mesh-free interpolant able to extrapolate.
To illustrate it, let's remove some data from our MCVE:
q = np.full(dZdx.shape, False)
q[0:6,5:11] = True
q[-6:,-6:] = True
dZdx[q] = np.nan
dZdy[q] = np.nan
Then the interpolant can be constructed as follow:
q2 = ~np.isnan(dZdx.ravel())
r = np.stack([X.ravel(), Y.ravel()]).T[q2,:]
Sx = interpolate.CloughTocher2DInterpolator(r, dZdx.ravel()[q2])
Sy = interpolate.CloughTocher2DInterpolator(r, dZdy.ravel()[q2])
Performing the integration we see that in addition of classical edge effect we do have less accurate value in concave regions (swingy dot-dash lines where the hull is concave) and we have no data outside the convex hull as Clough Tocher is a mesh-based interpolant:
Vl = np.arange(0, 11, 1)
axe = plt.contour(X, Y, np.hypot(dZdx, dZdy), Vl, cmap='jet')
axe.axes.contour(Xi, Yi, np.hypot(dZdxi, dZdyi), Vl, cmap='jet', linestyles='-.')
axe.axes.set_aspect('equal')
axe.axes.grid()
So basically the error we are seeing on the corner are most likely due to integration issue combined with interpolation limited to the convex hull.
To overcome this we can choose a different interpolant such as RBF (Radial Basis Function Kernel) which is able to create data outside the convex hull:
Sx = interpolate.Rbf(r[:,0], r[:,1], dZdx.ravel()[q2], function='thin_plate')
Sy = interpolate.Rbf(r[:,0], r[:,1], dZdy.ravel()[q2], function='thin_plate')
dZdxi = Sx(ri[:,0], ri[:,1]).reshape(Xi.shape)
dZdyi = Sy(ri[:,0], ri[:,1]).reshape(Xi.shape)
Notice the slightly different interface of this interpolator (mind how parmaters are passed).
The result is the following:
We can see the region outside the convex hull can be extrapolated (RBF are mesh free). So choosing the adhoc interpolant is definitely a key point to solve your problem. But we still need to be aware that extrapolation may perform well but is somehow meaningless and dangerous.
Solving your problem
The answer provided by #Aguy is perfectly fine as it setups a clever way to integrate that is not disturbed by missing points outside the convex hull. But as you mentioned there is inaccuracy in concave region inside the convex hull.
If you wish to remove the edge effect you detected, you will have to resort to an interpolant able to extrapolate as well, or find another way to integrate.
Interpolant change
Using RBF interpolant seems to solve your problem. Here is the complete code:
df = pd.read_excel('./Trial-Wireup 2.xlsx')
x = df['X'].to_numpy()
y = df['Y'].to_numpy()
z = df['Delay'].to_numpy()
r = np.stack([x, y]).T
#S = interpolate.CloughTocher2DInterpolator(r, z)
#S = interpolate.LinearNDInterpolator(r, z)
S = interpolate.Rbf(x, y, z, epsilon=0.1, function='thin_plate')
N = 200
xl = np.linspace(x.min(), x.max(), N)
yl = np.linspace(y.min(), y.max(), N)
X, Y = np.meshgrid(xl, yl)
#Zp = S(np.stack([X.ravel(), Y.ravel()]).T)
Zp = S(X.ravel(), Y.ravel())
Z = Zp.reshape(X.shape)
dZdy, dZdx = np.gradient(Z, yl, xl, edge_order=1)
SdZx = np.nancumsum(dZdx, axis=1)*np.diff(xl)[0]
SdZy = np.nancumsum(dZdy, axis=0)*np.diff(yl)[0]
Zhat = np.zeros(SdZx.shape)
for i in range(Zhat.shape[0]):
for j in range(Zhat.shape[1]):
#Zhat[i,j] += np.nansum([SdZy[i,0], -SdZy[0,0], SdZx[i,j], -SdZx[i,0]])
Zhat[i,j] += np.nansum([SdZx[0,N//2], SdZy[i,N//2], SdZx[i,j], -SdZx[i,N//2]])
Zhat += Z[100,100] - Zhat[100,100]
lz = np.linspace(0, 5000, 20)
axe = plt.contour(X, Y, Z, lz, cmap='jet')
axe = plt.contour(X, Y, Zhat, lz, cmap='jet', linestyles=':')
axe.axes.plot(x, y, '.', markersize=1)
axe.axes.set_aspect('equal')
axe.axes.grid()
Which graphically renders as follow:
The edge effect is gone because of the RBF interpolant can extrapolate over the whole grid. You can confirm it by comparing the result of mesh-based interpolants.
Linear
Clough Tocher
Integration variable order change
We can also try to find a better way to integrate and mitigate the edge effect, eg. let's change the integration variable order:
Zhat[i,j] += np.nansum([SdZy[N//2,0], SdZx[N//2,j], SdZy[i,j], -SdZy[N//2,j]])
With a classic linear interpolant. The result is quite correct, but we still have an edge effect on the bottom left corner:
As you noticed the problem occurs at the middle of the axis in region where the integration starts and lacks a reference point.
Here is one approach:
First, in order to be able to do integration, it's good to be on a regular grid. Using here variable names x and y as short for your triang.x and triang.y we can first create a grid:
import numpy as np
n = 200 # Grid density
stepx = (max(x) - min(x)) / n
stepy = (max(y) - min(y)) / n
xspace = np.arange(min(x), max(x), stepx)
yspace = np.arange(min(y), max(y), stepy)
xgrid, ygrid = np.meshgrid(xspace, yspace)
Then we can interpolate dx and dy on the grid using the same LinearTriInterpolator function:
fdx = LinearTriInterpolator(masked_triang, dx)
fdy = LinearTriInterpolator(masked_triang, dy)
dxgrid = fdx(xgrid, ygrid)
dygrid = fdy(xgrid, ygrid)
Now comes the integration part. In principle, any path we choose should get us to the same value. In practice, since there are missing values and different densities, the choice of path is very important to get a reasonably accurate answer.
Below I choose to integrate over dxgrid in the x direction from 0 to the middle of the grid at n/2. Then integrate over dygrid in the y direction from 0 to the i point of interest. Then over dxgrid again from n/2 to the point j of interest. This is a simple way to make sure most of the path of integration is inside the bulk of available data by simply picking a path that goes mostly in the "middle" of the data range. Other alternative consideration would lead to different path selections.
So we do:
dxintegral = np.nancumsum(dxgrid, axis=1) * stepx
dyintegral = np.nancumsum(dygrid, axis=0) * stepy
and then (by somewhat brute force for clarity):
valintegral = np.ma.zeros(dxintegral.shape)
for i in range(n):
for j in range(n):
valintegral[i, j] = np.ma.sum([dxintegral[0, n // 2], dyintegral[i, n // 2], dxintegral[i, j], - dxintegral[i, n // 2]])
valintegral = valintegral * np.isfinite(dxintegral)
valintegral would be the result up to an arbitrary constant which can help put the "zero" where you want.
With your data shown here:
ax.tricontourf(masked_triang, time_array)
This is what I'm getting reconstructed when using this method:
ax.contourf(xgrid, ygrid, valintegral)
Hopefully this is somewhat helpful.
If you want to revisit the values at the original triangulation points, you can use interp2d on the valintegral regular grid data.
EDIT:
In reply to your edit, your adaptation above has a few errors:
Change the line (dx,dy) = np.gradient(grid_z1) to (dy,dx) = np.gradient(grid_z1)
In the integration loop change the dyintegral[i, len(yy) // 2] term to dyintegral[i, len(xx) // 2]
Better to replace the line valintegral = valintegral * np.isfinite(dxintegral) with valintegral[np.isnan(dx)] = np.nan

How to efficiently compute the heat map of two Gaussian distribution in Python?

I am trying to produce a heat map where the pixel values are governed by two independent 2D Gaussian distributions. Let them be Kernel1 (muX1, muY1, sigmaX1, sigmaY1) and Kernel2 (muX2, muY2, sigmaX2, sigmaY2) respectively. To be more specific, the length of each kernel is three times its standard deviation. The first Kernel has sigmaX1 = sigmaY1 and the second Kernel has sigmaX2 < sigmaY2. Covariance matrix of both kernels are diagonal (X and Y are independent). Kernel1 is usually completely inside Kernel2.
I tried the following two approaches and the results are both unsatisfactory. Can someone give me some advice?
Approach1:
Iterate over all pixel value pairs (i, j) on the map and compute the value of I(i,j) given by I(i,j) = P(i, j | Kernel1, Kernel2) = 1 - (1 - P(i, j | Kernel1)) * (1 - P(i, j | Kernel2)). Then I got the following result, which is good in terms of smoothness. But it takes 10 seconds to run on my computer, which is too slow.
Codes:
def genDensityBox(self, height, width, muY1, muX1, muY2, muX2, sigmaK1, sigmaY2, sigmaX2):
densityBox = np.zeros((height, width))
for y in range(height):
for x in range(width):
densityBox[y, x] += 1. - (1. - multivariateNormal(y, x, muY1, muX1, sigmaK1, sigmaK1)) * (1. - multivariateNormal(y, x, muY2, muX2, sigmaY2, sigmaX2))
return densityBox
def multivariateNormal(y, x, muY, muX, sigmaY, sigmaX):
return norm.pdf(y, loc=muY, scale=sigmaY) * norm.pdf(x, loc=muX, scale=sigmaX)
Approach2:
Generate two images corresponding to two kernels separately and then blend them together using certain alpha value. Each image is generated by taking the outer product of two one-dimensional Gaussian filter. Then I got the following result, which is very crude. But the advantage of this approach is that it is very fast due to the use of outer product between two vectors.
Since the first one is slow and the second on is crude, I am trying to find a new approach that achieves good smoothness and low time-complexity at the same time. Can someone give me some help?
Thanks!
For the second approach, the 2D Gaussian map can be easily generated as mentioned here:
def gkern(self, sigmaY, sigmaX, yKernelLen, xKernelLen, nsigma=3):
"""Returns a 2D Gaussian kernel array."""
yInterval = (2*nsigma+1.)/(yKernelLen)
yRow = np.linspace(-nsigma-yInterval/2.,nsigma+yInterval/2.,yKernelLen + 1)
kernelY = np.diff(st.norm.cdf(yRow, 0, sigmaY))
xInterval = (2*nsigma+1.)/(xKernelLen)
xRow = np.linspace(-nsigma-xInterval/2.,nsigma+xInterval/2.,xKernelLen + 1)
kernelX = np.diff(st.norm.cdf(xRow, 0, sigmaX))
kernelRaw = np.sqrt(np.outer(kernelY, kernelX))
kernel = kernelRaw / (kernelRaw.sum())
return kernel
Your approach is fine other than that you shouldn't loop over norm.pdf but just push all values at which you want the kernel(s) evaluated, and then reshape the output to the desired shape of the image.
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import multivariate_normal
# create 2 kernels
m1 = (-1,-1)
s1 = np.eye(2)
k1 = multivariate_normal(mean=m1, cov=s1)
m2 = (1,1)
s2 = np.eye(2)
k2 = multivariate_normal(mean=m2, cov=s2)
# create a grid of (x,y) coordinates at which to evaluate the kernels
xlim = (-3, 3)
ylim = (-3, 3)
xres = 100
yres = 100
x = np.linspace(xlim[0], xlim[1], xres)
y = np.linspace(ylim[0], ylim[1], yres)
xx, yy = np.meshgrid(x,y)
# evaluate kernels at grid points
xxyy = np.c_[xx.ravel(), yy.ravel()]
zz = k1.pdf(xxyy) + k2.pdf(xxyy)
# reshape and plot image
img = zz.reshape((xres,yres))
plt.imshow(img); plt.show()
This approach shouldn't take too long:
In [26]: %timeit zz = k1.pdf(xxyy) + k2.pdf(xxyy)
1000 loops, best of 3: 1.16 ms per loop
Based on Paul's answer, I made a function to make a heatmap of gaussians taking as input the centers of the gaussians (it could be helpful to others) :
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import multivariate_normal
def points_to_gaussian_heatmap(centers, height, width, scale):
gaussians = []
for y,x in centers:
s = np.eye(2)*scale
g = multivariate_normal(mean=(x,y), cov=s)
gaussians.append(g)
# create a grid of (x,y) coordinates at which to evaluate the kernels
x = np.arange(0, width)
y = np.arange(0, height)
xx, yy = np.meshgrid(x,y)
xxyy = np.stack([xx.ravel(), yy.ravel()]).T
# evaluate kernels at grid points
zz = sum(g.pdf(xxyy) for g in gaussians)
img = zz.reshape((height,width))
return img
W = 800 # width of heatmap
H = 400 # height of heatmap
SCALE = 64 # increase scale to make larger gaussians
CENTERS = [(100,100),
(100,300),
(300,100)] # center points of the gaussians
img = points_to_gaussian_heatmap(CENTERS, H, W, SCALE)
plt.imshow(img); plt.show()

How do I fit my data to an Airy Function in python?

My code takes an image of a pinhole aperture and fits the data to a Gaussian. Using the Gaussian fit it calculates the Full-Width at Half Maximum. This tells me the resolution of my imaging system.
Here is the fit I get with my code right now:
According to the theory for pinhole diffraction images, the data should correspond to an Airy disk function. For completeness I want to fit the data to a Bessel function or Airy disk pattern. I cannot find any packages that will fit these functions.
Here is the picture I am using:
You can just make out the outer fringes around the central bright spot. Those are the fringes I want to account for in my fit.
import numpy as np
import scipy.optimize as opt
import PIL
from PIL import ImageFilter
from pylab import *
#defining the Gaussian
def gauss(x, p): # p[0]==mean, p[1]==stdev
return 1.0/(p[1]*np.sqrt(2*np.pi))*np.exp(-(x-p[0])**2/(2*p[1]**2))
im = PIL.Image.open('C:/Documents/User/3000.bmp').convert("L") #convert to array
imArr = np.array(im, dtype=float)
bg = np.average(imArr) #find the background, subtract it
imArr = imArr - bg
#get the approx coordinates of brightest spot by filtering
im2 = im.filter(ImageFilter.GaussianBlur(radius=2))
imArr2 = np.array(im2, dtype=float)
tuple = unravel_index(imArr2.argmax(), imArr2.shape)
#find and plot FWHM for the brightest spot
x = np.arange(tuple[1] - 100, tuple[1] + 100, dtype=np.float)
y = imArr[tuple[0], tuple[1] - 100:tuple[1] + 100]
y /= ((max(x) - min(x)) / len(x)) * np.sum(y) # renormalize to a proper Gaussian
p0 = [tuple[1], tuple[0]]
errfunc = lambda p, x, y: gauss(x, p) - y # distance to the target function
p1, success = opt.leastsq(errfunc, p0[:], args=(x, y))
fit_mu, fit_stdev = p1
FWHM = 2*np.sqrt(2*np.log(2))*fit_stdev
print "FWHM", FWHM
plt.plot(x,y)
plt.plot(x, gauss(x,p1), lw=3, alpha=.5, color='r')
plt.axvspan(fit_mu-FWHM/2, fit_mu+FWHM/2, facecolor='g', alpha=0.5)
plt.show()

Generating 3D Gaussian distribution in Python

I want to generate a Gaussian distribution in Python with the x and y dimensions denoting position and the z dimension denoting the magnitude of a certain quantity.
The distribution has a maximum value of 2e6 and a standard deviation sigma=0.025.
In MATLAB I can do this with:
x1 = linspace(-1,1,30);
x2 = linspace(-1,1,30);
mu = [0,0];
Sigma = [.025,.025];
[X1,X2] = meshgrid(x1,x2);
F = mvnpdf([X1(:) X2(:)],mu,Sigma);
F = 314159.153*reshape(F,length(x2),length(x1));
surf(x1,x2,F);
In Python, what I have so far is:
x = np.linspace(-1,1,30)
y = np.linspace(-1,1,30)
mu = (np.median(x),np.median(y))
sigma = (.025,.025)
There is a Numpy function numpy.random.multivariate_normal what can supposedly do the same as MATLAB's mvnpdf, but I am struggling to undestand the documentation. Especially in obtaining the covariance matrix needed by numpy.random.multivariate_normal.
As of scipy 0.14, you can use scipy.stats.multivariate_normal.pdf()
import numpy as np
from scipy.stats import multivariate_normal
x, y = np.mgrid[-1.0:1.0:30j, -1.0:1.0:30j]
# Need an (N, 2) array of (x, y) pairs.
xy = np.column_stack([x.flat, y.flat])
mu = np.array([0.0, 0.0])
sigma = np.array([.025, .025])
covariance = np.diag(sigma**2)
z = multivariate_normal.pdf(xy, mean=mu, cov=covariance)
# Reshape back to a (30, 30) grid.
z = z.reshape(x.shape)
I am working on a scikit called scikit-guess that contains some fast estimation routines for non-linear fits. It has a function skg.ngauss.model (also accessible as skg.ngauss_fit.model or skg.ngauss.ngauss_fit.model) which does exactly what you want. The nice thing is that it's not a PDF, so you set the amplitude out of the box:
import numpy as np
import skg.ngauss
a = 2e6
mu = 0, 0
sigma = 0.025, 0.025
x = y = np.linspace(-1, 1, 31)
cov = np.diag(sigma)**2
X = np.meshgrid(x, y)
data = skg.ngauss.model(X, a, mu, cov, axis=0)
You need to tell it axis=0 because it automatically stacks your arrays for you. To avoid passing in that argument, you could write
X = np.stack(np.meshgrid(x, y), axis=-1)
You can plot the result:
from matplotlib import pyplot as plt
plt.imshow(data)
plt.show()
This is not a very exciting distribution because the spread is so small that you end up with a value of ~2e-5 just one pixel away. You may want to up your sampling space to get any sort of meaningful resolution.
Note: At time of writing, the fitting function (ngauss_fit) is still buggy, but the model has been tested successfully, just not in the scikit.
Disclaimer: In case it wasn't obvious from the above, I am the author of scikit-guess.

Fitting a Weibull distribution using Scipy

I am trying to recreate maximum likelihood distribution fitting, I can already do this in Matlab and R, but now I want to use scipy. In particular, I would like to estimate the Weibull distribution parameters for my data set.
I have tried this:
import scipy.stats as s
import numpy as np
import matplotlib.pyplot as plt
def weib(x,n,a):
return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)
data = np.loadtxt("stack_data.csv")
(loc, scale) = s.exponweib.fit_loc_scale(data, 1, 1)
print loc, scale
x = np.linspace(data.min(), data.max(), 1000)
plt.plot(x, weib(x, loc, scale))
plt.hist(data, data.max(), density=True)
plt.show()
And get this:
(2.5827280639441961, 3.4955032285727947)
And a distribution that looks like this:
I have been using the exponweib after reading this http://www.johndcook.com/distributions_scipy.html. I have also tried the other Weibull functions in scipy (just in case!).
In Matlab (using the Distribution Fitting Tool - see screenshot) and in R (using both the MASS library function fitdistr and the GAMLSS package) I get a (loc) and b (scale) parameters more like 1.58463497 5.93030013. I believe all three methods use the maximum likelihood method for distribution fitting.
I have posted my data here if you would like to have a go! And for completeness I am using Python 2.7.5, Scipy 0.12.0, R 2.15.2 and Matlab 2012b.
Why am I getting a different result!?
My guess is that you want to estimate the shape parameter and the scale of the Weibull distribution while keeping the location fixed. Fixing loc assumes that the values of your data and of the distribution are positive with lower bound at zero.
floc=0 keeps the location fixed at zero, f0=1 keeps the first shape parameter of the exponential weibull fixed at one.
>>> stats.exponweib.fit(data, floc=0, f0=1)
[1, 1.8553346917584836, 0, 6.8820748596850905]
>>> stats.weibull_min.fit(data, floc=0)
[1.8553346917584836, 0, 6.8820748596850549]
The fit compared to the histogram looks ok, but not very good. The parameter estimates are a bit higher than the ones you mention are from R and matlab.
Update
The closest I can get to the plot that is now available is with unrestricted fit, but using starting values. The plot is still less peaked. Note values in fit that don't have an f in front are used as starting values.
>>> from scipy import stats
>>> import matplotlib.pyplot as plt
>>> plt.plot(data, stats.exponweib.pdf(data, *stats.exponweib.fit(data, 1, 1, scale=02, loc=0)))
>>> _ = plt.hist(data, bins=np.linspace(0, 16, 33), normed=True, alpha=0.5);
>>> plt.show()
It is easy to verify which result is the true MLE, just need a simple function to calculate log likelihood:
>>> def wb2LL(p, x): #log-likelihood
return sum(log(stats.weibull_min.pdf(x, p[1], 0., p[0])))
>>> adata=loadtxt('/home/user/stack_data.csv')
>>> wb2LL(array([6.8820748596850905, 1.8553346917584836]), adata)
-8290.1227946678173
>>> wb2LL(array([5.93030013, 1.57463497]), adata)
-8410.3327470347667
The result from fit method of exponweib and R fitdistr (#Warren) is better and has higher log likelihood. It is more likely to be the true MLE. It is not surprising that the result from GAMLSS is different. It is a complete different statistic model: Generalized Additive Model.
Still not convinced? We can draw a 2D confidence limit plot around MLE, see Meeker and Escobar's book for detail).
Again this verifies that array([6.8820748596850905, 1.8553346917584836]) is the right answer as loglikelihood is lower that any other point in the parameter space. Note:
>>> log(array([6.8820748596850905, 1.8553346917584836]))
array([ 1.92892018, 0.61806511])
BTW1, MLE fit may not appears to fit the distribution histogram tightly. An easy way to think about MLE is that MLE is the parameter estimate most probable given the observed data. It doesn't need to visually fit the histogram well, that will be something minimizing mean square error.
BTW2, your data appears to be leptokurtic and left-skewed, which means Weibull distribution may not fit your data well. Try, e.g. Gompertz-Logistic, which improves log-likelihood by another about 100.
Cheers!
I know it's an old post, but I just faced a similar problem and this thread helped me solve it. Thought my solution might be helpful for others like me:
# Fit Weibull function, some explanation below
params = stats.exponweib.fit(data, floc=0, f0=1)
shape = params[1]
scale = params[3]
print 'shape:',shape
print 'scale:',scale
#### Plotting
# Histogram first
values,bins,hist = plt.hist(data,bins=51,range=(0,25),normed=True)
center = (bins[:-1] + bins[1:]) / 2.
# Using all params and the stats function
plt.plot(center,stats.exponweib.pdf(center,*params),lw=4,label='scipy')
# Using my own Weibull function as a check
def weibull(u,shape,scale):
'''Weibull distribution for wind speed u with shape parameter k and scale parameter A'''
return (shape / scale) * (u / scale)**(shape-1) * np.exp(-(u/scale)**shape)
plt.plot(center,weibull(center,shape,scale),label='Wind analysis',lw=2)
plt.legend()
Some extra info that helped me understand:
Scipy Weibull function can take four input parameters: (a,c),loc and scale.
You want to fix the loc and the first shape parameter (a), this is done with floc=0,f0=1. Fitting will then give you params c and scale, where c corresponds to the shape parameter of the two-parameter Weibull distribution (often used in wind data analysis) and scale corresponds to its scale factor.
From docs:
exponweib.pdf(x, a, c) =
a * c * (1-exp(-x**c))**(a-1) * exp(-x**c)*x**(c-1)
If a is 1, then
exponweib.pdf(x, a, c) =
c * (1-exp(-x**c))**(0) * exp(-x**c)*x**(c-1)
= c * (1) * exp(-x**c)*x**(c-1)
= c * x **(c-1) * exp(-x**c)
From this, the relation to the 'wind analysis' Weibull function should be more clear
I was curious about your question and, despite this is not an answer, it compares the Matlab result with your result and with the result using leastsq, which showed the best correlation with the given data:
The code is as follows:
import scipy.stats as s
import numpy as np
import matplotlib.pyplot as plt
import numpy.random as mtrand
from scipy.integrate import quad
from scipy.optimize import leastsq
## my distribution (Inverse Normal with shape parameter mu=1.0)
def weib(x,n,a):
return (a / n) * (x / n)**(a-1) * np.exp(-(x/n)**a)
def residuals(p,x,y):
integral = quad( weib, 0, 16, args=(p[0],p[1]) )[0]
penalization = abs(1.-integral)*100000
return y - weib(x, p[0],p[1]) + penalization
#
data = np.loadtxt("stack_data.csv")
x = np.linspace(data.min(), data.max(), 100)
n, bins, patches = plt.hist(data,bins=x, normed=True)
binsm = (bins[1:]+bins[:-1])/2
popt, pcov = leastsq(func=residuals, x0=(1.,1.), args=(binsm,n))
loc, scale = 1.58463497, 5.93030013
plt.plot(binsm,n)
plt.plot(x, weib(x, loc, scale),
label='weib matlab, loc=%1.3f, scale=%1.3f' % (loc, scale), lw=4.)
loc, scale = s.exponweib.fit_loc_scale(data, 1, 1)
plt.plot(x, weib(x, loc, scale),
label='weib stack, loc=%1.3f, scale=%1.3f' % (loc, scale), lw=4.)
plt.plot(x, weib(x,*popt),
label='weib leastsq, loc=%1.3f, scale=%1.3f' % tuple(popt), lw=4.)
plt.legend(loc='upper right')
plt.show()
I had the same problem, but found that setting loc=0 in exponweib.fit primed the pump for the optimization. That was all that was needed from #user333700's answer. I couldn't load your data -- your data link points to an image, not data. So I ran a test on my data instead:
import scipy.stats as ss
import matplotlib.pyplot as plt
import numpy as np
N=30
counts, bins = np.histogram(x, bins=N)
bin_width = bins[1]-bins[0]
total_count = float(sum(counts))
f, ax = plt.subplots(1, 1)
f.suptitle(query_uri)
ax.bar(bins[:-1]+bin_width/2., counts, align='center', width=.85*bin_width)
ax.grid('on')
def fit_pdf(x, name='lognorm', color='r'):
dist = getattr(ss, name) # params = shape, loc, scale
# dist = ss.gamma # 3 params
params = dist.fit(x, loc=0) # 1-day lag minimum for shipping
y = dist.pdf(bins, *params)*total_count*bin_width
sqerror_sum = np.log(sum(ci*(yi - ci)**2. for (ci, yi) in zip(counts, y)))
ax.plot(bins, y, color, lw=3, alpha=0.6, label='%s err=%3.2f' % (name, sqerror_sum))
return y
colors = ['r-', 'g-', 'r:', 'g:']
for name, color in zip(['exponweib', 't', 'gamma'], colors): # 'lognorm', 'erlang', 'chi2', 'weibull_min',
y = fit_pdf(x, name=name, color=color)
ax.legend(loc='best', frameon=False)
plt.show()
There have been a few answers to this already here and in other places. likt in Weibull distribution and the data in the same figure (with numpy and scipy)
It still took me a while to come up with a clean toy example so I though it would be useful to post.
from scipy import stats
import matplotlib.pyplot as plt
#input for pseudo data
N = 10000
Kappa_in = 1.8
Lambda_in = 10
a_in = 1
loc_in = 0
#Generate data from given input
data = stats.exponweib.rvs(a=a_in,c=Kappa_in, loc=loc_in, scale=Lambda_in, size = N)
#The a and loc are fixed in the fit since it is standard to assume they are known
a_out, Kappa_out, loc_out, Lambda_out = stats.exponweib.fit(data, f0=a_in,floc=loc_in)
#Plot
bins = range(51)
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.plot(bins, stats.exponweib.pdf(bins, a=a_out,c=Kappa_out,loc=loc_out,scale = Lambda_out))
ax.hist(data, bins = bins , density=True, alpha=0.5)
ax.annotate("Shape: $k = %.2f$ \n Scale: $\lambda = %.2f$"%(Kappa_out,Lambda_out), xy=(0.7, 0.85), xycoords=ax.transAxes)
plt.show()
In the meantime, there is really good package out there: reliability. Here is the documentation: reliability # readthedocs.
Your code simply becomes:
from reliability.Fitters import Fit_Weibull_2P
...
wb = Fit_Weibull_2P(failures=data)
plt.show()
Saves a lot of headaches and makes beautiful plots, too.
the order of loc and scale is messed up in the code:
plt.plot(x, weib(x, scale, loc))
the scale parameter should come first.

Categories