I have the following code (minus some other operations):
def foobar():
msg=None
if foo:
msg='foo'
else:
msg='bar'
return msg
Is the following better practice for the msg variable?
def foobar():
if foo:
msg='foo'
else:
msg='bar'
return msg
I'm aware that I could simplify the above functions to ternary expressions, however there are operations in each if-else block that I've left out.
Either should be fine but I would probably do:
def foobar():
msg='bar'
if foo:
msg='foo'
return msg
Just for completeness, here are some one-line alternatives to if/else blocks:
msg = 'foo' if foo else 'bar'
msg = foo and 'foo' or 'bar'
msg = ('bar', 'foo')[bool(foo)]
The first of those is definitely the most clear, if you don't like the one-liner I would suggest using your second method or thagorn's answer. The bool() call is only necessary in the last one if foo is not already a bool (or 0/1).
Obviously in your example function you could just return this immediately without even using a msg variable:
def foobar():
return 'foo' if foo else 'bar'
In Python there's no great advantage to initializing before a conditional as in your first example. You just need to be sure that the variable is initialized before it's returned. That assumes (based on your examples) that you're using the "single exit point" paradigm. In some cases in Python it's appropriate, but other times you get cleaner code by exiting early when possible.
def earlyReturn(mycheck):
if not mycheck:
return 'You forgot something.'
# code here if the test passes without needing an extra level of indentation.
I realize that there are some things left out, but if you don't actually need to manipulate msg, I imagine you could just return the intended contents, without ever needing a variable; return 'foo'
I would definitely say that the later is better. There is no recommendation for Python to initialize variables. Therefor it shall be avoided if it's not adding something of value to the code like a fallback value or makes the code more readible, which it does'nt in this case.
Edit: By fallback value I mean the same as thagorn and mikebabcock has suggested.
If what you've shown is all that msg is involved in, then initializing it doesn't do anything for you, and the second solution is better.
If that's the entire logic, why not do:
def foobar():
msg='bar'
if foo:
msg='foo'
return msg
Related
Is there a way in python (without using switch statements or if's and an array) to call a function with the same name as an input. E.g.
x=input("string input")
def foo():
print("foo")
def bar():
print("bar")
if x is "foo" I want to call foo()
Doing what you're asking is possible, but not generally a good idea. eval() can be used almost trivially for any user to do literally anything to your computer (it executes literally any arbitrary code passed to it). Slicing into the local list of variables using locals() has no guarantee not to throw an exception, and has its own security concerns related to arbitrary code execution. The better way to do this is to create a dictionary that maps your functions to strings as options for the user to select...
def foo():
pass
def bar():
pass
def baz():
pass
dict_of_functions = {'foo': foo, 'bar': bar, 'baz': baz}
choice = raw_input('select a function') #just input() for python 3.x
chosen_func = dict_of_functions[choice]
chosen_func()
The problem with you requirement is that you are mixing two languages: the language of you program, and the language that the user uses. As mentioned by #Aaron, you can use a dictionary, mapping between these two languages (see there).
The important things is that you can easily change the intended input or the function names - these are separated ("decoupled"). You also know that a malicious user cannot call any other function.
If the function is defined in global scope, you can look it up in the global namespace dictionary, which you can access using the function globals():
f = globals().get(x)
if f:
f()
else:
print("Function %s not found" % x)
This is a terrible idea due to the potential security risk. Imagine people can decide whatever function to execute in your computer.
You should always define a boundary on which functions are allowed to be executed. i.e. define a dictionary maps command string to function like {"cmd": func} This also encapsulates the command name well, the underlying function can be changed without expose such change to the user
I often do interactive work in Python that involves some expensive operations that I don't want to repeat often. I'm generally running whatever Python file I'm working on frequently.
If I write:
import functools32
#functools32.lru_cache()
def square(x):
print "Squaring", x
return x*x
I get this behavior:
>>> square(10)
Squaring 10
100
>>> square(10)
100
>>> runfile(...)
>>> square(10)
Squaring 10
100
That is, rerunning the file clears the cache. This works:
try:
safe_square
except NameError:
#functools32.lru_cache()
def safe_square(x):
print "Squaring", x
return x*x
but when the function is long it feels strange to have its definition inside a try block. I can do this instead:
def _square(x):
print "Squaring", x
return x*x
try:
safe_square_2
except NameError:
safe_square_2 = functools32.lru_cache()(_square)
but it feels pretty contrived (for example, in calling the decorator without an '#' sign)
Is there a simple way to handle this, something like:
#non_resetting_lru_cache()
def square(x):
print "Squaring", x
return x*x
?
Writing a script to be executed repeatedly in the same session is an odd thing to do.
I can see why you'd want to do it, but it's still odd, and I don't think it's unreasonable for the code to expose that oddness by looking a little odd, and having a comment explaining it.
However, you've made things uglier than necessary.
First, you can just do this:
#functools32.lru_cache()
def _square(x):
print "Squaring", x
return x*x
try:
safe_square_2
except NameError:
safe_square_2 = _square
There is no harm in attaching a cache to the new _square definition. It won't waste any time, or more than a few bytes of storage, and, most importantly, it won't affect the cache on the previous _square definition. That's the whole point of closures.
There is a potential problem here with recursive functions. It's already inherent in the way you're working, and the cache doesn't add to it in any way, but you might only notice it because of the cache, so I'll explain it and show how to fix it. Consider this function:
#lru_cache()
def _fact(n):
if n < 2:
return 1
return _fact(n-1) * n
When you re-exec the script, even if you have a reference to the old _fact, it's going to end up calling the new _fact, because it's accessing _fact as a global name. It has nothing to do with the #lru_cache; remove that, and the old function will still end up calling the new _fact.
But if you're using the renaming trick above, you can just call the renamed version:
#lru_cache()
def _fact(n):
if n < 2:
return 1
return fact(n-1) * n
Now the old _fact will call fact, which is still the old _fact. Again, this works identically with or without the cache decorator.
Beyond that initial trick, you can factor that whole pattern out into a simple decorator. I'll explain step by step below, or see this blog post.
Anyway, even with the less-ugly version, it's still a bit ugly and verbose. And if you're doing this dozens of times, my "well, it should look a bit ugly" justification will wear thin pretty fast. So, you'll want to handle this the same way you always factor out ugliness: wrap it in a function.
You can't really pass names around as objects in Python. And you don't want to use a hideous frame hack just to deal with this. So you'll have to pass the names around as strings. ike this:
globals().setdefault('fact', _fact)
The globals function just returns the current scope's global dictionary. Which is a dict, which means it has the setdefault method, which means this will set the global name fact to the value _fact if it didn't already have a value, but do nothing if it did. Which is exactly what you wanted. (You could also use setattr on the current module, but I think this way emphasizes that the script is meant to be (repeatedly) executed in someone else's scope, not used as a module.)
So, here that is wrapped up in a function:
def new_bind(name, value):
globals().setdefault(name, value)
… which you can turn that into a decorator almost trivially:
def new_bind(name):
def wrap(func):
globals().setdefault(name, func)
return func
return wrap
Which you can use like this:
#new_bind('foo')
def _foo():
print(1)
But wait, there's more! The func that new_bind gets is going to have a __name__, right? If you stick to a naming convention, like that the "private" name must be the "public" name with a _ prefixed, we can do this:
def new_bind(func):
assert func.__name__[0] == '_'
globals().setdefault(func.__name__[1:], func)
return func
And you can see where this is going:
#new_bind
#lru_cache()
def _square(x):
print "Squaring", x
return x*x
There is one minor problem: if you use any other decorators that don't wrap the function properly, they will break your naming convention. So… just don't do that. :)
And I think this works exactly the way you want in every edge case. In particular, if you've edited the source and want to force the new definition with a new cache, you just del square before rerunning the file, and it works.
And of course if you want to merge those two decorators into one, it's trivial to do so, and call it non_resetting_lru_cache.
However, I'd keep them separate. I think it's more obvious what they do. And if you ever want to wrap another decorator around #lru_cache, you're probably still going to want #new_bind to be the outermost decorator, right?
What if you want to put new_bind into a module that you can import? Then it's not going to work, because it will be referring to the globals of that module, not the one you're currently writing.
You can fix that by explicitly passing your globals dict, or your module object, or your module name as an argument, like #new_bind(__name__), so it can find your globals instead of its. But that's ugly and repetitive.
You can also fix it with an ugly frame hack. At least in CPython, sys._getframe() can be used to get your caller's frame, and frame objects have a reference to their globals namespace, so:
def new_bind(func):
assert func.__name__[0] == '_'
g = sys._getframe(1).f_globals
g.setdefault(func.__name__[1:], func)
return func
Notice the big box in the docs that tells you this is an "implementation detail" that may only apply to CPython and is "for internal and specialized purposes only". Take this seriously. Whenever someone has a cool idea for the stdlib or builtins that could be implemented in pure Python, but only by using _getframe, it's generally treated almost the same as an idea that can't be implemented in pure Python at all. But if you know what you're doing, and you want to use this, and you only care about present-day versions of CPython, it will work.
There is no persistent_lru_cache in the stdlib. But you can build one pretty easily.
The functools source is linked directly from the docs, because this is one of those modules that's as useful as sample code as it is for using it directly.
As you can see, the cache is just a dict. If you replace that with, say, a shelf, it will become persistent automatically:
def persistent_lru_cache(filename, maxsize=128, typed=False):
"""new docstring explaining what dbpath does"""
# same code as before up to here
def decorating_function(user_function):
cache = shelve.open(filename)
# same code as before from here on.
Of course that only works if your arguments are strings. And it could be a little slow.
So, you might want to instead keep it as an in-memory dict, and just write code that pickles it to a file atexit, and restores it from a file if present at startup:
def decorating_function(user_function):
# ...
try:
with open(filename, 'rb') as f:
cache = pickle.load(f)
except:
cache = {}
def cache_save():
with lock:
with open(filename, 'wb') as f:
pickle.dump(cache, f)
atexit.register(cache_save)
# …
wrapper.cache_save = cache_save
wrapper.cache_filename = filename
Or, if you want it to write every N new values (so you don't lose the whole cache on, say, an _exit or a segfault or someone pulling the cord), add this to the second and third versions of wrapper, right after the misses += 1:
if misses % N == 0:
cache_save()
See here for a working version of everything up to this point (using save_every as the "N" argument, and defaulting to 1, which you probably don't want in real life).
If you want to be really clever, maybe copy the cache and save that in a background thread.
You might want to extend the cache_info to include something like number of cache writes, number of misses since last cache write, number of entries in the cache at startup, …
And there are probably other ways to improve this.
From a quick test, with save_every=1, this makes the cache on both get_pep and fib (from the functools docs) persistent, with no measurable slowdown to get_pep and a very small slowdown to fib the first time (note that fib(100) has 100097 hits vs. 101 misses…), and of course a large speedup to get_pep (but not fib) when you re-run it. So, just what you'd expect.
I can't say I won't just use #abarnert's "ugly frame hack", but here is the version that requires you to pass in the calling module's globals dict. I think it's worth posting given that decorator functions with arguments are tricky and meaningfully different from those without arguments.
def create_if_not_exists_2(my_globals):
def wrap(func):
if "_" != func.__name__[0]:
raise Exception("Function names used in cine must begin with'_'")
my_globals.setdefault(func.__name__[1:], func)
def wrapped(*args):
func(*args)
return wrapped
return wrap
Which you can then use in a different module like this:
from functools32 import lru_cache
from cine import create_if_not_exists_2
#create_if_not_exists_2(globals())
#lru_cache()
def _square(x):
print "Squaring", x
return x*x
assert "_square" in globals()
assert "square" in globals()
I've gained enough familiarity with decorators during this process that I was comfortable taking a swing at solving the problem another way:
from functools32 import lru_cache
try:
my_cine
except NameError:
class my_cine(object):
_reg_funcs = {}
#classmethod
def func_key (cls, f):
try:
name = f.func_name
except AttributeError:
name = f.__name__
return (f.__module__, name)
def __init__(self, f):
k = self.func_key(f)
self._f = self._reg_funcs.setdefault(k, f)
def __call__(self, *args, **kwargs):
return self._f(*args, **kwargs)
if __name__ == "__main__":
#my_cine
#lru_cache()
def fact_my_cine(n):
print "In fact_my_cine for", n
if n < 2:
return 1
return fact_my_cine(n-1) * n
x = fact_my_cine(10)
print "The answer is", x
#abarnert, if you are still watching, I'd be curious to hear your assessment of the downsides of this method. I know of two:
You have to know in advance what attributes to look in for a name to associate with the function. My first stab at it only looked at func_name which failed when passed an lru_cache object.
Resetting a function is painful: del my_cine._reg_funcs[('__main__', 'fact_my_cine')], and the swing I took at adding a __delitem__ was unsuccessful.
There were several discussions on "returning multiple values in Python", e.g.
1,
2.
This is not the "multiple-value-return" pattern I'm trying to find here.
No matter what you use (tuple, list, dict, an object), it is still a single return value and you need to parse that return value (structure) somehow.
The real benefit of multiple return value is in the upgrade process. For example,
originally, you have
def func():
return 1
print func() + func()
Then you decided that func() can return some extra information but you don't want to break previous code (or modify them one by one). It looks like
def func():
return 1, "extra info"
value, extra = func()
print value # 1 (expected)
print extra # extra info (expected)
print func() + func() # (1, 'extra info', 1, 'extra info') (not expected, we want the previous behaviour, i.e. 2)
The previous codes (func() + func()) are broken. You have to fix it.
I don't know whether I made the question clear... You can see the CLISP example. Is there an equivalent way to implement this pattern in Python?
EDIT: I put the above clisp snippets online for your quick reference.
Let me put two use cases here for multiple return value pattern. Probably someone can have alternative solutions to the two cases:
Better support smooth upgrade. This is shown in the above example.
Have simpler client side codes. See following alternative solutions I have so far. Using exception can make the upgrade process smooth but it costs more codes.
Current alternatives: (they are not "multi-value-return" constructions, but they can be engineering solutions that satisfy some of the points listed above)
tuple, list, dict, an object. As is said, you need certain parsing from the client side. e.g. if ret.success == True: blabla. You need to ret = func() before that. It's much cleaner to write if func() == True: blabal.
Use Exception. As is discussed in this thread, when the "False" case is rare, it's a nice solution. Even in this case, the client side code is still too heavy.
Use an arg, e.g. def func(main_arg, detail=[]). The detail can be list or dict or even an object depending on your design. The func() returns only original simple value. Details go to the detail argument. Problem is that the client need to create a variable before invocation in order to hold the details.
Use a "verbose" indicator, e.g. def func(main_arg, verbose=False). When verbose == False (default; and the way client is using func()), return original simple value. When verbose == True, return an object which contains simple value and the details.
Use a "version" indicator. Same as "verbose" but we extend the idea there. In this way, you can upgrade the returned object for multiple times.
Use global detail_msg. This is like the old C-style error_msg. In this way, functions can always return simple values. The client side can refer to detail_msg when necessary. One can put detail_msg in global scope, class scope, or object scope depending on the use cases.
Use generator. yield simple_return and then yield detailed_return. This solution is nice in the callee's side. However, the caller has to do something like func().next() and func().next().next(). You can wrap it with an object and override the __call__ to simplify it a bit, e.g. func()(), but it looks unnatural from the caller's side.
Use a wrapper class for the return value. Override the class's methods to mimic the behaviour of original simple return value. Put detailed data in the class. We have adopted this alternative in our project in dealing with bool return type. see the relevant commit: https://github.com/fqj1994/snsapi/commit/589f0097912782ca670568fe027830f21ed1f6fc (I don't have enough reputation to put more links in the post... -_-//)
Here are some solutions:
Based on #yupbank 's answer, I formalized it into a decorator, see github.com/hupili/multiret
The 8th alternative above says we can wrap a class. This is the current engineering solution we adopted. In order to wrap more complex return values, we may use meta class to generate the required wrapper class on demand. Have not tried, but this sounds like a robust solution.
try inspect?
i did some try, and not very elegant, but at least is doable.. and works :)
import inspect
from functools import wraps
import re
def f1(*args):
return 2
def f2(*args):
return 3, 3
PATTERN = dict()
PATTERN[re.compile('(\w+) f()')] = f1
PATTERN[re.compile('(\w+), (\w+) = f()')] = f2
def execute_method_for(call_str):
for regex, f in PATTERN.iteritems():
if regex.findall(call_str):
return f()
def multi(f1, f2):
def liu(func):
#wraps(func)
def _(*args, **kwargs):
frame,filename,line_number,function_name,lines,index=\
inspect.getouterframes(inspect.currentframe())[1]
call_str = lines[0].strip()
return execute_method_for(call_str)
return _
return liu
#multi(f1, f2)
def f():
return 1
if __name__ == '__main__':
print f()
a, b = f()
print a, b
Your case does need code editing. However, if you need a hack, you can use function attributes to return extra values , without modifying return values.
def attr_store(varname, value):
def decorate(func):
setattr(func, varname, value)
return func
return decorate
#attr_store('extra',None)
def func(input_str):
func.extra = {'hello':input_str + " ,How r you?", 'num':2}
return 1
print(func("John")+func("Matt"))
print(func.extra)
Demo : http://codepad.org/0hJOVFcC
However, be aware that function attributes will behave like static variables, and you will need to assign values to them with care, appends and other modifiers will act on previous saved values.
the magic is you should use design pattern blablabla to not use actual operation when you process the result, but use a parameter as the operation method, for your case, you can use the following code:
def x():
#return 1
return 1, 'x'*1
def f(op, f1, f2):
print eval(str(f1) + op + str(f2))
f('+', x(), x())
if you want generic solution for more complicated situation, you can extend the f function, and specify the process operation via the op parameter
Whenever I'm coding something that requires a lot of conditionals, I end up doing this:
if foo:
if bar:
if foobar:
if barfoo:
if foobarfoo:
if barfoobar:
# And forever and ever and ever
I can't write if foo and bar and foobar and ... because I check for the value list elements (if foo[1] == 'bar') inside of an if somewhere down the line, and if the list index don't exist, I get an error.
Is there a shortcut to conditionally checking things like this, or an alternative method? Thanks.
I can't write if foo and bar and foobar and ... because I call list elements inside of an if somewhere down the line, and if the list index don't exist, I get an error.
in python,and short circuits. If the left side of the expression is false, the right side is not evaluated at all.
foo = dict()
if 'bar' in foo and foo['bar']:
doSomething()
Fail fast:
if not foo:
return
if not foobar:
return
and so forth.
There's also
if all((foo, bar, foobar, barfoo, foobarfoo, barfoobar)):
print "oh yeah"
all will also shortcircuit
Forgive me if I'm stating the obvious -- but if you're checking for many different conditions in advance of one or two operations, you might be better off using try/except -- especially for those conditions (if any) that are clear error conditions.
See if you can't break some of that out into a function that includes some of the conditionals (assuming some are in common with your various cases).
Break it up into several sub-components where appropriate. As for where to draw the dividing lines, that's really up to you. While a huge staircase of conditional statements isn't great, neither is a massive if-statement with so many predicates that they wrap several lines. Instead, try to group your conditions into logical bunches.
You might write it as:
if foo and bar and foobar:
...
if barfoo and foobarfoo and barfoobar:
...
I also suggest introducing helper methods along the way. Even if those helper methods are called only from this code, that's fine.
def handle_bar():
if barfoo and foobarfoo and barfoobar:
...
if foo and bar and foobar:
...
handle_bar()
If scopes get confusing or you find yourself passing around too much state as function arguments, wrap it in a class and use member variables where its conceptually appropriate.
Overall, my advice is to separate concepts into individual pieces of code at an appropriate granularity. If you don't do it at all, you get a long piece of code that requires lots of scrolling to see the big picture. If you over-do it, you force the reader to jump around your code too much.
If you have more than 3 to 5 tests (or more), consider keeping your conditions in a dictionary, list or tuple. Then test that data structure. Much cleaner than many individual named data.
If you are testing "truth" against a named list of variables of unknown length or a sequence data structure (like a list or tuple) you can do this:
def all_true(*args):
for test in args:
if bool(test) is False: return False
return True
foo=bar=foobar=barfoo=foobarfoo=barfoobar=1
if foo:
if bar:
if foobar:
if barfoo:
if foobarfoo:
if barfoobar:
print "True by Stairs!"
if all_true(foo,bar,foobar,barfoo,foobarfoo,barfoobar):
print "True by function!"
t=(foo,bar,foobar,barfoo,foobarfoo,barfoobar)
if all_true(*t): print "The tuple is true!"
l=[foo,bar,foobar,barfoo,foobarfoo,barfoobar]
if all_true(*l): print "list is true!"
bar=0
# run the same tests...
The all_true() function will short-circuit against the first false it finds.
Is there a pythonic preferred way to do this that I would do in C++:
for s in str:
if r = regex.match(s):
print r.groups()
I really like that syntax, imo it's a lot cleaner than having temporary variables everywhere. The only other way that's not overly complex is
for s in str:
r = regex.match(s)
if r:
print r.groups()
I guess I'm complaining about a pretty pedantic issue. I just miss the former syntax.
How about
for r in [regex.match(s) for s in str]:
if r:
print r.groups()
or a bit more functional
for r in filter(None, map(regex.match, str)):
print r.groups()
Perhaps it's a bit hacky, but using a function object's attributes to store the last result allows you to do something along these lines:
def fn(regex, s):
fn.match = regex.match(s) # save result
return fn.match
for s in strings:
if fn(regex, s):
print fn.match.groups()
Or more generically:
def cache(value):
cache.value = value
return value
for s in strings:
if cache(regex.match(s)):
print cache.value.groups()
Note that although the "value" saved can be a collection of a number of things, this approach is limited to holding only one such at a time, so more than one function may be required to handle situations where multiple values need to be saved simultaneously, such as in nested function calls, loops or other threads. So, in accordance with the DRY principle, rather than writing each one, a factory function can help:
def Cache():
def cache(value):
cache.value = value
return value
return cache
cache1 = Cache()
for s in strings:
if cache1(regex.match(s)):
# use another at same time
cache2 = Cache()
if cache2(somethingelse) != cache1.value:
process(cache2.value)
print cache1.value.groups()
...
There's a recipe to make an assignment expression but it's very hacky. Your first option doesn't compile so your second option is the way to go.
## {{{ http://code.activestate.com/recipes/202234/ (r2)
import sys
def set(**kw):
assert len(kw)==1
a = sys._getframe(1)
a.f_locals.update(kw)
return kw.values()[0]
#
# sample
#
A=range(10)
while set(x=A.pop()):
print x
## end of http://code.activestate.com/recipes/202234/ }}}
As you can see, production code shouldn't touch this hack with a ten foot, double bagged stick.
This might be an overly simplistic answer, but would you consider this:
for s in str:
if regex.match(s):
print regex.match(s).groups()
There is no pythonic way to do something that is not pythonic. It's that way for a reason, because 1, allowing statements in the conditional part of an if statement would make the grammar pretty ugly, for instance, if you allowed assignment statements in if conditions, why not also allow if statements? how would you actually write that? C like languages don't have this problem, because they don't have assignment statements. They make do with just assignment expressions and expression statements.
the second reason is because of the way
if foo = bar:
pass
looks very similar to
if foo == bar:
pass
even if you are clever enough to type the correct one, and even if most of the members on your team are sharp enough to notice it, are you sure that the one you are looking at now is exactly what is supposed to be there? it's not unreasonable for a new dev to see this and just fix it (one way or the other) and now its definitely wrong.
Whenever I find that my loop logic is getting complex I do what I would with any other bit of logic: I extract it to a function. In Python it is a lot easier than some other languages to do this cleanly.
So extract the code that just generates the items of interest:
def matching(strings, regex):
for s in strings:
r = regex.match(s)
if r: yield r
and then when you want to use it, the loop itself is as simple as they get:
for r in matching(strings, regex):
print r.groups()
Yet another answer is to use the "Assign and test" recipe for allowing assigning and testing in a single statement published in O'Reilly Media's July 2002 1st edition of the Python Cookbook and also online at Activestate. It's object-oriented, the crux of which is this:
# from http://code.activestate.com/recipes/66061
class DataHolder:
def __init__(self, value=None):
self.value = value
def set(self, value):
self.value = value
return value
def get(self):
return self.value
This can optionally be modified slightly by adding the custom __call__() method shown below to provide an alternative way to retrieve instances' values -- which, while less explicit, seems like a completely logical thing for a 'DataHolder' object to do when called, I think.
def __call__(self):
return self.value
Allowing your example to be re-written:
r = DataHolder()
for s in strings:
if r.set(regex.match(s))
print r.get().groups()
# or
print r().groups()
As also noted in the original recipe, if you use it a lot, adding the class and/or an instance of it to the __builtin__ module to make it globally available is very tempting despite the potential downsides:
import __builtin__
__builtin__.DataHolder = DataHolder
__builtin__.data = DataHolder()
As I mentioned in my other answer to this question, it must be noted that this approach is limited to holding only one result/value at a time, so more than one instance is required to handle situations where multiple values need to be saved simultaneously, such as in nested function calls, loops or other threads. That doesn't mean you should use it or the other answer, just that more effort will be required.