How do I find Wally with Python? - python

Shamelessly jumping on the bandwagon :-)
Inspired by How do I find Waldo with Mathematica and the followup How to find Waldo with R, as a new python user I'd love to see how this could be done. It seems that python would be better suited to this than R, and we don't have to worry about licenses as we would with Mathematica or Matlab.
In an example like the one below obviously simply using stripes wouldn't work. It would be interesting if a simple rule based approach could be made to work for difficult examples such as this.
I've added the [machine-learning] tag as I believe the correct answer will have to use ML techniques, such as the Restricted Boltzmann Machine (RBM) approach advocated by Gregory Klopper in the original thread. There is some RBM code available in python which might be a good place to start, but obviously training data is needed for that approach.
At the 2009 IEEE International Workshop on MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP 2009) they ran a Data Analysis Competition: Where's Wally?. Training data is provided in matlab format. Note that the links on that website are dead, but the data (along with the source of an approach taken by Sean McLoone and colleagues can be found here (see SCM link). Seems like one place to start.

Here's an implementation with mahotas
from pylab import imshow
import numpy as np
import mahotas
wally = mahotas.imread('DepartmentStore.jpg')
wfloat = wally.astype(float)
r,g,b = wfloat.transpose((2,0,1))
Split into red, green, and blue channels. It's better to use floating point arithmetic below, so we convert at the top.
w = wfloat.mean(2)
w is the white channel.
pattern = np.ones((24,16), float)
for i in xrange(2):
pattern[i::4] = -1
Build up a pattern of +1,+1,-1,-1 on the vertical axis. This is wally's shirt.
v = mahotas.convolve(r-w, pattern)
Convolve with red minus white. This will give a strong response where the shirt is.
mask = (v == v.max())
mask = mahotas.dilate(mask, np.ones((48,24)))
Look for the maximum value and dilate it to make it visible. Now, we tone down the whole image, except the region or interest:
wally -= .8*wally * ~mask[:,:,None]
imshow(wally)
And we get !

You could try template matching, and then taking down which produced the highest resemblance, and then using machine learning to narrow it more. That is also very difficult, and with the accuracy of template matching, it may just return every face or face-like image. I am thinking you will need more than just machine learning if you hope to do this consistently.

maybe you should start with breaking the problem into two smaller ones:
create an algorithm that separates people from the background.
train a neural network classifier with as many positive and negative examples as possible.
those are still two very big problems to tackle...
BTW, I would choose c++ and open CV, it seems much more suited for this.

This is not impossible but very difficult because you really have no example of a successful match. There are often multiple states(in this case, more examples of find walleys drawings), you can then feed multiple pictures into an image reconization program and treat it as a hidden markov model and use something like the viterbi algorithm for inference ( http://en.wikipedia.org/wiki/Viterbi_algorithm ).
Thats the way I would approach it, but assuming you have multiple images that you can give it examples of the correct answer so it can learn. If you only have one picture, then I'm sorry there maybe another approach you need to take.

I recognized that there are two main features which are almost always visible:
the red-white striped shirt
dark brown hair under the fancy cap
So I would do it the following way:
search for striped shirts:
filter out red and white color (with thresholds on the HSV converted image). That gives you two mask images.
add them together -> that's the main mask for searching striped shirts.
create a new image with all the filtered out red converted to pure red (#FF0000) and all the filtered out white converted to pure white (#FFFFFF).
now correlate this pure red-white image with a stripe pattern image (i think all the waldo's have quite perfect horizontal stripes, so rotation of the pattern shouldn't be necessary). Do the correlation only inside the above mentioned main mask.
try to group together clusters which could have been resulted from one shirt.
If there are more than one 'shirts', to say, more than one clusters of positive correlation, search for other features, like the dark brown hair:
search for brown hair
filter out the specific brown hair color using the HSV converted image and some thresholds.
search for a certain area in this masked image - not too big and not too small.
now search for a 'hair area' that is just above a (before) detected striped shirt and has a certain distance to the center of the shirt.

Here's a solution using neural networks that works nicely.
The neural network is trained on several solved examples that are marked with bounding boxes indicating where Wally appears in the picture. The goal of the network is to minimize the error between the predicted box and the actual box from training/validation data.
The network above uses Tensorflow Object Detection API to perform training and predictions.

Related

Convert Edge Detection to Mask

Giving an image that I applied an edge detection filter, what would be the way (hopefully efficient/performant one) to achieve a mask of the "sum" of the point in a marked segment?
Image for illustration:
Thank you in advance.
UPDATE:
Added example of a lighter image (https://imgur.com/a/MN0t3pH).
As you'll see in the below image, we assume that when the user marks a region (ROI), there will be an object that will "stand out" from its background. Our end goal is to get the most accurate "mask" of this object, so we can use it for ML processing.
From the two examples you've uploaded I can assume you are thresholding based on difference in color/intensity- I can suggest grabcut as basic foreground separation- use the edges in the mask in that ROI as input to the algorithm.
Even better- if your thresholding is good as the first image, just skip the edge detection part and this will be the input to grabcut.
======= EDIT =======
#RoiMulia if you need production level I can suggest that you leave the threshold + edge detection direction completly and try background removal techniques (SOTA are currently neural networks such as Background Matting: The World is Your Green Screen (example)).
You can also try some ready made background removal APIs such as https://www.remove.bg/ or https://clippingmagic.com/
1.
Given the "ROI" supervision you have, I strongly recommend you to explore GrabCut (as proposed by YoniChechnik):
Rother C, Kolmogorov V, Blake A. "GrabCut" interactive foreground extraction using iterated graph cuts. ACM transactions on graphics (TOG). 2004.
To get a feeling of how this works, you can use power-point's "background removal" tool:
which is based on GrabCut algorithm.
This is how it looks in power point:
GrabCut segment the foreground object in a selected ROI mainly based on its foreground/background color distributions, and less on edge/boundary information though this extra information can be integrated into the formulation.
It seems like opencv has a basic implementation of GrabCut, see here.
2.
If you are seeking a method that uses only the boundary information, you might find this answer useful.
3.
An alternative method is to use NCuts:
Shi J, Malik J. Normalized cuts and image segmentation. IEEE Transactions on pattern analysis and machine intelligence. 2000.
If you have very reliable edge map, you can modify the "affinity matrix" NCuts works with to be a binary matrix
0 if there is a boundary between i and j
w_ij = 1 if there is no boundary between i and j
0 if i and j are not neighbors of each other
NCuts can be viewed as a way to estimate "robust connected components".

Identifying positive pixels after color deconvolution ignoring boundaries

I am analyzing histology tissue images stained with a specific protein marker which I would like to identify the positive pixels for that marker. My problem is that thresholding on the image gives too much false positives which I'd like to exclude.
I am using color deconvolution (separate_stains from skimage.color) to get the AEC channel (corresponding to the red marker), separating it from the background (Hematoxylin blue color) and applying cv2 Otsu thresholding to identify the positive pixels using cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU), but it is also picking up the tissue boundaries (see white lines in the example picture, sometimes it even has random colors other than white) and sometimes even non positive cells (blue regions in the example picture). It's also missing some faint positive pixels which I'd like to capture.
Overall: (1) how do I filter the false positive tissue boundaries and blue pixels? and (2) how do I adjust the Otsu thresholding to capture the faint red positives?
Adding a revised example image -
top left the original image after using HistoQC to identify tissue regions and apply the mask it identified on the tissue such that all of the non-tissue regions are black. I should tru to adjust its parameters to exclude the folded tissue regions which appear more dark (towards the bottom left of this image). Suggestions for other tools to identify tissue regions are welcome.
top right hematoxylin after the deconvolution
bottom left AEC after the deconvolution
bottom right Otsu thresholding applied not the original RGB image trying to capture only the AEC positives pixels but showing also false positives and false negatives
Thanks
#cris-luengo thank you for your input on scikit-image! I am one of the core developers, and based on #assafb input, we are trying to rewrite the code on color/colorconv/separate_stains.
#Assafb: The negative log10 transformation is the Beer-Lambert mapping. What I don't understand in that code is the line rgb += 2. I don't know where that comes from or why they use it. I'm 100% sure it is wrong. I guess they're trying to avoid log10(0), but that should be done differently. I bet this is where your negative values come from, though.
Yes, apparently (I am not the original author of this code) we use rgb += 2 to avoid log10(0). I checked Fiji's Colour Deconvolution plugin, and they add 1 to their input. I tested several input numbers to help on that, and ~2 would let us closer to the desirable results.
#Assafb: Compare the implementation in skimage with what is described in the original paper. You'll see several errors in the implementation, most importantly the lack of a division by the max intensity. They should have used -np.log10(rgb/255) (assuming that 255 is the illumination intensity), rater than -np.log10(rgb).
Our input data is float; the max intensity in this case would be 1. I'd say that that's the reason we don't divide by something.
Besides that, I opened an issue on scikit-image to discuss these problems — and to specify a solution. I made some research already — I even checked DIPlib's documentation —, and implemented a different version of that specific function. However, stains are not my main area of expertise, and we would be glad if you could help evaluating that code — and maybe pointing a better solution.
Thank you again for your help!
There are several issues that cause improper quantification. I'll go over the details of how I would recommend you tackle these slides.
I'm using DIPlib, because I'm most familiar with it (I'm an author). It has Python bindings, which I use here, and can be installed with pip install diplib. However, none of this is complicated image processing, and you should be able to do similar processing with other libraries.
Loading image
There is nothing special here, except that the image has strong JPEG compression artifacts, which can interfere with the stain unmixing. We help the process a bit by smoothing the image with a small Gaussian filter.
import diplib as dip
import numpy as np
image = dip.ImageRead('example.png')
image = dip.Gauss(image, [1]) # because of the severe JPEG compression artifacts
Stain unmixing
[Personal note: I find it unfortunate that Ruifrok and Johnston, the authors of the paper presenting the stain unmixing method, called it "deconvolution", since that term already had an established meaning in image processing, especially in combination with microscopy. I always refer to this as "stain unmixing", never "deconvolution".]
This should always be the first step in any attempt at quantifying from a bightfield image. There are three important RGB triplets that you need to determine here: the RGB value of the background (which is the brightness of the light source), and the RGB value of each of the stains. The unmixing process has two components:
First we apply the Beer-Lambert mapping. This mapping is non-linear. It converts the transmitted light (as recorded by the microscope) into absorbance values. Absorbance indicates how strongly each point on the slide absorbs light of the various wavelengths. The stains absorb light, and differ by the relative absorbance in each of the R, G and B channels of the camera.
background_intensity = [209, 208, 215]
image = dip.BeerLambertMapping(image, background_intensity)
I manually determined the background intensity, but you can automate that process quite well if you have whole slide images: in whole slide images, the edges of the image always correspond to background, so you can look there for intensities.
The second step is the actual unmixing. The mixing of absorbances is a linear process, so the unmixing is solving of a set of linear equations at each pixel. For this we need to know the absorbance values for each of the stains in each of the channels. Using standard values (as in skimage.color.hax_from_rgb) might give a good first approximation, but rarely will provide the best quantification.
Stain colors change from assay to assay (for example, hematoxylin has a different color depending on who made it, what tissue is stained, etc.), and change also depending on the camera used to image the slide (each model has different RGB filters). The best way to determine these colors is to prepare a slide for each stain, using all the same protocol but not putting on the other dyes. From these slides you can easily obtain stain colors that are valid for your assay and your slide scanner. This is however rarely if ever done in practice.
A more practical solution involves estimating colors from the slide itself. By finding a spot on the slide where you see each of the stains individually (where stains are not mixed) one can manually determine fairly good values. It is possible to automatically determine appropriate values, but is much more complex and it'll be hard finding an existing implementation. There are a few papers out there that show how to do this with non-negative matrix factorization with a sparsity constraint, which IMO is the best approach we have.
hematoxylin_color = np.array([0.2712, 0.2448, 0.1674])
hematoxylin_color = (hematoxylin_color/np.linalg.norm(hematoxylin_color)).tolist()
aec_color = np.array([0.2129, 0.2806, 0.4348])
aec_color = (aec_color/np.linalg.norm(aec_color)).tolist()
stains = dip.UnmixStains(image, [hematoxylin_color, aec_color])
stains = dip.ClipLow(stains, 0) # set negative values to 0
hematoxylin = stains.TensorElement(0)
aec = stains.TensorElement(1)
Note how the linear unmixing can lead to negative values. This is a result of incorrect color vectors, noise, JPEG artifacts, and things on the slide that absorb light that are not the two stains we defined.
Identifying tissue area
You already have a good method for this, which is applied to the original RGB image. However, don't apply the mask to the original image before doing the unmixing above, keep the mask as a separate image. I wrote the next bit of code that finds tissue area based on the hematoxylin stain. It's not very good, and it's not hard to improve it, but I didn't want to waste too much time here.
tissue = dip.MedianFilter(hematoxylin, dip.Kernel(5))
tissue = dip.Dilation(tissue, [20])
tissue = dip.Closing(tissue, [50])
area = tissue > 0.2
Identifying tissue folds
You were asking about this step too. Tissue folds typically appear as larger darker regions in the image. It is not trivial to find an automatic method to identify them, because a lot of other things can create darker regions in the image too. Manual annotation is a good start, if you collect enough manually annotated examples you could train a Deep Learning model to help you out. I did this just as a place holder, again it's not very good, and identifies some positive regions as folds. Folds are subtracted from the tissue area mask.
folds = dip.Gauss(hematoxylin - aec, [20])
area -= folds > 0.2
Identifying positive pixels
It is important to use a fixed threshold for this. Only a pathologist can tell you what the threshold should be, they are the gold-standard for what constitutes positive and negative.
Note that the slides must all have been prepared following the same protocol. In clinical settings this is relatively easy because the assays used are standardized and validated, and produce a known, limited variation in staining. In an experimental setting, where assays are less strictly controlled, you might see more variation in staining quality. You will even see variation in staining color, unfortunately. You can use automated thresholding methods to at least get some data out, but there will be biases that you cannot control. I don't think there is a way out: inconsistent stain in, inconsistent data out.
Using an image-content-based method such as Otsu causes the threshold to vary from sample to sample. For example, in samples with few positive pixels the threshold will be lower than other samples, yielding a relative overestimation of the percent positive.
positive = aec > 0.1 # pick a threshold according to pathologist's idea what is positive and what is not
pp = 100 * dip.Count(dip.And(positive, area)) / dip.Count(area)
print("Percent positive:", pp)
I get a 1.35% in this sample. Note that the % positive pixels is not necessarily related to the % positive cells, and should not be used as a substitute.
I ended up incorporating some of the feedback given above by Chris into the following possible unconventional solution for which I would appreciate getting feedback (to the specific questions below but also general suggestions for improvement or more effective/accurate tools or strategy):
Define (but not apply yet) tissue mask (HistoQC) after optimizing HistoQC script to remove as much of the tissue folds as possible without removing normal tissue area
Apply deconvolution on the original RGB image using hax_from_rgb
Using the second channel which should correspond to the red stain pixels, and subtract from it the third channel which as far as I see corresponds to the background non-red/blue pixels of the image. This step removes the high values in the second channel that which up because of tissue folds or other artifacts that weren't removed in the first step (what does the third channel correspond to? The Green element of RGB?)
Blur the adjusted image and threshold based on the median of the image plus 20 (Semi-arbitrary but it works. Are there better alternatives? Otsu doesn't work here at all)
Apply the tissue regions mask on the thresholded image yielding only positive red/red-ish pixels without the non-tissue areas
Count the % of positive pixels relative to the tissue mask area
I have been trying to apply, as suggested above, the tissue mask on the deconvolution red channel output and then use Otsu thresholding. But it failed since the black background generated by the applying the tissue regions mask makes the Otsu threshold detect the entire tissue as positive. So I have proceeded instead to apply the threshold on the adjusted red channel and then apply the tissue mask before counting positive pixels. I am interested in learning what am I doing wrong here.
Other than that, the LoG transformation didn't seem to work well because it produced a lot of stretched bright segments rather than just circular blobs where cells are located. I'm not sure why this is happening.
Use ML for this case.
Create manually binary mask for your pictures: each red pixel - white, background pixels - black.
Work in HSV or Lab color space.
Train simple classifier: decision tree or SVM (linear or with RBF)..
Let's test!
See on a good and very simple example with skin color segmentation.
And in the future you can add new examples and new cases without code refactoring: just update dataset and retrain model.

How to make a image look more uniform without losing fine details

I have a reconstructed object with accumulated effects of lighting as shown below, which looks quite dirty:
I want to make the body of the object to have a more uniform color
(cleaner) while keeping the fine details of letters, patterns, etc.
What I am current doing is to fit the image in HSV space while down weighting the S and V channel( so hopefully same color with different brightness and saturation belongs to the same cluster) with fixed number of GMM components and use the mean for each pixel. The result of course lose all the fine details:
Any help will be greatly appreciated!
A mixture model is clever, but IMO overkill; it's assigning the "most likely" pixel value based on a model that has very few good statistical properties.
I think traditional computer vision is your friend here for repeatability and ease of implementation: rank filters are one possibility, and they're well established in the standard python scientific stack (*)
Here are the skimage rank filters
For completion, many more skimage filters that might be helpful
For example, on your image, some of the most common filters at a kernel size of 3 in the top row and 10 in the bottom row look like:
The titles are a little hard to read if you don't click on the image; that's, from left to right, median, mean, bilateral, contrast, and percentile.
My instinct was a median filter, but clearly you have options
Have you tried using CLAHE? It is a version of local contrast normalisation. The local nature of it helps balance out contrast across the image. For color images it works in HSV space. It works best on natural scenes though so for this a bilateral filter as mentioned by Cris Luengo may work best.
http://scikit-image.org/docs/dev/api/skimage.exposure.html#skimage.exposure.equalize_adapthist

Robust Hand Detection via Computer Vision

I am currently working on a system for robust hand detection.
The first step is to take a photo of the hand (in HSV color space) with the hand placed in a small rectangle to determine the skin color. I then apply a thresholding filter to set all non-skin pixels to black and all skin pixels white.
So far it works quite well, but I wanted to ask if there is a better way to solve this? For example, I found a few papers mentioning concrete color spaces for caucasian people, but none with a comparison for asian/african/caucasian color-tones.
By the way, I'm working with OpenCV via Python bindings.
Have you taken a look at the camshift paper by Gary Bradski? You can download it from here
I used the the skin detection algorithm a year ago for detecting skin regions for hand tracking and it is robust. It depends on how you use it.
The first problem with using color for tracking is that it is not robust to lighting variations or like you mentioned, when people have different skin tones. However this can be solved easily as mentioned in the paper by:
Convert image to HSV color space.
Throw away the V channel and consider the H and S channel and hence
discount for lighting variations.
Threshold pixels with low saturation due to their instability.
Bin the selected skin region into a 2D histogram. (OpenCV"s calcHist
function) This histogram now acts as a model for skin.
Compute the "backprojection" (i.e. use the histogram to compute the "probability"
that each pixel in your image has the color of skin tone) using calcBackProject. Skin
regions will have high values.
You can then either use meanShift to look for the mode of the 2D
"probability" map generated by backproject or to detect blobs of
high "probability".
Throwing away the V channel in HSV and only considering H and S channels is really enough (surprisingly) to detect different skin tones and under different lighting variations. A plus side is that its computation is fast.
These steps and the corresponding code can be found in the original OpenCV book.
As a side note, I've also used Gaussian Mixture Models (GMM) before. If you are only considering color then I would say using histograms or GMM makes not much difference. In fact the histogram would perform better (if your GMM is not constructed to account for lighting variations etc.). GMM is good if your sample vectors are more sophisticated (i.e. you consider other features) but speed-wise histogram is much faster because computing the probability map using histogram is essentially a table lookup whereas GMM requires performing a matrix computation (for vector with dimension > 1 in the formula for multi-dimension gaussian distribution) which can be time consuming for real time applications.
So in conclusion, if you are only trying to detect skin regions using color, then go with the histogram method. You can adapt it to consider local gradient as well (i.e. histogram of gradients but possibly not going to the full extent of Dalal and Trigg's human detection algo.) so that it can differentiate between skin and regions with similar color (e.g. cardboard or wooden furniture) using the local texture information. But that would require more effort.
For sample source code on how to use histogram for skin detection, you can take a look at OpenCV"s page here. But do note that it is mentioned on that webpage that they only use the hue channel and that using both hue and saturation would give better result.
For a more sophisticated approach, you can take a look at the work on "Detecting naked people" by Margaret Fleck and David Forsyth. This was one of the earlier work on detecting skin regions that considers both color and texture. The details can be found here.
A great resource for source code related to computer vision and image processing, which happens to include code for visual tracking can be found here. And not, its not OpenCV.
Hope this helps.
Here is a paper on adaptive gaussian mixture model skin detection that you might find interesting.
Also, I remember reading a paper (unfortunately I can't seem to track it down) that used a very clever technique, but it required that you have the face in the field of view. The basic idea was detect the person's face, and use the skin patch detected from the face to identify the skin color automatically. Then, use a gaussian mixture model to isolate the skin pixels robustly.
Finally, Google Scholar may be a big help in searching for state of the art in skin detection. It's heavily researched in adademia right now as well as used in industry (e.g., Google Images and Facebook upload picture policies).
I have worked on something similar 2 years ago. You can try with Particle Filter (Condensation), using skin color pixels as input for initialization. It is quite robust and fast.
The way I applied it for my project is at this link. You have both a presentation (slides) and the survey.
If you initialize the color of the hand with the real color extracted from the hand you are going to track you shouldn't have any problems with black people.
For particle filter I think you can find some code implementation samples. Good luck.
It will be hard for you to find skin tone based on color only.
First of all, it depends strongly on the automatic white balance algorithm.
For example, in this image, any person can see that the color is skin tone. But for the computer it will be blue.
Second, correct color calibration in digital cameras is a hard thing, and it will be rarely accurate enough for your purposes.
You can see www.DPReview.com, to understand what I mean.
In conclusion, I truly believe that the color by itself can be an input, but it is not enough.
Well my experience with the skin modeling are bad, because:
1) lightning can vary - skin segmentation is not robust
2) it will mark your face also (as other skin-like objects)
I would use machine learning techniques like Haar training, which, in my opinion, if far more better approach than modeling and fixing some constraints (like skin detection + thresholding...)
As more robust then pixel colour you can use hand geometry model. First project model for particular gesture and the cross-correlate it with source image. Here is demo of this tchnique.

Should I do Material Clasification/ Recognition using histograms or some other higher Math tool, like Bayesian Networks?

I'm learning the basics of OpenCV, and I thought a good project would help me make the studying more fun. After thinking some ideas I came up with some material recognition project. Let's say, I got myself a conveyor and it's transporting material for production of some product ( this product don't really matter, tho). There are 3 materials, and the illumination conditions will vary, (using natural light at the morning through the afternoon, and a light-bulb at night). That would be the problem description.
I was thinking of using sand, wood and rocks, which are easy to get. and place them on a plastic surface. After taking a pic, I'll apply some histogram to get the color, and using this color I'll identify the material. But, since the lightning conditions will change over time, when i take this photograph and apply the histogram, the color will change and the material won't be recognized properly. And I thought, what if I were to use sand and dust, they have very similar color, but different texture, is there something that can help me with that?
I just want some ideas, and maybe some expert in the field could guide me.
Quite an advanced idea for a starting project. The differences in lighting could be tackled by using the HSV or other color spaces, taking the Hue component. However the matter of "texture" can be handled in two ways:
Feature descriptors: If you deal with the grey level image, there are a set of feature descriptors called the Grey Level Co-occurrence Matrix (GLCM) that gives a measure of the textures of different regions in the image. This is present in Matlab, for OpenCV there is the following code: in C.
So you could take several standard shots of the sand, wood and rocks and use them as training samples on a classifier - NN, SVM, OpenCV's Haar classifier, whatever. Then train it with negative samples. The feature vector for the classifier will be the GLCM output for each picture. Then run it on the actual pictures and see how accurate they are.
Texture Roughness: Came across this useful paper that shows a single-valued measure for the 'roughness' of a texture called the Eigen Transform. The calculations are quite simple, especially if you use OpenCV's SVD() for eigenvalue calculations. The result of the Eigen-transform gives a value corresponding to the roughness of that portion. This can be used to separate out required portions.

Categories