python socketserver occasionally stops sending (and receiving?) messages - python

I've been experiencing a problem with a socketserver I wrote where the socketserver will seem to stop sending and receiving data on one of the ports it uses (while the other port continues to handle data just fine). Interestingly, after waiting a minute (or up to an hour or so), the socketserver will start sending and receiving messages again without any observable intervention.
I am using the Eventlet socketing framework, python 2.7, everything running on an ubuntu aws instance with external apps opening persistent connections to the socketserver.
From some reading I've been doing, it looks like I may not be implementing my socket server correctly.
According to http://docs.python.org/howto/sockets.html:
fundamental truth of sockets: messages must either be fixed length (yuck), or be delimited > > (shrug), or indicate how long they are (much better), or end by shutting down the connection.
I am not entirely sure that I am using a fix length message here (or am I?)
This is how I am receiving my data:
def socket_handler(sock, socket_type):
logg(1,"socket_handler:initializing")
while True:
recv = sock.recv(1024)
if not recv:
logg(1,"didn't recieve anything")
break
if len(recv) > 5:
logg(1,"socket handler: %s" % recv )
plug_id, phone_sid, recv_json = parse_json(recv)
send = 1
if "success" in recv_json and recv_json["success"] == "true" and socket_type == "plug":
send = 0
if send == 1:
send_wrapper(sock, message_relayer(recv, socket_type))
else:
logg(2, 'socket_handler:Ignoring received input: ' + str(recv) )
logg(1, 'Closing socket handle: [%s]' % str(sock))
sock.shutdown(socket.SHUT_RDWR)
sock.close()
"sock" is a socket object returned by the listener.accept() function.
The socket_handler function is called like so:
new_connection, address = listener.accept()
...<code omitted>...
pool.spawn_n(socket_handler, new_connection, socket_type)
Does my implementation look incorrect to anyone? Am I basically implementing a fixed length conversation protocol? What can I do to help investigate the issue or make my code more robust?
Thanks in advance,
T

You might be having buffering related problems if you're requesting to receive more bytes at the server (1024) than you're actually sending from the client.
To fix the problem, what's is usually done is encode the length of the message first and then the message itself. This way, the receiver can get the length field (which is of known size) and then read the rest of the message based on the decoded length.
Note: The length field is usually as many bytes long as you need in your protocol. Some protocols are 4-byte aligned and use a 32 bit field for this, but if you find that you've got enough with 1 or 2 bytes, then you can use that. The point here is that both client and server know the size of this field.

Related

python socket programming for transferring a photo

I'm new to socket programming in python. Here is an example of opening a TCP socket in a Mininet host and sending a photo from one host to another. In fact I changed the code that I had used to send a simple message to another host (writing the received data to a text file) in order to meet my requirements. Although when I implement this revised code, there is no error and it seems to transfer correctly, I am not sure whether this is a correct way to do this transmission or not. Since I'm running both hosts on the same machine, I thought it may have an influence on the result. I wanted to ask you to check whether this is a correct way to transfer or I should add or remove something.
mininetSocketTest.py
#!/usr/bin/python
from mininet.topo import Topo, SingleSwitchTopo
from mininet.net import Mininet
from mininet.log import lg, info
from mininet.cli import CLI
def main():
lg.setLogLevel('info')
net = Mininet(SingleSwitchTopo(k=2))
net.start()
h1 = net.get('h1')
p1 = h1.popen('python myClient2.py')
h2 = net.get('h2')
h2.cmd('python myServer2.py')
CLI( net )
#p1.terminate()
net.stop()
if __name__ == '__main__':
main()
myServer2.py
import socket
import sys
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
s.bind(('10.0.0.1', 12345))
buf = 1024
f = open("2.jpg",'wb')
s.listen(1)
conn , addr = s.accept()
while 1:
data = conn.recv(buf)
print(data[:10])
#print "PACKAGE RECEIVED..."
f.write(data)
if not data: break
#conn.send(data)
conn.close()
s.close()
myClient2.py:
import socket
import sys
f=open ("1.jpg", "rb")
print sys.getsizeof(f)
buf = 1024
data = f.read(buf)
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect(('10.0.0.1',12345))
while (data):
if(s.sendall(data)):
#print "sending ..."
data = f.read(buf)
print(f.tell(), data[:10])
else:
s.close()
s.close()
This loop in client2 is wrong:
while (data):
if(s.send(data)):
print "sending ..."
data = f.read(buf)
As the send
docs say:
Returns the number of bytes sent. Applications are responsible for checking that all data has been sent; if only some of the data was transmitted, the application needs to attempt delivery of the remaining data. For further information on this topic, consult the Socket Programming HOWTO.
You're not even attempting to do this. So, while it probably works on localhost, on a lightly-loaded machine, with smallish files, it's going to break as soon as you try to use it for real.
As the help says, you need to do something to deliver the rest of the buffer. Since there's probably no good reason you can't just block until it's all sent, the simplest thing to do is to call sendall:
Unlike send(), this method continues to send data from bytes until either all data has been sent or an error occurs. None is returned on success. On error, an exception is raised…
And this brings up the next problem: You're not doing any exception handling anywhere. Maybe that's OK, but usually it isn't. For example, if one of your sockets goes down, but the other one is still up, do you want to abort the whole program and hard-drop your connection, or do you maybe want to finish sending whatever you have first?
You should at least probably use a with clause of a finally, to make sure you close your sockets cleanly, so the other side will get a nice EOF instead of an exception.
Also, your server code just serves a single client and then quits. Is that actually what you wanted? Usually, even if you don't need concurrent clients, you at least want to loop around accepting and servicing them one by one.
Finally, a server almost always wants to do this:
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
Without this, if you try to run the server again within a few seconds after it finished (a platform-specific number of seconds, which may even depend whether it finished with an exception instead of a clean shutdown), the bind will fail, in the same way as if you tried to bind a socket that's actually in use by another program.
First of all, you should use TCP and not UDP. TCP will ensure that your client/server has received the whole photo properly. UDP is more used for content streaming.
Absolutely not your use case.

Python 2.7 Script works with breakpoint in Debug mode but not when Run

def mp_worker(row):
ip = row[0]
ip_address = ip
tcp_port = 2112
buffer_size = 1024
# Read the reset message sent from the sign when a new connection is established
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
try:
print('Connecting to terminal: {0}'.format(ip_address))
s.connect((ip_address, tcp_port))
#Putting a breakpoint on this call in debug makes the script work
s.send(":08a8RV;")
#data = recv_timeout(s)
data = s.recv(buffer_size)
strip = data.split("$", 1)[-1].rstrip()
strip = strip[:-1]
print(strip)
termStat = [ip_address, strip]
terminals.append(termStat)
except Exception as exc:
print("Exception connecting to: " + ip_address)
print(exc)
The above code is the section of the script that is causing the problem. It's a pretty simple function that connects to a socket based on a passed in IP from a DB query and receives a response that indicates the hardware's firmware version.
Now, the issue is that when I run it in debug with a breakpoint on the socket I get the entire expected response from the hardware, but if I don't have a breakpoint in there or I full on Run the script it only responds with part of the expected message. I tried both putting a time.sleep() in after the send to see if it would get the entire response and I tried using the commented out recv_timeout() method in there which uses a non-blocking socket and timeout to try to get an entire response, both with the exact same results.
As another note, this works in a script with everything in one main code block, but I need this part separated into a function so I can use it with the multiprocessing library. I've tried running it on both my local Windows 7 machine and on a Unix server with the same results.
I'll expands and reiterate on what I've put into a comment moment ago. I am still not entirely sure what is behind the different behavior in either scenario (apart from timing guess apparently disproved by an attempt to include sleep.
However, it's somewhat immaterial as stream sockets do not guarantee you get all the requested data at once and in chunks as requested. This is up for an application to deal with. If the server closes the socket after full response was sent, you could replace:
data = s.recv(buffer_size)
with recv() until zero bytes were received, this would be equivalent of getting 0 (EOF) from from the syscall:
data = ''
while True:
received = s.recv(buffer_size)
if len(received) == 0:
break
data += received
If that is not the case, you would have to rely on fixed or known (sent in the beginning) size you want to consider together. Or deal with this on protocol level (look for characters, sequences used to signal message boundaries.
I just recently found out a solution here, and thought I'd post it in case anyone else has issue, I just decided to try and call socket.recv() before calling socket.send() and then calling socket.recv() again afterwards and it seems to have fixed the issue; I couldn't really tell you why it works though.
data = s.recv(buffer_size)
s.send(":08a8RV;")
data = s.recv(buffer_size)

Python Sockets, requesting file from server then waiting to receive it

I am attempting to send a string to my server from my client with a specific filename and then send that file to the client. For some reason it hangs even after it's received all of the file. It hangs on the:
m = s.recv(1024)
client.py
import socket
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect(("192.168.1.2", 54321))
s.send(b"File:test.txt")
f = open("newfile.txt", "wb")
data = None
while True:
m = s.recv(1024)
data = m
if m:
while m:
m = s.recv(1024)
data += m
else:
break
f.write(data)
f.close()
print("Done receiving")
server.py
import socket
import os
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind(("", 54321))
while True:
client_input = c.recv(1024)
command = client_input.split(":")[0]
if command == "File":
command_parameter = client_input.split(":")[1]
f = open(command_parameter, "rb")
l = os.path.getsize(command_parameter)
m = f.read(l)
c.sendall(m)
f.close()
TLDR
The reason recv blocks is because the socket connection is not shutdown after the file data was sent. The implementation currently has no way to know when the communication is over, which results in a deadlock between the two, remote processes. To avoid this, close the socket connection in the server, which will generate an end-of-file event in the client (i.e. recv returns a zero-length string).
More insight
Whenever you design any software where two processes communicate with each other, you have to define a protocol that disambiguates the communication such that both peers know exactly which state they are in at all times. Typically this involves using the syntax of the communication to help guide the interpretation of the data.
Currently, there are some problems with your implementation: it doesn't define an adequate protocol to resolve potential ambiguity. This becomes apparent when you consider the fact that each call to send in one peer doesn't necessarily correspond to exactly one call to recv in the other. That is, the calls to send and recv are not necessarily one-to-one. Consider sending the file name to the server on a heavily congested network: perhaps only half of the file name makes it to the server when the first call to recv returns. The server has no way (currently) to know if it has finished receiving the file name. The same is true in the client: how does the client know when the file has finished?
To work around this, we can introduce some syntax into the protocol and some logic into the server to ensure we get the complete file name before continuing. A simple solution would be to use an EOL character, i.e. \n to denote the end of the client's message. Now, 99.99% of the time in your testing this will take a single call to recv to read in. However you have to anticipate the cases in which it might take more than one call to recv. This can be implemented using a loop, obviously.
The client end is simpler for this demo. If the communication is over after the sending of the file, then that event can be used to denote the end of the data stream. This happens when the server closes the connection on its end.
If we were to expand the implementation to, say, allow for requests for multiple, back-to-back files, then we'd have to introduce some mechanism in the protocol for distinguishing the end of one file and the beginning of the next. Note that this also means the server would need to potentially buffer extra bytes that it reads in on previous iterations in case there is overlap. A stream implementation is generally useful for these sorts of things.

Socket issues in Python

I'm building a simple server-client app using sockets. Right now, I am trying to get my client to print to console only when it received a specific message (actually, when it doesn't receive a specific message), but for some reason, every other time I run it, it goes through the other statement in my code and is really inconsistent - sometimes it will work as it should and then it will randomly break for a couple uses.
Here is the code on my client side:
def post_checker(client_socket):
response = client_socket.recv(1024)
#check if response is "NP" for a new post from another user
if response == "NP":
new_response = client_socket.recv(1024)
print new_response
else: #print original message being sent
print response
where post_checker is called in the main function as simply "post_checker(client_socket)" Basically, sometimes I get "NPray" printed to my console (when the client only expects to receive the username "ray") and other times it will print correctly.
Here is the server code correlated to this
for sublist in user_list:
client_socket.send("NP")
client_socket.send(sublist[1] + " ")
where user_list is a nested list and sublist[1] is the username I wish to print out on the client side.
Whats going on here?
The nature of your problem is that TCP is a streaming protocol. The bufsize in recv(bufsize) is a maximum size. The recv function will always return data when available, even if not all of the bytes have been received.
See the documentation for details.
This causes problems when you've only sent half the bytes, but you've already started processing the data. I suggest you take a look at the "recvall" concept from this site or you can also consider using UDP sockets (which would solve this problem but may create a host of others as UDP is not a guaranteed protocol).
You may also want to let the python packages handle some of the underlying framework for you. Consider using a SocketServer as documented here:
buffer = []
def recv(sock):
global buffer
message = b""
while True:
if not (b"\r\n" in b"".join(buffer)):
chunk = sock.recv(1024)
if not chunk:
break
buffer.append(chunk)
concat = b"".join(buffer)
if (b"\r\n" in concat):
message = concat[:concat.index(b"\r\n")]
concat = concat[concat.index(b"\r\n") + 2:]
buffer = [concat]
break
return message
def send(sock, data):
sock.send(data + b"\r\n")
I have tested this, and in my opinion, it works perfectly
My use case: I have two scripts that send data quickly, it ends up that one time or another, the buffers receive more than they should, and gather the data, with this script it leaves everything that receives more saved, and continues receiving until there is a new line between the data, and then, it gathers the data, divides in the new line, saves the rest and returns the data perfectly separated
(I translated this, so please excuse me if anything is wrong or misunderstood)

Can select() be used with files in Python under Windows?

I am trying to run the following python server under windows:
"""
An echo server that uses select to handle multiple clients at a time.
Entering any line of input at the terminal will exit the server.
"""
import select
import socket
import sys
host = ''
port = 50000
backlog = 5
size = 1024
server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server.bind((host,port))
server.listen(backlog)
input = [server,sys.stdin]
running = 1
while running:
inputready,outputready,exceptready = select.select(input,[],[])
for s in inputready:
if s == server:
# handle the server socket
client, address = server.accept()
input.append(client)
elif s == sys.stdin:
# handle standard input
junk = sys.stdin.readline()
running = 0
else:
# handle all other sockets
data = s.recv(size)
if data:
s.send(data)
else:
s.close()
input.remove(s)
server.close()
I get the error message (10038, 'An operation was attempted on something that is not a socket'). This probably relates back to the remark in the python documentation that "File objects on Windows are not acceptable, but sockets are. On Windows, the underlying select() function is provided by the WinSock library, and does not handle file descriptors that don’t originate from WinSock.". On internet there are quite some posts on this topic, but they are either too technical for me or simply not clear. So my question is: is there any way the select() statement in python can be used under windows? Please add a little example or modify my code above. Thanks!
Look like it does not like sys.stdin
If you change input to this
input = [server]
the exception will go away.
This is from the doc
Note:
File objects on Windows are not acceptable, but sockets are. On Windows, the
underlying select() function is provided by the WinSock library, and does not
handle file descriptors that don’t originate from WinSock.
I don't know if your code has other problems, but the error you're getting is because of passing input to select.select(), the problem is that it contains sys.stdin which is not a socket. Under Windows, select only works with sockets.
As a side note, input is a python function, it's not a good idea to use it as a variable.
Of course and the answers given are right...
you just have to remove the sys.stdin from the input but still use it in the iteration:
for s in inputready+[sys.stdin]:

Categories