python classes dependant on eachother, how to init? - python

I have two classes:
class A(object):
def __init__(self, b):
self b = b
class B(object):
def __init__(self, a):
self a = a
I'd like to init them like this:
a = A(b)
b = B(a)
But I can't since 'b' doesn't exist when doing a = A(b). I have to do:
a = A()
b = B(a)
b.a = a
But that seems unclean. Is this solvable?

You could either make one class instantiate the other:
class A(object):
def __init__(self):
self.b = B(self)
class B(object):
def __init__(self, a):
self.a = a
a = A()
b = a.b
Or make one class tell the other about itself, like this:
class A(object):
def __init__(self, b):
self.b = b
b.a = self
class B(object):
def __init__(self):
#Will be set by A later
self.a = None
b = B()
a = A(b)

Related

Inherit from a "sibling" class?

Imagine I have:
class ABC():
def main(self, x):
self.x = x
class A(ABC):
def afunction(self):
self.a = 2
class B(ABC):
def bfunction(self):
self.b = self.a * self.x
return self.b
How is it possible that class B inherits the self.a and self.x from class A and ABC? (I do not care about inheriting the methods)
If I understand correctly, what you want is to get B to inherit from A.
Notice that what will happen is that it will inherit A variables, and because A inherits from ABC, B will inherit ABC's variables as well.
Also, please note that you will have to initialize the x variable for example inside an B object in order to use the bFunction, and in general it is proper coding to set a constructor as follows:
class ABC():
def __init__(self, x=0):
self.x = x
def main(self, x):
self.x = x
class A(ABC):
def __init__(self, a=2):
super().__init__()
self.a = a
def afunction(self):
self.a = 2
class B(A):
def __init__(self, b=0):
super().__init__()
self.b = b
def bfunction(self):
self.b = self.a * self.x
return self.b
b = B()
b.main(3)
b.afunction()
print(b.bfunction())
Output:
6
If B inherits from A, which inherits from ABC, then B will have ABC and A's methods but neither the 'x' or 'a' attributes which are only set after the methods are run. This works if you rewrite B as:
class B(A):
def bfunction(self, x):
self.main(x)
self.afunction()
self.b = self.a * self.x
return self.b
b = B()
print(b.bfunction(10))
You have to supply 'x' to b.bfunction so that self.b = self.a * self.x works.

Python Inheritence Subclass(ing)

Given a parent class 'A'
class A(object):
def __init__(self,a,b):
self.a = a
self.b = b
def methodA():
# do something
What is the difference between making a subclass 'B' among the below options
Option 1
class B(A):
def methodB():
# do something
Option 2
class B(A):
def __init__(self,a,b):
A.__init__(self, a, b)
def methodB():
# do something
class A(object):
def __init__(self,a,b):
self.a = a
self.b = b
class B(A):
def __init__(self,a,b):
A.__init__(self, a, b)
def methodB():
pass
class C(A):
def methodB():
pass
b = B(1,2)
c = C(1,2)
print b.a == c.a # True
print b.b == c.b # True
In both class instantiation, init under class A will be ran only once.
so no, there is nothing significantly different.
class B is not clean IMO and poses no real purpose at all. It will be ran anyways.
If you wish to do something different in class B init, then yes, you can use this code.
class B(A):
def __init__(self,a,b):
A.__init__(self, a+1, b+1)
def methodB():
pass

Super with arguments in case of multiple inheritance

I have a class that inherits from two other classes whose __init__ take both a parameter like this:
class A(object):
def __init__(self, a):
self.a = a
class B(object):
def __init__(self, b):
self.b = b
class C(A, B):
def __init__(self, a, b):
super(C, self).__init__(a, b)
c = ClassC(1, 2)
This gives a TypeError: __init__() takes exactly 2 arguments (3 given).
When setting b in B to a fixed value and passing only 1 parameter to super then trying to access b in C gives an AttributeError: 'ClassC' object has no attribute 'b':
class A(object):
def __init__(self, a):
self.a = a
class B(object):
def __init__(self, b):
self.b = 2
class C(A, B):
def __init__(self, a, b):
super(C, self).__init__(a)
print self.a
print self.b
c = ClassC(1, 2)
When calling the __init__ manually everything seems to be fine:
class A(object):
def __init__(self, a):
self.a = a
class B(object):
def __init__(self, b):
self.b = b
class C(A, B):
def __init__(self, a, b):
A.__init__(a)
B.__init__(b)
print self.a
print self.b
c = ClassC(1, 2)
So how can I get this inheritance straight and how can I manage the parameters for __init__ of inherited classes when using super? Is it even possible? How does super know which parameters are to pass to which class?

Multiple inheritance problem in Python!

Why does c.print_a() output 'B'?
class A(object):
def __init__(self):
self.some_name = 'A'
def print_a(self):
print self.some_name
class B(object):
def __init__(self):
self.some_name = 'B'
def print_b(self):
print self.some_name
class C(A, B):
def __init__(self):
A.__init__(self)
B.__init__(self)
if __name__ == '__main__':
c = C()
c.print_a()
class A(object):
def __init__(self, some_name='A'):
self.some_name = some_name
def print_a(self):
print self.some_name
class B(object):
def __init__(self, some_name='B'):
self.some_name = some_name
def print_b(self):
print self.some_name
class C(A, B):
def __init__(self):
A.__init__(self, some_name='AAAAA')
B.__init__(self, some_name='BBBBB')
if __name__ == '__main__':
c = C()
c.print_a()
You only have a single object here; the some_name property is shared between methods from all inherited classes. You call A.__init__, which sets it to A, then B.__init__, which changes it to B.
Also note that you're calling base methods incorrectly; use super:
class A(object):
def __init__(self):
self.some_name = 'A'
super(A, self).__init__()
def print_a(self):
print self.some_name
class B(object):
def __init__(self):
self.some_name = 'B'
super(B, self).__init__()
def print_b(self):
print self.some_name
class C(A, B):
def __init__(self):
super(C, self).__init__()
if __name__ == '__main__':
c = C()
c.print_a()
There's only one self, and you're overwriting its some_name in B.__init__. Maybe you're used to C++, where there would be two separate fields, A.some_name and B.some_name. This concept doesn't apply to Python, where attributes are created dynamically on assignment.
Say you want C to set names for some objects of types A and B and later calling some print_a and print_b methods on objects of type C get these names back ?
You can get this type of behavior using C++ inheritance model, but python model is very different. Only one object with one set of fields. If you want the C++ behavior, the simplest way is probably to declare subobjects (and it looks like a common abuse of inheritance over composition).
Looks like you are trying to do something like below:
class Printable(object):
def __init__(self, name):
self.name = name
def myprint(self):
print self.name
class C(object):
def __init__(self):
self.a = Printable('A')
self.b = Printable('B')
def print_a(self):
self.a.myprint()
def print_b(self):
self.a.myprint()
if __name__ == '__main__':
c = C()
c.print_a()

Python - how to get class instance reference from an attribute class?

class A()
att = B()
class B()
...
a = A()
b = B()
a.att = b
How can b get reference of a ? I need to get an attribute of a here.
Thanks!
You can make a generic "Reference()" class, that keep any reference of itself in an attributes dictionnary.
class Reference(object):
def __init__(self):
self.references = {}
def __setattr__(self, key, value):
if hasattr(self, 'references'):
if isinstance(value, Reference):
if not key in value.references:
value.references[key] = []
value.references[key].append(self)
elif value is None and hasattr(self, key):
old = getattr(self, key).references
if key in old and self in old[key]:
old[key].remove(self)
super(Reference, self).__setattr__(key, value)
And then, create your classes :
class A(Reference):
def __init__(self):
super(A, self).__init__()
self.att = None
class B(Reference):
def __init__(self):
super(B, self).__init__()
self.att = None
And use it :
a = A()
b = B()
print 'A references', a.references
print 'B references', b.references
# A references {}
# B references {}
a.att = b
print 'A references', a.references
print 'B references', b.references
# A references {}
# B references {'att': [<__main__.A object at 0x7f731c8fc910>]}
At the end, you'll have back reference to all Reference class from any properties
Easiest way would be to just add an extra function parameter to the method in B that needs A, and pass it through when called. Or, just make B's init take an A as argument, and change the bit in A's init to be att = B(self)
class A(object):
def __init__(self):
self.att = B(self)
class B(object):
def __init__(self, a):
self.a = a
a = A()
a.att.a is a
Or another way,
class A(object):
def __init__(self, b):
b.a = self
self.att = b
class B(object):
pass
a = A(B())
a.att.a is a
This code doesn't make a lot of sense... but if I correctly understand your question...
class A(object):
pass #or whatever you like
class B(object):
def __init__(self, ref): #accept one argument
self.ref = ref
a = A()
b = B(a) #pass `a` as that argument
a.att = b
Might be one answer.
class A(object):
def __init__(self):
self._att=None
#property
def att(self):
return self._att
#att.setter
def att(self, value):
self._att = value
value.parent = self
class B(object):
pass
a = A()
b = B()
a.att = b
print b.parent

Categories