matplotlib Legend Markers Only Once - python

I often plot a point on a matplotlib plot with:
x = 10
y = 100
plot(x, y, "k*", label="Global Optimum")
legend()
However, this causes the legend to put a star in the legend twice, such that it looks like:
* * Global Optimum
when I really want it to look like:
* Global Optimum
How do I do this?

This should work:
legend(numpoints=1)
BTW, if you add the line
legend.numpoints : 1 # the number of points in the legend line
to your matplotlibrc file, then this will be the new default.
[See also scatterpoints, depending on your plot.]
API: Link to API docs

I like to change my matplotlib rc parameters dynamically in every python script. To achieve this goal I simply use somthing like that at the beginning of my python files.
from pylab import *
rcParams['legend.numpoints'] = 1
This will apply to all plots generated from my python file.
EDIT: For those who do not like to import pylab, the long answer is
import matplotlib as mpl
mpl.rcParams['legend.numpoints'] = 1

Related

Live plot through tkinter .after - Combining pyplot event loop with tkinter event loop [duplicate]

I am having problems trying to make matplotlib plot a function without blocking execution.
I have tried using show(block=False) as some people suggest, but all I get is a frozen window. If I simply call show(), the result is plotted properly but execution is blocked until the window is closed. From other threads I've read, I suspect that whether show(block=False) works or not depends on the backend. Is this correct? My backend is Qt4Agg. Could you have a look at my code and tell me if you see something wrong? Here is my code.
from math import *
from matplotlib import pyplot as plt
print(plt.get_backend())
def main():
x = range(-50, 51, 1)
for pow in range(1,5): # plot x^1, x^2, ..., x^4
y = [Xi**pow for Xi in x]
print(y)
plt.plot(x, y)
plt.draw()
#plt.show() #this plots correctly, but blocks execution.
plt.show(block=False) #this creates an empty frozen window.
_ = raw_input("Press [enter] to continue.")
if __name__ == '__main__':
main()
PS. I forgot to say that I would like to update the existing window every time I plot something, instead of creating a new one.
I spent a long time looking for solutions, and found this answer.
It looks like, in order to get what you (and I) want, you need the combination of plt.ion(), plt.show() (not with block=False) and, most importantly, plt.pause(.001) (or whatever time you want). The pause is needed because the GUI events happen while the main code is sleeping, including drawing. It's possible that this is implemented by picking up time from a sleeping thread, so maybe IDEs mess with that—I don't know.
Here's an implementation that works for me on python 3.5:
import numpy as np
from matplotlib import pyplot as plt
def main():
plt.axis([-50,50,0,10000])
plt.ion()
plt.show()
x = np.arange(-50, 51)
for pow in range(1,5): # plot x^1, x^2, ..., x^4
y = [Xi**pow for Xi in x]
plt.plot(x, y)
plt.draw()
plt.pause(0.001)
input("Press [enter] to continue.")
if __name__ == '__main__':
main()
A simple trick that works for me is the following:
Use the block = False argument inside show: plt.show(block = False)
Use another plt.show() at the end of the .py script.
Example:
import matplotlib.pyplot as plt
plt.imshow(add_something)
plt.xlabel("x")
plt.ylabel("y")
plt.show(block=False)
#more code here (e.g. do calculations and use print to see them on the screen
plt.show()
Note: plt.show() is the last line of my script.
You can avoid blocking execution by writing the plot to an array, then displaying the array in a different thread. Here is an example of generating and displaying plots simultaneously using pf.screen from pyformulas 0.2.8:
import pyformulas as pf
import matplotlib.pyplot as plt
import numpy as np
import time
fig = plt.figure()
canvas = np.zeros((480,640))
screen = pf.screen(canvas, 'Sinusoid')
start = time.time()
while True:
now = time.time() - start
x = np.linspace(now-2, now, 100)
y = np.sin(2*np.pi*x) + np.sin(3*np.pi*x)
plt.xlim(now-2,now+1)
plt.ylim(-3,3)
plt.plot(x, y, c='black')
# If we haven't already shown or saved the plot, then we need to draw the figure first...
fig.canvas.draw()
image = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
image = image.reshape(fig.canvas.get_width_height()[::-1] + (3,))
screen.update(image)
#screen.close()
Result:
Disclaimer: I'm the maintainer for pyformulas.
Reference: Matplotlib: save plot to numpy array
Live Plotting
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0, 2 * np.pi, 100)
# plt.axis([x[0], x[-1], -1, 1]) # disable autoscaling
for point in x:
plt.plot(point, np.sin(2 * point), '.', color='b')
plt.draw()
plt.pause(0.01)
# plt.clf() # clear the current figure
if the amount of data is too much you can lower the update rate with a simple counter
cnt += 1
if (cnt == 10): # update plot each 10 points
plt.draw()
plt.pause(0.01)
cnt = 0
Holding Plot after Program Exit
This was my actual problem that couldn't find satisfactory answer for, I wanted plotting that didn't close after the script was finished (like MATLAB),
If you think about it, after the script is finished, the program is terminated and there is no logical way to hold the plot this way, so there are two options
block the script from exiting (that's plt.show() and not what I want)
run the plot on a separate thread (too complicated)
this wasn't satisfactory for me so I found another solution outside of the box
SaveToFile and View in external viewer
For this the saving and viewing should be both fast and the viewer shouldn't lock the file and should update the content automatically
Selecting Format for Saving
vector based formats are both small and fast
SVG is good but coudn't find good viewer for it except the web browser which by default needs manual refresh
PDF can support vector formats and there are lightweight viewers which support live updating
Fast Lightweight Viewer with Live Update
For PDF there are several good options
On Windows I use SumatraPDF which is free, fast and light (only uses 1.8MB RAM for my case)
On Linux there are several options such as Evince (GNOME) and Ocular (KDE)
Sample Code & Results
Sample code for outputing plot to a file
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0, 2 * np.pi, 100)
y = np.sin(2 * x)
plt.plot(x, y)
plt.savefig("fig.pdf")
after first run, open the output file in one of the viewers mentioned above and enjoy.
Here is a screenshot of VSCode alongside SumatraPDF, also the process is fast enough to get semi-live update rate (I can get near 10Hz on my setup just use time.sleep() between intervals)
A lot of these answers are super inflated and from what I can find, the answer isn't all that difficult to understand.
You can use plt.ion() if you want, but I found using plt.draw() just as effective
For my specific project I'm plotting images, but you can use plot() or scatter() or whatever instead of figimage(), it doesn't matter.
plt.figimage(image_to_show)
plt.draw()
plt.pause(0.001)
Or
fig = plt.figure()
...
fig.figimage(image_to_show)
fig.canvas.draw()
plt.pause(0.001)
If you're using an actual figure.
I used #krs013, and #Default Picture's answers to figure this out
Hopefully this saves someone from having launch every single figure on a separate thread, or from having to read these novels just to figure this out
I figured out that the plt.pause(0.001) command is the only thing needed and nothing else.
plt.show() and plt.draw() are unnecessary and / or blocking in one way or the other. So here is a code that draws and updates a figure and keeps going. Essentially plt.pause(0.001) seems to be the closest equivalent to matlab's drawnow.
Unfortunately those plots will not be interactive (they freeze), except you insert an input() command, but then the code will stop.
The documentation of the plt.pause(interval) command states:
If there is an active figure, it will be updated and displayed before the pause......
This can be used for crude animation.
and this is pretty much exactly what we want. Try this code:
import numpy as np
from matplotlib import pyplot as plt
x = np.arange(0, 51) # x coordinates
for z in range(10, 50):
y = np.power(x, z/10) # y coordinates of plot for animation
plt.cla() # delete previous plot
plt.axis([-50, 50, 0, 10000]) # set axis limits, to avoid rescaling
plt.plot(x, y) # generate new plot
plt.pause(0.1) # pause 0.1 sec, to force a plot redraw
Iggy's answer was the easiest for me to follow, but I got the following error when doing a subsequent subplot command that was not there when I was just doing show:
MatplotlibDeprecationWarning: Adding an axes using the same arguments
as a previous axes currently reuses the earlier instance. In a future
version, a new instance will always be created and returned.
Meanwhile, this warning can be suppressed, and the future behavior
ensured, by passing a unique label to each axes instance.
In order to avoid this error, it helps to close (or clear) the plot after the user hits enter.
Here's the code that worked for me:
def plt_show():
'''Text-blocking version of plt.show()
Use this instead of plt.show()'''
plt.draw()
plt.pause(0.001)
input("Press enter to continue...")
plt.close()
The Python package drawnow allows to update a plot in real time in a non blocking way.
It also works with a webcam and OpenCV for example to plot measures for each frame.
See the original post.
Substitute the backend of matplotlib can solve my problem.
Write the bellow command before import matplotlib.pyplot as plt.
Substitute backend command should run first.
import matplotlib
matplotlib.use('TkAgg')
My answer come from Pycharm does not show plot

How do I not display a GlyphRenderer table when plotting bokeh?

Sorry if this is a basic question, but I haven't been able to find an answer in the bokeh documentation. I want to be able to plot a bokeh plot without the long GlyphRenderer list displaying.
I have tried saving the p.hexbin line to a variable called 'test'. However, this new 'test' variable is being saved as a tuple and can no longer be used with the 'show()' function to display a bokeh plot. The example code I am using here is straight from the bokeh documentation site.
import numpy as np
from bokeh.models import HoverTool
from bokeh.plotting import figure, show
x = 2 + 2*np.random.standard_normal(500)
y = 2 + 2*np.random.standard_normal(500)
p = figure(match_aspect=True, tools="wheel_zoom,reset")
p.background_fill_color = '#440154'
p.grid.visible = False
p.hexbin(x, y, size=0.5, hover_color="pink", hover_alpha=0.8)
hover = HoverTool(tooltips=[("count", "#c"), ("(q,r)", "(#q, #r)")])
p.add_tools(hover)
show(p)
I only want the hexbin plot to display when I run the code, not the Glyph tuple.
I have tried saving the p.hexbin line to a variable called 'test'. However, this new 'test' variable is being saved as a tuple and can no longer be used with the 'show()' function to display a bokeh plot.
Printing outputs is standard Python behavior, there is nothing we can do about that. The function returns a list, so Python will print a list. The only thing to suppress that behavior, as you have noted, is to assign the output to a variable. However, since you don't care about its value, it can/should be ignored. There is no reason to pass it to show, you should continue to call show, on p, exactly the way you have been without any change:
rs = p.hexbin(x, y, size=0.5, hover_color="pink", hover_alpha=0.8)
show(p)

Plot semilogx with matplotlib then convert it into Bokeh

I plot a figure containing several curves using matplotlib and then try to convert it into bokeh:
import numpy as np
import matplotlib.pyplot as plt
from bokeh import mpl
from bokeh.plotting import show, output_file
num_plots = 6
colormap = plt.cm.gist_ncar
time = np.random.random_sample((300, 6))
s_strain = np.random.random_sample((300, 6))
def time_s_strain_bokeh(num_plots, colormap, time, s_strain):
plt.gca().set_color_cycle([colormap(i) for i in np.linspace(0, 0.9, num_plots)])
plt.figure(2)
for i in range(0, num_plots):
plt.plot(time[:,i], s_strain[:,i])
plt.grid(True)
# save it to bokeh
output_file('anywhere.html')
show(mpl.to_bokeh())
time_s_strain_bokeh(num_plots, colormap, time, s_strain)
it works fine. However, I want to have a semilogx plot. When I change plt.plot in the "for" loop into plt.semilogx, I have the following error:
UnboundLocalError: local variable 'laxis' referenced before assignment
What can I do to change the x-axis onto log scale?
I'm with the same issue! 1/2 of the solution is this (supose my data is in a Pandas dataframe called pd):
pd.plot(x='my_x_variable', y='my_y_variable)
p = mpl.to_bokeh()
p.x_mapper_type='log' # I found this property with p.properties_with_values()
show(p)
I edited this answare because I just found part 2/2 of the solution:
When I use just the code above, the plot is semilog (ok!), but the x axis is flipped (mirrored)!!!
The solution I found is explicitly redefine xlim:
p.x_range.start=0.007 # supose pd['my_x_variable'] starts at 0.007
p.x_range.end=0.17 # supose pd['my_x_variable'] ends at 0.17
With this my plot became identical with the matplotlib original plot. The final code looks like:
pd.plot(x='my_x_variable', y='my_y_variable)
p = mpl.to_bokeh()
p.x_mapper_type='log'
p.x_range.start= pd['my_x_variable'].iloc[1] # numpy start at 0, take care!
p.x_range.end= pd['my_x_variable'].iloc[-1]
show(p)
As of Bokeh 0.12, partial and incomplete MPL compatibility is provided by the third party mplexporter library, which now appears to be unmaintained. Full (or at least, much more complete) MPL compat support will not happen until the MPL team implements MEP 25. However, implementing MEP 25 is an MPL project task, and the timeline/schedule is entirely outside of the control of the Bokeh project.
The existing MPL compat based on mplexporter is provided "as-is" in case it is useful in the subset of simple situations that it currently works for. My suggestion is to use native Bokeh APIs directly for anything of even moderate complexity.
You can find an example of a semilog plot created using Bokeh APIs here:
http://docs.bokeh.org/en/latest/docs/user_guide/plotting.html#log-scale-axes

Seaborn: Specify an exact color

You can specify a color for plots, but Seaborn will mute the color a bit during plotting. Is there a way to turn off this behavior?
Example:
import matplotlib
import seaborn as sns
import numpy as np
# Create some data
np.random.seed(0)
x = np.random.randn(100)
# Set the Seaborn style
sns.set_style('white')
# Specify a color for plotting
current_palette = matplotlib.colors.hex2color('#86b92e')
# Make a plot
g = sns.distplot(x, color=current_palette)
# Show what the color should look like
sns.palplot(current_palette)
I have tried several ways of specifying the color and all available styles in Seaborn, but nothing has worked. I am using iPython notebook and Python 2.7.
It is not using a muted color, its using an alpha/transparency value as part of the default.
Two answers referencing ways to modify matplotlib object transparency:
https://stackoverflow.com/a/4708018
https://stackoverflow.com/a/24549558
seaborn.distplot allows you to pass different parameters for styling (*_kws). Each plot function has it's own parameters and are therefor prefixed by the name of the plot. Eg. histogram has hist_kws. [distplot Reference]
Because the histogram plot is located in matplotlib, we'd have to look at the keyword parameters we can pass. Like you already figured out, you can pass the 'alpha' keyword parameter to get rid of the transparancy of the lines. See reference for more arguments (kwargs section). [pyplot Reference]

Passing pyplot points as arguments

So I initialised a pyplot figure
import ... ## import all relevent modules
f = plt.figure(figsize=(8,3),dpi(100)
a = plt.subplot(111)
a.set_xlim(left=0,right=25,auto=False)
a.set_ylim(bottom=0,top=250,auto=False)
a.plot([5,10,15],[80,150,210])
plt.show()
This works fine... What I want to be able to do is to write a function that can update the scatter plot dynamically... Something like:
def plot_point(x_coord,y_coord):
a.plot([x_coord],[y_coord])
a.draw() ## I thought this would work... :(
No error, but the point doesn't get plotted. How can I get around this? The reason I've done it using figures is so I can embed it in Tkinter.
Thanks for your help!
plot is perfectly fine to use for plotting individual points (it is even recommend over scatter, if you don't wanna add additional information through color or size of the dots). What is missing in the initial example is setting the right linestyle; obviously, a line consisting of a single point doesn't show up. Changing the line style to '+' or something similar fixes the problem:
def plot_point(x_coord,y_coord):
a.plot([x_coord],[y_coord], '+')

Categories