Checking if property is settable/deletable - python

How do I check if a property is settable or deletable in Python?
The best I've found so far is
type(obj).__dict__["prop_name"].fset is not None

This is a good case when you should subscribe to "It's Easier to Ask for Forgiveness than Permission" philosophy, and just handle the exception in case property is not settable/deletable.
try:
x.prop = 42
except AttributeError:
pass

I don't think there's any way to know up front without trying. You can't know for certain if an object has a strange __setattr__ or similar that will break the abstraction you're trying to use.

The following program tests three functions designed to find out if a class or instance property supports CRUD operations. The class or instance is the first argument to the can_* functions, and the second argument is the name of the property that should be checked. Type checking is done automatically to ensure that the functions are being used as expected. Please note that this is designed to only work with properties created with the property class from builtins module.
#! /usr/bin/env python3
def main():
for kind in Test, TestG, TestS, TestGS, TestD, TestGD, TestSD, TestGSD:
print(kind.__name__, 'Class')
print(' can_get:', can_get(kind, 'data'))
print(' can_set:', can_set(kind, 'data'))
print(' can_del:', can_del(kind, 'data'))
print()
instance = kind('Hello, world!')
print(kind.__name__, 'Instance')
print(' can_get:', can_get(instance, 'data'))
print(' can_set:', can_set(instance, 'data'))
print(' can_del:', can_del(instance, 'data'))
print()
def can_get(obj, key):
return _get_property(obj, key).fget is not None
def can_set(obj, key):
return _get_property(obj, key).fset is not None
def can_del(obj, key):
return _get_property(obj, key).fdel is not None
def _get_property(obj, key):
if not isinstance(obj, type):
obj = type(obj)
pro = vars(obj).get(key)
if not isinstance(pro, property):
raise TypeError('{.__name__}.{} is not a property'.format(obj, key))
return pro
class Test:
def __init__(self, value):
self.__data = value
def get_data(self):
return self.__data
def set_data(self, value):
self.__data = value
def del_data(self):
del self.__data
data = property()
class TestG(Test):
data = property(fget=Test.get_data)
class TestS(Test):
data = property(fset=Test.set_data)
class TestGS(Test):
data = property(fget=Test.get_data, fset=Test.set_data)
class TestD(Test):
data = property(fdel=Test.del_data)
class TestGD(Test):
data = property(fget=Test.get_data, fdel=Test.del_data)
class TestSD(Test):
data = property(fset=Test.set_data, fdel=Test.del_data)
class TestGSD(Test):
data = property(fget=Test.get_data, fset=Test.set_data, fdel=Test.del_data)
if __name__ == '__main__':
main()

Related

Why does setattr not work on spacy token? [duplicate]

I want to be able to create a class (in Python) that once initialized with __init__, does not accept new attributes, but accepts modifications of existing attributes. There's several hack-ish ways I can see to do this, for example having a __setattr__ method such as
def __setattr__(self, attribute, value):
if not attribute in self.__dict__:
print "Cannot set %s" % attribute
else:
self.__dict__[attribute] = value
and then editing __dict__ directly inside __init__, but I was wondering if there is a 'proper' way to do this?
I wouldn't use __dict__ directly, but you can add a function to explicitly "freeze" a instance:
class FrozenClass(object):
__isfrozen = False
def __setattr__(self, key, value):
if self.__isfrozen and not hasattr(self, key):
raise TypeError( "%r is a frozen class" % self )
object.__setattr__(self, key, value)
def _freeze(self):
self.__isfrozen = True
class Test(FrozenClass):
def __init__(self):
self.x = 42#
self.y = 2**3
self._freeze() # no new attributes after this point.
a,b = Test(), Test()
a.x = 10
b.z = 10 # fails
Slots is the way to go:
The pythonic way is to use slots instead of playing around with the __setter__. While it may solve the problem, it does not give any performance improvement. The attributes of objects are stored in a dictionary "__dict__", this is the reason, why you can dynamically add attributes to objects of classes that we have created so far. Using a dictionary for attribute storage is very convenient, but it can mean a waste of space for objects, which have only a small amount of instance variables.
Slots are a nice way to work around this space consumption problem. Instead of having a dynamic dict that allows adding attributes to objects dynamically, slots provide a static structure which prohibits additions after the creation of an instance.
When we design a class, we can use slots to prevent the dynamic creation of attributes. To define slots, you have to define a list with the name __slots__. The list has to contain all the attributes, you want to use. We demonstrate this in the following class, in which the slots list contains only the name for an attribute "val".
class S(object):
__slots__ = ['val']
def __init__(self, v):
self.val = v
x = S(42)
print(x.val)
x.new = "not possible"
=> It fails to create an attribute "new":
42
Traceback (most recent call last):
File "slots_ex.py", line 12, in <module>
x.new = "not possible"
AttributeError: 'S' object has no attribute 'new'
Notes:
Since Python 3.3 the advantage optimizing the space consumption is not as impressive any more. With Python 3.3 Key-Sharing Dictionaries are used for the storage of objects. The attributes of the instances are capable of sharing part of their internal storage between each other, i.e. the part which stores the keys and their corresponding hashes. This helps to reduce the memory consumption of programs, which create many instances of non-builtin types. But still is the way to go to avoid dynamically created attributes.
Using slots come also with it's own cost. It will break serialization (e.g. pickle). It will also break multiple inheritance. A class can't inherit from more than one class that either defines slots or has an instance layout defined in C code (like list, tuple or int).
If someone is interested in doing that with a decorator, here is a working solution:
from functools import wraps
def froze_it(cls):
cls.__frozen = False
def frozensetattr(self, key, value):
if self.__frozen and not hasattr(self, key):
print("Class {} is frozen. Cannot set {} = {}"
.format(cls.__name__, key, value))
else:
object.__setattr__(self, key, value)
def init_decorator(func):
#wraps(func)
def wrapper(self, *args, **kwargs):
func(self, *args, **kwargs)
self.__frozen = True
return wrapper
cls.__setattr__ = frozensetattr
cls.__init__ = init_decorator(cls.__init__)
return cls
Pretty straightforward to use:
#froze_it
class Foo(object):
def __init__(self):
self.bar = 10
foo = Foo()
foo.bar = 42
foo.foobar = "no way"
Result:
>>> Class Foo is frozen. Cannot set foobar = no way
Actually, you don't want __setattr__, you want __slots__. Add __slots__ = ('foo', 'bar', 'baz') to the class body, and Python will make sure that there's only foo, bar and baz on any instance. But read the caveats the documentation lists!
The proper way is to override __setattr__. That's what it's there for.
I like very much the solution that uses a decorator, because it's easy to use it for many classes across a project, with minimum additions for each class. But it doesn't work well with inheritance.
So here is my version: It only overrides the __setattr__ function - if the attribute doesn't exist and the caller function is not __init__, it prints an error message.
import inspect
def froze_it(cls):
def frozensetattr(self, key, value):
if not hasattr(self, key) and inspect.stack()[1][3] != "__init__":
print("Class {} is frozen. Cannot set {} = {}"
.format(cls.__name__, key, value))
else:
self.__dict__[key] = value
cls.__setattr__ = frozensetattr
return cls
#froze_it
class A:
def __init__(self):
self._a = 0
a = A()
a._a = 1
a._b = 2 # error
What about this:
class A():
__allowed_attr=('_x', '_y')
def __init__(self,x=0,y=0):
self._x=x
self._y=y
def __setattr__(self,attribute,value):
if not attribute in self.__class__.__allowed_attr:
raise AttributeError
else:
super().__setattr__(attribute,value)
Here is approach i came up with that doesn't need a _frozen attribute or method to freeze() in init.
During init i just add all class attributes to the instance.
I like this because there is no _frozen, freeze(), and _frozen also does not show up in the vars(instance) output.
class MetaModel(type):
def __setattr__(self, name, value):
raise AttributeError("Model classes do not accept arbitrary attributes")
class Model(object):
__metaclass__ = MetaModel
# init will take all CLASS attributes, and add them as SELF/INSTANCE attributes
def __init__(self):
for k, v in self.__class__.__dict__.iteritems():
if not k.startswith("_"):
self.__setattr__(k, v)
# setattr, won't allow any attributes to be set on the SELF/INSTANCE that don't already exist
def __setattr__(self, name, value):
if not hasattr(self, name):
raise AttributeError("Model instances do not accept arbitrary attributes")
else:
object.__setattr__(self, name, value)
# Example using
class Dog(Model):
name = ''
kind = 'canine'
d, e = Dog(), Dog()
print vars(d)
print vars(e)
e.junk = 'stuff' # fails
I like the "Frozen" of Jochen Ritzel. The inconvenient is that the isfrozen variable then appears when printing a Class.__dict
I went around this problem this way by creating a list of authorized attributes (similar to slots):
class Frozen(object):
__List = []
def __setattr__(self, key, value):
setIsOK = False
for item in self.__List:
if key == item:
setIsOK = True
if setIsOK == True:
object.__setattr__(self, key, value)
else:
raise TypeError( "%r has no attributes %r" % (self, key) )
class Test(Frozen):
_Frozen__List = ["attr1","attr2"]
def __init__(self):
self.attr1 = 1
self.attr2 = 1
The FrozenClass by Jochen Ritzel is cool, but calling _frozen() when initialing a class every time is not so cool (and you need to take the risk of forgetting it). I added a __init_slots__ function:
class FrozenClass(object):
__isfrozen = False
def _freeze(self):
self.__isfrozen = True
def __init_slots__(self, slots):
for key in slots:
object.__setattr__(self, key, None)
self._freeze()
def __setattr__(self, key, value):
if self.__isfrozen and not hasattr(self, key):
raise TypeError( "%r is a frozen class" % self )
object.__setattr__(self, key, value)
class Test(FrozenClass):
def __init__(self):
self.__init_slots__(["x", "y"])
self.x = 42#
self.y = 2**3
a,b = Test(), Test()
a.x = 10
b.z = 10 # fails
None of the answers mention the performance impact of overriding __setattr__, which can be an issue when creating many small objects. (And __slots__ would be the performant solution but limits pickle/inheritance).
So I came up with this variant which installs our slower settatr after init:
class FrozenClass:
def freeze(self):
def frozen_setattr(self, key, value):
if not hasattr(self, key):
raise TypeError("Cannot set {}: {} is a frozen class".format(key, self))
object.__setattr__(self, key, value)
self.__setattr__ = frozen_setattr
class Foo(FrozenClass): ...
If you don't want to call freeze at the end of __init__, if inheritance is an issue, or if you don't want it in vars(), it can also be adapted: for example here is a decorator version based on the pystrict answer:
import functools
def strict(cls):
cls._x_setter = getattr(cls, "__setattr__", object.__setattr__)
cls._x_init = cls.__init__
#functools.wraps(cls.__init__)
def wrapper(self, *args, **kwargs):
cls._x_init(self, *args, **kwargs)
def frozen_setattr(self, key, value):
if not hasattr(self, key):
raise TypeError("Class %s is frozen. Cannot set '%s'." % (cls.__name__, key))
cls._x_setter(self, key, value)
cls.__setattr__ = frozen_setattr
cls.__init__ = wrapper
return cls
#strict
class Foo: ...
I wrote pystrict as a solution to this problem. It's too large to paste all of the code in stackoverflow.
pystrict is a pypi installable decorator that can be used with classes to freeze them. Many solutions here don't properly support inheritance.
If __slots__ doesn't work for you (because of inheritance issues), this is a good alternative.
There is an example to the README that shows why a decorator like this is needed even if you have mypy and pylint running on your project:
pip install pystrict
Then just use the #strict decorator:
from pystrict import strict
#strict
class Blah
def __init__(self):
self.attr = 1
#dataclass(slots=True) Nirvana (Python 3.10)
I'm in love with this #dataclass thing:
main.py
from dataclasses import dataclass
#dataclass(slots=True)
class C:
n: int
s: str
c = C(n=1, s='one')
assert c.n == 1
assert c.s == 'one'
c.n == 2
c.s == 'two'
c.asdf = 2
Outcome:
Traceback (most recent call last):
File "/home/ciro/main.py", line 15, in <module>
c.asdf = 2
AttributeError: 'C' object has no attribute 'asdf'
Note how #dataclass only requires use to define our attributes once with type annotations
n: int
s: str
and then, without any repetition we get for free:
def __init__(n, s):
self.n = n
self.s = s
__slots__ = ['n', 's']
Other free things not shown in this example:
__str__
__eq__: Compare object instances for equality by their attributes
__hash__ if you also use frozen=True: Object of custom type as dictionary key
Tested on Python 3.10.7, Ubuntu 22.10.

How to prevent others from adding new attributes to an object / class in Python? [duplicate]

I want to be able to create a class (in Python) that once initialized with __init__, does not accept new attributes, but accepts modifications of existing attributes. There's several hack-ish ways I can see to do this, for example having a __setattr__ method such as
def __setattr__(self, attribute, value):
if not attribute in self.__dict__:
print "Cannot set %s" % attribute
else:
self.__dict__[attribute] = value
and then editing __dict__ directly inside __init__, but I was wondering if there is a 'proper' way to do this?
I wouldn't use __dict__ directly, but you can add a function to explicitly "freeze" a instance:
class FrozenClass(object):
__isfrozen = False
def __setattr__(self, key, value):
if self.__isfrozen and not hasattr(self, key):
raise TypeError( "%r is a frozen class" % self )
object.__setattr__(self, key, value)
def _freeze(self):
self.__isfrozen = True
class Test(FrozenClass):
def __init__(self):
self.x = 42#
self.y = 2**3
self._freeze() # no new attributes after this point.
a,b = Test(), Test()
a.x = 10
b.z = 10 # fails
Slots is the way to go:
The pythonic way is to use slots instead of playing around with the __setter__. While it may solve the problem, it does not give any performance improvement. The attributes of objects are stored in a dictionary "__dict__", this is the reason, why you can dynamically add attributes to objects of classes that we have created so far. Using a dictionary for attribute storage is very convenient, but it can mean a waste of space for objects, which have only a small amount of instance variables.
Slots are a nice way to work around this space consumption problem. Instead of having a dynamic dict that allows adding attributes to objects dynamically, slots provide a static structure which prohibits additions after the creation of an instance.
When we design a class, we can use slots to prevent the dynamic creation of attributes. To define slots, you have to define a list with the name __slots__. The list has to contain all the attributes, you want to use. We demonstrate this in the following class, in which the slots list contains only the name for an attribute "val".
class S(object):
__slots__ = ['val']
def __init__(self, v):
self.val = v
x = S(42)
print(x.val)
x.new = "not possible"
=> It fails to create an attribute "new":
42
Traceback (most recent call last):
File "slots_ex.py", line 12, in <module>
x.new = "not possible"
AttributeError: 'S' object has no attribute 'new'
Notes:
Since Python 3.3 the advantage optimizing the space consumption is not as impressive any more. With Python 3.3 Key-Sharing Dictionaries are used for the storage of objects. The attributes of the instances are capable of sharing part of their internal storage between each other, i.e. the part which stores the keys and their corresponding hashes. This helps to reduce the memory consumption of programs, which create many instances of non-builtin types. But still is the way to go to avoid dynamically created attributes.
Using slots come also with it's own cost. It will break serialization (e.g. pickle). It will also break multiple inheritance. A class can't inherit from more than one class that either defines slots or has an instance layout defined in C code (like list, tuple or int).
If someone is interested in doing that with a decorator, here is a working solution:
from functools import wraps
def froze_it(cls):
cls.__frozen = False
def frozensetattr(self, key, value):
if self.__frozen and not hasattr(self, key):
print("Class {} is frozen. Cannot set {} = {}"
.format(cls.__name__, key, value))
else:
object.__setattr__(self, key, value)
def init_decorator(func):
#wraps(func)
def wrapper(self, *args, **kwargs):
func(self, *args, **kwargs)
self.__frozen = True
return wrapper
cls.__setattr__ = frozensetattr
cls.__init__ = init_decorator(cls.__init__)
return cls
Pretty straightforward to use:
#froze_it
class Foo(object):
def __init__(self):
self.bar = 10
foo = Foo()
foo.bar = 42
foo.foobar = "no way"
Result:
>>> Class Foo is frozen. Cannot set foobar = no way
Actually, you don't want __setattr__, you want __slots__. Add __slots__ = ('foo', 'bar', 'baz') to the class body, and Python will make sure that there's only foo, bar and baz on any instance. But read the caveats the documentation lists!
The proper way is to override __setattr__. That's what it's there for.
I like very much the solution that uses a decorator, because it's easy to use it for many classes across a project, with minimum additions for each class. But it doesn't work well with inheritance.
So here is my version: It only overrides the __setattr__ function - if the attribute doesn't exist and the caller function is not __init__, it prints an error message.
import inspect
def froze_it(cls):
def frozensetattr(self, key, value):
if not hasattr(self, key) and inspect.stack()[1][3] != "__init__":
print("Class {} is frozen. Cannot set {} = {}"
.format(cls.__name__, key, value))
else:
self.__dict__[key] = value
cls.__setattr__ = frozensetattr
return cls
#froze_it
class A:
def __init__(self):
self._a = 0
a = A()
a._a = 1
a._b = 2 # error
What about this:
class A():
__allowed_attr=('_x', '_y')
def __init__(self,x=0,y=0):
self._x=x
self._y=y
def __setattr__(self,attribute,value):
if not attribute in self.__class__.__allowed_attr:
raise AttributeError
else:
super().__setattr__(attribute,value)
Here is approach i came up with that doesn't need a _frozen attribute or method to freeze() in init.
During init i just add all class attributes to the instance.
I like this because there is no _frozen, freeze(), and _frozen also does not show up in the vars(instance) output.
class MetaModel(type):
def __setattr__(self, name, value):
raise AttributeError("Model classes do not accept arbitrary attributes")
class Model(object):
__metaclass__ = MetaModel
# init will take all CLASS attributes, and add them as SELF/INSTANCE attributes
def __init__(self):
for k, v in self.__class__.__dict__.iteritems():
if not k.startswith("_"):
self.__setattr__(k, v)
# setattr, won't allow any attributes to be set on the SELF/INSTANCE that don't already exist
def __setattr__(self, name, value):
if not hasattr(self, name):
raise AttributeError("Model instances do not accept arbitrary attributes")
else:
object.__setattr__(self, name, value)
# Example using
class Dog(Model):
name = ''
kind = 'canine'
d, e = Dog(), Dog()
print vars(d)
print vars(e)
e.junk = 'stuff' # fails
I like the "Frozen" of Jochen Ritzel. The inconvenient is that the isfrozen variable then appears when printing a Class.__dict
I went around this problem this way by creating a list of authorized attributes (similar to slots):
class Frozen(object):
__List = []
def __setattr__(self, key, value):
setIsOK = False
for item in self.__List:
if key == item:
setIsOK = True
if setIsOK == True:
object.__setattr__(self, key, value)
else:
raise TypeError( "%r has no attributes %r" % (self, key) )
class Test(Frozen):
_Frozen__List = ["attr1","attr2"]
def __init__(self):
self.attr1 = 1
self.attr2 = 1
The FrozenClass by Jochen Ritzel is cool, but calling _frozen() when initialing a class every time is not so cool (and you need to take the risk of forgetting it). I added a __init_slots__ function:
class FrozenClass(object):
__isfrozen = False
def _freeze(self):
self.__isfrozen = True
def __init_slots__(self, slots):
for key in slots:
object.__setattr__(self, key, None)
self._freeze()
def __setattr__(self, key, value):
if self.__isfrozen and not hasattr(self, key):
raise TypeError( "%r is a frozen class" % self )
object.__setattr__(self, key, value)
class Test(FrozenClass):
def __init__(self):
self.__init_slots__(["x", "y"])
self.x = 42#
self.y = 2**3
a,b = Test(), Test()
a.x = 10
b.z = 10 # fails
None of the answers mention the performance impact of overriding __setattr__, which can be an issue when creating many small objects. (And __slots__ would be the performant solution but limits pickle/inheritance).
So I came up with this variant which installs our slower settatr after init:
class FrozenClass:
def freeze(self):
def frozen_setattr(self, key, value):
if not hasattr(self, key):
raise TypeError("Cannot set {}: {} is a frozen class".format(key, self))
object.__setattr__(self, key, value)
self.__setattr__ = frozen_setattr
class Foo(FrozenClass): ...
If you don't want to call freeze at the end of __init__, if inheritance is an issue, or if you don't want it in vars(), it can also be adapted: for example here is a decorator version based on the pystrict answer:
import functools
def strict(cls):
cls._x_setter = getattr(cls, "__setattr__", object.__setattr__)
cls._x_init = cls.__init__
#functools.wraps(cls.__init__)
def wrapper(self, *args, **kwargs):
cls._x_init(self, *args, **kwargs)
def frozen_setattr(self, key, value):
if not hasattr(self, key):
raise TypeError("Class %s is frozen. Cannot set '%s'." % (cls.__name__, key))
cls._x_setter(self, key, value)
cls.__setattr__ = frozen_setattr
cls.__init__ = wrapper
return cls
#strict
class Foo: ...
I wrote pystrict as a solution to this problem. It's too large to paste all of the code in stackoverflow.
pystrict is a pypi installable decorator that can be used with classes to freeze them. Many solutions here don't properly support inheritance.
If __slots__ doesn't work for you (because of inheritance issues), this is a good alternative.
There is an example to the README that shows why a decorator like this is needed even if you have mypy and pylint running on your project:
pip install pystrict
Then just use the #strict decorator:
from pystrict import strict
#strict
class Blah
def __init__(self):
self.attr = 1
#dataclass(slots=True) Nirvana (Python 3.10)
I'm in love with this #dataclass thing:
main.py
from dataclasses import dataclass
#dataclass(slots=True)
class C:
n: int
s: str
c = C(n=1, s='one')
assert c.n == 1
assert c.s == 'one'
c.n == 2
c.s == 'two'
c.asdf = 2
Outcome:
Traceback (most recent call last):
File "/home/ciro/main.py", line 15, in <module>
c.asdf = 2
AttributeError: 'C' object has no attribute 'asdf'
Note how #dataclass only requires use to define our attributes once with type annotations
n: int
s: str
and then, without any repetition we get for free:
def __init__(n, s):
self.n = n
self.s = s
__slots__ = ['n', 's']
Other free things not shown in this example:
__str__
__eq__: Compare object instances for equality by their attributes
__hash__ if you also use frozen=True: Object of custom type as dictionary key
Tested on Python 3.10.7, Ubuntu 22.10.

Unclear descriptor caller reference evaluation

I am using Python descriptors to create complex interfaces on host objects.
I don't get the behaviour I would intuitively expect when I run code such as this:
class Accessor(object):
def __get__(self,inst,instype):
self._owner = inst
return self
def set(self,value):
self._owner._val = value
def get(self):
if hasattr(self._owner,'_val'):
return self._owner._val
else: return None
class TestClass(object):
acc = Accessor()
source = TestClass()
destination = TestClass()
source.acc.set('banana')
destination.acc.set('mango')
destination.acc.set(source.acc.get())
print destination.acc.get()
# Result: mango
I would expect in this case for destination.acc.get() to return 'banana', not 'mango'.
However, the intention (to copy _val from 'source' to 'destination') works if the code is refactored like this:
val = source.acc.get()
destination.acc.set(val)
print destination.acc.get()
# Result: banana
What is is that breaks down the 'client' reference passed through get if descriptors are used in a single line versus broken into separate lines? Is there a way to get the behaviour I would intuitively expect?
Many thanks in advance.
K
Your implementation ALMOST works. The problem with it comes up with destination.acc.set(source.acc.get()). What happens is that it first looks up destination.acc, which will set _owner to destination, but before it can call set(), it has to resolve the parameter, source.acc.get(), which will end up setting acc's _owner to source.
Since destination.acc and source.acc are the same object (descriptors are stored on the class, not the instance), you're calling set() on it after its _owner is set to source. That means you're setting source._val, not destination._val.
The way to get the behavior you would intuitively expect is to get rid or your get() and set() and replace them with __get__() and __set__(), so that your descriptor can be used for the reason a descriptor is used.
class Accessor(object):
def __get__(self, instance, owner): # you should use the conventional parameter names
if instance is None:
return self
else:
return instance._val
def __set__(self, instance, value):
instance._val = value
Then you could rewrite your client code as
source = TestClass()
destination = TestClass()
source.acc = 'banana'
destination.acc = 'mango'
destination.acc = source.acc
print destination.acc
The point of descriptors is to remove explicit getter and setter calls with implicit ones that look like simple attribute use. If you still want to be using your getters and setters on Accessor, then don't make it a descriptor. Do this instead:
class Accessor(object):
def get(self):
if hasattr(self, '_val'):
return self._val
else:
return None
def set(self, val):
self._val = val
Then rewrite TestClass to look more like this:
class TestClass(object):
def __init__(self):
self.acc = Accessor()
After that, your original client code would work.
I already said why it's not working in my other post. So, here's a way to use a descriptor while still retaining your get() and set() methods.
class Accessor(object):
def __get__(self, instance, owner):
if instance is None:
return self
elif not hasattr(instance, '_val'):
setattr(instance, '_val', Acc())
return getattr(instance, '_val')
class Acc(object):
def get(self):
if hasattr(self, '_val'):
return self._val
else:
return None
def set(self, val):
self._val = val
class TestClass(object):
acc = Accessor()
The trick is to move the get() and set() methods to a new class that is returned instead of returning self from the descriptor.

python classes getters and setters static method and class method

class Spam(object):
#a_string = 'candy'
def __init__(self, sold=0, cost=0):
self.sold = sold
self.cost = cost
#staticmethod
def total_cost():
return True
#classmethod
def items_sold(cls, how_many):
#property
def silly_walk(self):
return print (self.a_string)
#silly_walk.setter
def silly_walk(self, new_string):
self.a_string = new_string.upper()
def do_cost(self):
if self.total_cost():
print('Total cost is:', self.cost)
.
from spam import Spam
def main ():
cost = 25
sold = 100
a_string = 'sweets'
sp = Spam(100, 25)
sp.do_cost()
sw = Spam.silly_walk(a_string)
sw.silly_walk()
if __name__ == '__main__':
main()
so im new to python and i don't understand how to use the setters and getters in this. so what i want to do is:
use #property to create a setter and getter for a property named silly_walk. Have the setter upper case the silly_walk string.
Show example code that would access the static method.
Show example code that would use the silly_walk setter and getter.
im getting very confused with what "self" does in the class and im not sure if what im doing is correct
update:
problem was the #classmethod not having a return and indentation error, so everything is fixed thanks everybody
self is convention. Since you're inside a class, you don't have functions there you have methods. Methods expect a reference to the object calling them as the first argument, which by convention is named self. You can call it anything you like.
class Foo(object):
def __init__(itsa_me_maaaario, name):
itsa_me_maaario.name = "Mario"
That works just as well.
As for the rest of your code -- what's your QUESTION there? Looks like your setter is a bit weird, but other than that it should work mostly okay. This is better:
class Spam(object): # inherit from object in py2 for new-style classes
def __init__(self, a_string, sold=0, cost=0) # put the positional arg first
...
#staticmethod
def total_cost():
# you have to do something meaningful here. A static method can't access
# any of the objects attributes, it's really only included for grouping
# related functions to their classes.
#classmethod
def items_sold(cls, how_many):
# the first argument to a classmethod is the class, not the object, so
# by convention name it cls. Again this should be something relevant to
# the class not to the object.
#property
def silly_walk(self):
return self.a_string
# don't call itself.
#silly_walk.setter
def silly_walk(self, new_string):
self.a_string = new_string
# it really just hides the attribute.
For instance I have a class I built to abstract a computer system I'm in charge of. It might be something like:
class System(object):
type_ = "Base system"
def __init__(self, sitenum, devicenum, IP):
self._sitenum = sitenum
self._devicenum = devicenum
self._IP = IP
# the leading underscores are a flag to future coders that these are
# "private" variables. Nothing stopping someone from using it anyway,
# because System()._IP is still that attribute, but it makes it clear
# that they're not supposed to be used that way.
#staticmethod
def ping_system(IP):
subprocess.call(["ping",IP], shell=True) # OH GOD SECURITY FLAW HERE
# group this with Systems because maybe that's how I want it? It's an
# aesthetic choice. Note that this pings ANY system and requires an
# argument of an IP address!
#classmethod
def type_of_system(cls):
return cls.type_
# imagine I had a bunch of objects that inherited from System, each w/
# a different type_, but they all inherit this....
#property
def description(self):
return "Site {}, Device {} # {}".format(self._sitenum,
self._devicenum,
self._IP)
#description.setter
def description(self, *args):
if len(args) == 3:
self._sitenum, self._devicenum, self._IP = args
elif len(args) == 1 and len(args[0]) == 3:
self._sitenum, self._devicenum, self._IP = args[0]
else:
raise ValueError("Redefine description as Sitenum, Devicenum, IP")
Example:
computer = System(1, 1, '192.168.100.101')
System.ping_system('192.160.100.101') # works
computer.type_of_system # "Base system"
computer.description # "Site 1, Device 1 # 192.168.100.101"
new_description = [1, 2, '192.168.100.102']
computer.description = new_description
# invokes description.setter
computer._devicenum # is 2 after the setter does its magic.

Prevent creating new attributes outside __init__

I want to be able to create a class (in Python) that once initialized with __init__, does not accept new attributes, but accepts modifications of existing attributes. There's several hack-ish ways I can see to do this, for example having a __setattr__ method such as
def __setattr__(self, attribute, value):
if not attribute in self.__dict__:
print "Cannot set %s" % attribute
else:
self.__dict__[attribute] = value
and then editing __dict__ directly inside __init__, but I was wondering if there is a 'proper' way to do this?
I wouldn't use __dict__ directly, but you can add a function to explicitly "freeze" a instance:
class FrozenClass(object):
__isfrozen = False
def __setattr__(self, key, value):
if self.__isfrozen and not hasattr(self, key):
raise TypeError( "%r is a frozen class" % self )
object.__setattr__(self, key, value)
def _freeze(self):
self.__isfrozen = True
class Test(FrozenClass):
def __init__(self):
self.x = 42#
self.y = 2**3
self._freeze() # no new attributes after this point.
a,b = Test(), Test()
a.x = 10
b.z = 10 # fails
Slots is the way to go:
The pythonic way is to use slots instead of playing around with the __setter__. While it may solve the problem, it does not give any performance improvement. The attributes of objects are stored in a dictionary "__dict__", this is the reason, why you can dynamically add attributes to objects of classes that we have created so far. Using a dictionary for attribute storage is very convenient, but it can mean a waste of space for objects, which have only a small amount of instance variables.
Slots are a nice way to work around this space consumption problem. Instead of having a dynamic dict that allows adding attributes to objects dynamically, slots provide a static structure which prohibits additions after the creation of an instance.
When we design a class, we can use slots to prevent the dynamic creation of attributes. To define slots, you have to define a list with the name __slots__. The list has to contain all the attributes, you want to use. We demonstrate this in the following class, in which the slots list contains only the name for an attribute "val".
class S(object):
__slots__ = ['val']
def __init__(self, v):
self.val = v
x = S(42)
print(x.val)
x.new = "not possible"
=> It fails to create an attribute "new":
42
Traceback (most recent call last):
File "slots_ex.py", line 12, in <module>
x.new = "not possible"
AttributeError: 'S' object has no attribute 'new'
Notes:
Since Python 3.3 the advantage optimizing the space consumption is not as impressive any more. With Python 3.3 Key-Sharing Dictionaries are used for the storage of objects. The attributes of the instances are capable of sharing part of their internal storage between each other, i.e. the part which stores the keys and their corresponding hashes. This helps to reduce the memory consumption of programs, which create many instances of non-builtin types. But still is the way to go to avoid dynamically created attributes.
Using slots come also with it's own cost. It will break serialization (e.g. pickle). It will also break multiple inheritance. A class can't inherit from more than one class that either defines slots or has an instance layout defined in C code (like list, tuple or int).
If someone is interested in doing that with a decorator, here is a working solution:
from functools import wraps
def froze_it(cls):
cls.__frozen = False
def frozensetattr(self, key, value):
if self.__frozen and not hasattr(self, key):
print("Class {} is frozen. Cannot set {} = {}"
.format(cls.__name__, key, value))
else:
object.__setattr__(self, key, value)
def init_decorator(func):
#wraps(func)
def wrapper(self, *args, **kwargs):
func(self, *args, **kwargs)
self.__frozen = True
return wrapper
cls.__setattr__ = frozensetattr
cls.__init__ = init_decorator(cls.__init__)
return cls
Pretty straightforward to use:
#froze_it
class Foo(object):
def __init__(self):
self.bar = 10
foo = Foo()
foo.bar = 42
foo.foobar = "no way"
Result:
>>> Class Foo is frozen. Cannot set foobar = no way
Actually, you don't want __setattr__, you want __slots__. Add __slots__ = ('foo', 'bar', 'baz') to the class body, and Python will make sure that there's only foo, bar and baz on any instance. But read the caveats the documentation lists!
The proper way is to override __setattr__. That's what it's there for.
I like very much the solution that uses a decorator, because it's easy to use it for many classes across a project, with minimum additions for each class. But it doesn't work well with inheritance.
So here is my version: It only overrides the __setattr__ function - if the attribute doesn't exist and the caller function is not __init__, it prints an error message.
import inspect
def froze_it(cls):
def frozensetattr(self, key, value):
if not hasattr(self, key) and inspect.stack()[1][3] != "__init__":
print("Class {} is frozen. Cannot set {} = {}"
.format(cls.__name__, key, value))
else:
self.__dict__[key] = value
cls.__setattr__ = frozensetattr
return cls
#froze_it
class A:
def __init__(self):
self._a = 0
a = A()
a._a = 1
a._b = 2 # error
What about this:
class A():
__allowed_attr=('_x', '_y')
def __init__(self,x=0,y=0):
self._x=x
self._y=y
def __setattr__(self,attribute,value):
if not attribute in self.__class__.__allowed_attr:
raise AttributeError
else:
super().__setattr__(attribute,value)
Here is approach i came up with that doesn't need a _frozen attribute or method to freeze() in init.
During init i just add all class attributes to the instance.
I like this because there is no _frozen, freeze(), and _frozen also does not show up in the vars(instance) output.
class MetaModel(type):
def __setattr__(self, name, value):
raise AttributeError("Model classes do not accept arbitrary attributes")
class Model(object):
__metaclass__ = MetaModel
# init will take all CLASS attributes, and add them as SELF/INSTANCE attributes
def __init__(self):
for k, v in self.__class__.__dict__.iteritems():
if not k.startswith("_"):
self.__setattr__(k, v)
# setattr, won't allow any attributes to be set on the SELF/INSTANCE that don't already exist
def __setattr__(self, name, value):
if not hasattr(self, name):
raise AttributeError("Model instances do not accept arbitrary attributes")
else:
object.__setattr__(self, name, value)
# Example using
class Dog(Model):
name = ''
kind = 'canine'
d, e = Dog(), Dog()
print vars(d)
print vars(e)
e.junk = 'stuff' # fails
I like the "Frozen" of Jochen Ritzel. The inconvenient is that the isfrozen variable then appears when printing a Class.__dict
I went around this problem this way by creating a list of authorized attributes (similar to slots):
class Frozen(object):
__List = []
def __setattr__(self, key, value):
setIsOK = False
for item in self.__List:
if key == item:
setIsOK = True
if setIsOK == True:
object.__setattr__(self, key, value)
else:
raise TypeError( "%r has no attributes %r" % (self, key) )
class Test(Frozen):
_Frozen__List = ["attr1","attr2"]
def __init__(self):
self.attr1 = 1
self.attr2 = 1
The FrozenClass by Jochen Ritzel is cool, but calling _frozen() when initialing a class every time is not so cool (and you need to take the risk of forgetting it). I added a __init_slots__ function:
class FrozenClass(object):
__isfrozen = False
def _freeze(self):
self.__isfrozen = True
def __init_slots__(self, slots):
for key in slots:
object.__setattr__(self, key, None)
self._freeze()
def __setattr__(self, key, value):
if self.__isfrozen and not hasattr(self, key):
raise TypeError( "%r is a frozen class" % self )
object.__setattr__(self, key, value)
class Test(FrozenClass):
def __init__(self):
self.__init_slots__(["x", "y"])
self.x = 42#
self.y = 2**3
a,b = Test(), Test()
a.x = 10
b.z = 10 # fails
None of the answers mention the performance impact of overriding __setattr__, which can be an issue when creating many small objects. (And __slots__ would be the performant solution but limits pickle/inheritance).
So I came up with this variant which installs our slower settatr after init:
class FrozenClass:
def freeze(self):
def frozen_setattr(self, key, value):
if not hasattr(self, key):
raise TypeError("Cannot set {}: {} is a frozen class".format(key, self))
object.__setattr__(self, key, value)
self.__setattr__ = frozen_setattr
class Foo(FrozenClass): ...
If you don't want to call freeze at the end of __init__, if inheritance is an issue, or if you don't want it in vars(), it can also be adapted: for example here is a decorator version based on the pystrict answer:
import functools
def strict(cls):
cls._x_setter = getattr(cls, "__setattr__", object.__setattr__)
cls._x_init = cls.__init__
#functools.wraps(cls.__init__)
def wrapper(self, *args, **kwargs):
cls._x_init(self, *args, **kwargs)
def frozen_setattr(self, key, value):
if not hasattr(self, key):
raise TypeError("Class %s is frozen. Cannot set '%s'." % (cls.__name__, key))
cls._x_setter(self, key, value)
cls.__setattr__ = frozen_setattr
cls.__init__ = wrapper
return cls
#strict
class Foo: ...
I wrote pystrict as a solution to this problem. It's too large to paste all of the code in stackoverflow.
pystrict is a pypi installable decorator that can be used with classes to freeze them. Many solutions here don't properly support inheritance.
If __slots__ doesn't work for you (because of inheritance issues), this is a good alternative.
There is an example to the README that shows why a decorator like this is needed even if you have mypy and pylint running on your project:
pip install pystrict
Then just use the #strict decorator:
from pystrict import strict
#strict
class Blah
def __init__(self):
self.attr = 1
#dataclass(slots=True) Nirvana (Python 3.10)
I'm in love with this #dataclass thing:
main.py
from dataclasses import dataclass
#dataclass(slots=True)
class C:
n: int
s: str
c = C(n=1, s='one')
assert c.n == 1
assert c.s == 'one'
c.n == 2
c.s == 'two'
c.asdf = 2
Outcome:
Traceback (most recent call last):
File "/home/ciro/main.py", line 15, in <module>
c.asdf = 2
AttributeError: 'C' object has no attribute 'asdf'
Note how #dataclass only requires use to define our attributes once with type annotations
n: int
s: str
and then, without any repetition we get for free:
def __init__(n, s):
self.n = n
self.s = s
__slots__ = ['n', 's']
Other free things not shown in this example:
__str__
__eq__: Compare object instances for equality by their attributes
__hash__ if you also use frozen=True: Object of custom type as dictionary key
Tested on Python 3.10.7, Ubuntu 22.10.

Categories