How to get the logical right binary shift in python - python

As revealed by the title, in JavaScript there is a specific operator >>>. For example, in JavaScript we will have the following result:
(-1000) >>> 3 = 536870787
(-1000) >> 3 = -125
1000 >>> 3 = 125
1000 >> 3 = 125
So is there a certain method or operator representing this >>>?

There isn't a built-in operator for this, but you can easily simulate the >>> yourself:
>>> def rshift(val, n): return val>>n if val >= 0 else (val+0x100000000)>>n
...
>>> rshift(-1000, 3)
536870787
>>> rshift(1000, 3)
125
The following alternative implementation removes the need for the if:
>>> def rshift(val, n): return (val % 0x100000000) >> n

No, there isn't. The right shift in python is arithmetical.

Here's a spinoff of aix's answer. The normal right-shift operator will work if you feed it a positive value, so you're really looking for a conversion from signed to unsigned.
def unsigned32(signed):
return signed % 0x100000000
>>> unsigned32(-1000) >> 3
536870787L

Trying to flip the sign bit of a negative number by masking it with 0x100000000 is fundamentally misconceived as it makes hard assumptions about the word length. In my time as a programmer I have worked with 24-, 48-, 16-, 18-, 32-, 36- and 64-bit numbers. I have also heard of machines that work on odd-lengths, such as 37 and others that use ones-complement, and not twos-complement, arithmetic. Any assumptions you make about the internal representation of numbers, beyond that they are binary, is dangerous.
Even the binary assumption is not absolutely safe, but I think we'll allow that. :)

Numpy provides the right_shift() function that does this:
>>> import numpy
>>> numpy.right_shift(1000, 3)
125

You can do a bitwise shift padding with zeros with the bitstring module using the >>= operator:
>>> a = BitArray(int=-1000, length=32)
>>> a.int
-1000
>>> a >>= 3
>>> a.int
536870787

You need to remember that if the number is negative, the top bit is set and with each shift right you need to make the top bit set as well.
Here is my implementation:
def rshift(val, n):
s = val & 0x80000000
for i in range(0,n):
val >>= 1
val |= s
return val

A solution that works without a modulo:
>>> def rshift(val,n): return (val>>n) & (0x7fffffff>>(n-1))
This works since 7fffffff is a positive number and right shifting that will add zeros to the left.

You could also use floor division:
def rshift(val, n):
if val > 0:
return val >> n
return val // -(2^n)

This is not an efficient approach but works just as expected
def _toBinary(x):
x=int(x)
binary = []
while x > 0:
binary.append(str(x%2))
x=int(x/2)
return "".join(binary[::-1])
def _fromBinary(xs):
ans = 0
for i,x in enumerate(xs[::-1]):
if x == '1':
ans += 2**i
return ans
def leftLogicalShift(x,n=1):
if not type(x) == int:
return x
xs = _toBinary(x)
xs = [x for x in xs]
for _ in range(n):
xs.pop(0)
xs.append('0')
return _fromBinary("".join(xs))
def rightLogicalShift(x,n=1):
if not type(x) == int:
return x
xs = _toBinary(x)
xs = [x for x in xs]
for _ in range(n):
xs.pop()
xs.insert(0,'0')
return _fromBinary("".join(xs))
def leftArithmeticShift(x,n=1):
return leftLogicalShift(x,n)
def rightArithmeticShift(x,n=1):
if not type(x) == int:
return x
xs = _toBinary(x)
xs = [x for x in xs]
for _ in range(n):
tmp = xs[0]
xs.pop()
xs.insert(0,tmp)
return _fromBinary("".join(xs))
lls = leftLogicalShift(10,2)
print(lls) # 8
rls = rightLogicalShift(10,2)
print(rls) # 2
las = leftArithmeticShift(10,2)
print(las) # 8
ras = rightArithmeticShift(10,2)
print(ras) # 14
references:
https://open4tech.com/logical-vs-arithmetic-shift/
https://www.interviewcake.com/concept/java/bit-shift

I think a logical right binary shift is not available in Python directly. Instead you can use Javascript in Python as in:
import js2py
rshift = js2py.eval_js('function $(a, b){ return a >>> b}')
print (rshift(244, 324)) #15

The top-voted answer produces WRONG results for val < 0 and n == 0!
def rshift(val, n):
if (val >= 0): return val >> n
elif (n == 0): return val
else: return (val + 0x10000000) >> n
>>> rshift(-1, 0)
-1

Related

Maximum recursion depth exceeded in python

I am trying to make power function by recursion.
But I got run time error like Maximum recursion depth exceeded.
I will appreciate any help!!
Here is my code.
def fast_power(a,n):
if(n==0):
return 1
else:
if(n%2==0):
return fast_power(fast_power(a,n/2),2)
else:
return fast_power(fast_power(a,n/2),2)*a
You should use n // 2 instead of n / 2:
>>> 5 // 2
2
>>> 5 / 2
2.5
(At least in python3)
The problem is that once you end up with floats it takes quite a while before you end up at 0 by dividing by 2:
>>> from itertools import count
>>> n = 5
>>> for i in count():
... n /= 2
... if n == 0:
... break
...
>>> i
1076
So as you can see you would need more than 1000 recursive calls to reach 0 from 5, and that's above the default recursion limit. Besides: that algorithm is meant to be run with integer numbers.
This said I'd write that function as something like:
def fast_power(a, n):
if n == 0:
return 1
tmp = fast_power(a, n//2)
tmp *= tmp
return a*tmp if n%2 else tmp
Which produces:
>>> fast_power(2, 7)
128
>>> fast_power(3, 7)
2187
>>> fast_power(13, 793)
22755080661651301134628922146701289018723006552429644877562239367125245900453849234455323305726135714456994505688015462580473825073733493280791059868764599730367896428134533515091867511617127882942739592792838327544860344501784014930389049910558877662640122357152582905314163703803827192606896583114428235695115603966134132126414026659477774724471137498587452807465366378927445362356200526278861707511302663034996964296170951925219431414726359869227380059895627848341129113432175217372073248096983111394024987891966713095153672274972773169033889294808595643958156933979639791684384157282173718024930353085371267915606772545626201802945545406048262062221518066352534122215300640672237064641040065334712571485001684857748001990405649808379706945473443683240715198330842716984731885709953720968428395490414067791229792734370523603401019458798402338043728152982948501103056283713360751853
I believe #Bakuriu's explanation of the problem is incomplete. Not his reimplementation, but his explanation of your bug(s). You might convince yourself of this by replacing / with // in your original code and try:
fast_power(2, 2)
it still exceeds the stack. Try expanding the stack ten fold:
sys.setrecursionlimit(10000)
it still exceeds the stack. The reason is you also have an infinte loop:
if (n % 2 == 0):
return fast_power(..., 2)
Since 2 % 2 == 0, this simply keeps recursing forever. Adding another base case:
if n == 2:
return a * a
fixes the problem. A complete solution:
def fast_power(a, n):
if n == 0:
return 1
# if n == 1:
# return a
if n == 2:
return a * a
if n % 2 == 0:
return fast_power(fast_power(a, n // 2), 2)
return a * fast_power(fast_power(a, n // 2), 2)

How would I check if a number is odd in python without using modulo or a library?

I am trying to determine if a number is odd or even in python without using modulus % or any libraries, or even bitwise calculations (& and |). I believe it has something to do with raising n to the power of something, but this is all I have:
def isOdd(num):
return num**2 > 0
Which obviously doesn't work.
You can raise -1 to the power of n, and see if the number is 1 or -1:
def isOdd(num):
if type(num) not in [int, long]:
return False
if ((-1)**num) == 1:
return False
return True
As such:
>>> isOdd(5.2)
False
>>> isOdd(5)
True
>>> isOdd(6)
False
Or, you can check if the number is a float, and if it isn't see if the last digit is odd:
def isOdd(num):
if type(num) not in [int, long]:
return False
if str(num)[-1] in "13579":
return True
return False
You can also check to see if the num/2 is a float or an integer:
def isOdd(num):
return not (num/2.0).is_integer() and type(num) in [int, long]
>>> isOdd(5)
True
>>> isOdd(-3.4)
False
>>> isOdd(4)
False
You can use:
def isOdd(x):
return x - 2 * (x // 2) == 1
or (just kidding)
import math
def isOdd(x):
return math.cos(x * math.pi) < 0
def isOdd(num):
return (num & 1) == 1
Using the bitwise AND.
EDIT: Without bitwise in python3:
def isOdd(num):
return (num / 2) != (num // 2)
One is true division (5/2 = 2.5) the other natural division (5/2 = 2).
Just another couple of ways of doing this:
def is_odd_1(x):
return int(x / 2.) != x / 2.
def is_odd_2(x):
return x // 2 != x / 2.

Euclidean algorithm (GCD) with multiple numbers?

So I'm writing a program in Python to get the GCD of any amount of numbers.
def GCD(numbers):
if numbers[-1] == 0:
return numbers[0]
# i'm stuck here, this is wrong
for i in range(len(numbers)-1):
print GCD([numbers[i+1], numbers[i] % numbers[i+1]])
print GCD(30, 40, 36)
The function takes a list of numbers.
This should print 2. However, I don't understand how to use the the algorithm recursively so it can handle multiple numbers. Can someone explain?
updated, still not working:
def GCD(numbers):
if numbers[-1] == 0:
return numbers[0]
gcd = 0
for i in range(len(numbers)):
gcd = GCD([numbers[i+1], numbers[i] % numbers[i+1]])
gcdtemp = GCD([gcd, numbers[i+2]])
gcd = gcdtemp
return gcd
Ok, solved it
def GCD(a, b):
if b == 0:
return a
else:
return GCD(b, a % b)
and then use reduce, like
reduce(GCD, (30, 40, 36))
Since GCD is associative, GCD(a,b,c,d) is the same as GCD(GCD(GCD(a,b),c),d). In this case, Python's reduce function would be a good candidate for reducing the cases for which len(numbers) > 2 to a simple 2-number comparison. The code would look something like this:
if len(numbers) > 2:
return reduce(lambda x,y: GCD([x,y]), numbers)
Reduce applies the given function to each element in the list, so that something like
gcd = reduce(lambda x,y:GCD([x,y]),[a,b,c,d])
is the same as doing
gcd = GCD(a,b)
gcd = GCD(gcd,c)
gcd = GCD(gcd,d)
Now the only thing left is to code for when len(numbers) <= 2. Passing only two arguments to GCD in reduce ensures that your function recurses at most once (since len(numbers) > 2 only in the original call), which has the additional benefit of never overflowing the stack.
You can use reduce:
>>> from fractions import gcd
>>> reduce(gcd,(30,40,60))
10
which is equivalent to;
>>> lis = (30,40,60,70)
>>> res = gcd(*lis[:2]) #get the gcd of first two numbers
>>> for x in lis[2:]: #now iterate over the list starting from the 3rd element
... res = gcd(res,x)
>>> res
10
help on reduce:
>>> reduce?
Type: builtin_function_or_method
reduce(function, sequence[, initial]) -> value
Apply a function of two arguments cumulatively to the items of a sequence,
from left to right, so as to reduce the sequence to a single value.
For example, reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates
((((1+2)+3)+4)+5). If initial is present, it is placed before the items
of the sequence in the calculation, and serves as a default when the
sequence is empty.
Python 3.9 introduced multiple arguments version of math.gcd, so you can use:
import math
math.gcd(30, 40, 36)
3.5 <= Python <= 3.8.x:
import functools
import math
functools.reduce(math.gcd, (30, 40, 36))
3 <= Python < 3.5:
import fractions
import functools
functools.reduce(fractions.gcd, (30, 40, 36))
A solution to finding out the LCM of more than two numbers in PYTHON is as follow:
#finding LCM (Least Common Multiple) of a series of numbers
def GCD(a, b):
#Gives greatest common divisor using Euclid's Algorithm.
while b:
a, b = b, a % b
return a
def LCM(a, b):
#gives lowest common multiple of two numbers
return a * b // GCD(a, b)
def LCMM(*args):
#gives LCM of a list of numbers passed as argument
return reduce(LCM, args)
Here I've added +1 in the last argument of range() function because the function itself starts from zero (0) to n-1. Click the hyperlink to know more about range() function :
print ("LCM of numbers (1 to 5) : " + str(LCMM(*range(1, 5+1))))
print ("LCM of numbers (1 to 10) : " + str(LCMM(*range(1, 10+1))))
print (reduce(LCMM,(1,2,3,4,5)))
those who are new to python can read more about reduce() function by the given link.
The GCD operator is commutative and associative. This means that
gcd(a,b,c) = gcd(gcd(a,b),c) = gcd(a,gcd(b,c))
So once you know how to do it for 2 numbers, you can do it for any number
To do it for two numbers, you simply need to implement Euclid's formula, which is simply:
// Ensure a >= b >= 1, flip a and b if necessary
while b > 0
t = a % b
a = b
b = t
end
return a
Define that function as, say euclid(a,b). Then, you can define gcd(nums) as:
if (len(nums) == 1)
return nums[1]
else
return euclid(nums[1], gcd(nums[:2]))
This uses the associative property of gcd() to compute the answer
Try calling the GCD() as follows,
i = 0
temp = numbers[i]
for i in range(len(numbers)-1):
temp = GCD(numbers[i+1], temp)
My way of solving it in Python. Hope it helps.
def find_gcd(arr):
if len(arr) <= 1:
return arr
else:
for i in range(len(arr)-1):
a = arr[i]
b = arr[i+1]
while b:
a, b = b, a%b
arr[i+1] = a
return a
def main(array):
print(find_gcd(array))
main(array=[8, 18, 22, 24]) # 2
main(array=[8, 24]) # 8
main(array=[5]) # [5]
main(array=[]) # []
Some dynamics how I understand it:
ex.[8, 18] -> [18, 8] -> [8, 2] -> [2, 0]
18 = 8x + 2 = (2y)x + 2 = 2z where z = xy + 1
ex.[18, 22] -> [22, 18] -> [18, 4] -> [4, 2] -> [2, 0]
22 = 18w + 4 = (4x+2)w + 4 = ((2y)x + 2)w + 2 = 2z
As of python 3.9 beta 4, it has got built-in support for finding gcd over a list of numbers.
Python 3.9.0b4 (v3.9.0b4:69dec9c8d2, Jul 2 2020, 18:41:53)
[Clang 6.0 (clang-600.0.57)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import math
>>> A = [30, 40, 36]
>>> print(math.gcd(*A))
2
One of the issues is that many of the calculations only work with numbers greater than 1. I modified the solution found here so that it accepts numbers smaller than 1. Basically, we can re scale the array using the minimum value and then use that to calculate the GCD of numbers smaller than 1.
# GCD of more than two (or array) numbers - alows folating point numbers
# Function implements the Euclidian algorithm to find H.C.F. of two number
def find_gcd(x, y):
while(y):
x, y = y, x % y
return x
# Driver Code
l_org = [60e-6, 20e-6, 30e-6]
min_val = min(l_org)
l = [item/min_val for item in l_org]
num1 = l[0]
num2 = l[1]
gcd = find_gcd(num1, num2)
for i in range(2, len(l)):
gcd = find_gcd(gcd, l[i])
gcd = gcd * min_val
print(gcd)
HERE IS A SIMPLE METHOD TO FIND GCD OF 2 NUMBERS
a = int(input("Enter the value of first number:"))
b = int(input("Enter the value of second number:"))
c,d = a,b
while a!=0:
b,a=a,b%a
print("GCD of ",c,"and",d,"is",b)
As You said you need a program who would take any amount of numbers
and print those numbers' HCF.
In this code you give numbers separated with space and click enter to get GCD
num =list(map(int,input().split())) #TAKES INPUT
def print_factors(x): #MAKES LIST OF LISTS OF COMMON FACTROS OF INPUT
list = [ i for i in range(1, x + 1) if x % i == 0 ]
return list
p = [print_factors(numbers) for numbers in num]
result = set(p[0])
for s in p[1:]: #MAKES THE SET OF COMMON VALUES IN LIST OF LISTS
result.intersection_update(s)
for values in result:
values = values*values #MULTIPLY ALL COMMON FACTORS TO FIND GCD
values = values//(list(result)[-1])
print('HCF',values)
Hope it helped

Compute fast log base 2 ceiling in python

for given x < 10^15, quickly and accurately determine the maximum integer p such that 2^p <= x
Here are some things I've tried:
First I tried this but it's not accurate for large numbers:
>>> from math import log
>>> x = 2**3
>>> x
8
>>> p = int(log(x, 2))
>>> 2**p == x
True
>>> x = 2**50
>>> p = int(log(x, 2))
>>> 2**p == x #not accurate for large numbers?
False
I could try something like:
p = 1
i = 1
while True:
if i * 2 > n:
break
i *= 2
p += 1
not_p = n - p
Which would take up to 50 operations if p was 50
I could pre-compute all the powers of 2 up until 2^50, and use binary search to find p. This would take around log(50) operations but seems a bit excessive and ugly?
I found this thread for C based solutions: Compute fast log base 2 ceiling
However It seems a bit ugly and I wasn't exactly sure how to convert it to python.
In Python >= 2.7, you can use the .bit_length() method of integers:
def brute(x):
# determine max p such that 2^p <= x
p = 0
while 2**p <= x:
p += 1
return p-1
def easy(x):
return x.bit_length() - 1
which gives
>>> brute(0), brute(2**3-1), brute(2**3)
(-1, 2, 3)
>>> easy(0), easy(2**3-1), easy(2**3)
(-1, 2, 3)
>>> brute(2**50-1), brute(2**50), brute(2**50+1)
(49, 50, 50)
>>> easy(2**50-1), easy(2**50), easy(2**50+1)
(49, 50, 50)
>>>
>>> all(brute(n) == easy(n) for n in range(10**6))
True
>>> nums = (max(2**x+d, 0) for x in range(200) for d in range(-50, 50))
>>> all(brute(n) == easy(n) for n in nums)
True
You specify in comments your x is an integer, but for anyone coming here where their x is already a float, then math.frexp() would be pretty fast at extracting log base 2:
log2_slow = int(floor(log(x, 2)))
log2_fast = frexp(x)[1]-1
The C function that frexp() calls just grabs and tweaks the exponent. Some more 'splainin:
The subscript[1] is because frexp() returns a tuple (significand, exponent).
The subtract-1 accounts for the significand being in the range [0.5,1.0). For example 250 is stored as 0.5x251.
The floor() is because you specified 2^p <= x, so p == floor(log(x,2)).
(Derived from another answer.)
Be careful! The accepted answer returns floor(log(n, 2)), NOT ceil(log(n, 2)) like the title of the question implies!
If you came here for a clog2 implementation, do this:
def clog2(x):
"""Ceiling of log2"""
if x <= 0:
raise ValueError("domain error")
return (x-1).bit_length()
And for completeness:
def flog2(x):
"""Floor of log2"""
if x <= 0:
raise ValueError("domain error")
return x.bit_length() - 1
You could try the log2 function from numpy, which appears to work for powers up to 2^62:
>>> 2**np.log2(2**50) == 2**50
True
>>> 2**np.log2(2**62) == 2**62
True
Above that (at least for me) it fails due to the limtiations of numpy's internal number types, but that will handle data in the range you say you're dealing with.
Works for me, Python 2.6.5 (CPython) on OSX 10.7:
>>> x = 2**50
>>> x
1125899906842624L
>>> p = int(log(x,2))
>>> p
50
>>> 2**p == x
True
It continues to work at least for exponents up to 1e9, by which time it starts to take quite a while to do the math. What are you actually getting for x and p in your test? What version of Python, on what OS, are you running?
With respect to "not accurate for large numbers" your challenge here is that the floating point representation is indeed not as precise as you need it to be (49.999999999993 != 50.0). A great reference is "What Every Computer Scientist Should Know About Floating-Point Arithmetic."
The good news is that the transformation of the C routine is very straightforward:
def getpos(value):
if (value == 0):
return -1
pos = 0
if (value & (value - 1)):
pos = 1
if (value & 0xFFFFFFFF00000000):
pos += 32
value = value >> 32
if (value & 0x00000000FFFF0000):
pos += 16
value = value >> 16
if (value & 0x000000000000FF00):
pos += 8
value = value >> 8
if (value & 0x00000000000000F0):
pos += 4
value = value >> 4
if (value & 0x000000000000000C):
pos += 2
value = value >> 2
if (value & 0x0000000000000002):
pos += 1
value = value >> 1
return pos
Another alternative is that you could round to the nearest integer, instead of truncating:
log(x,2)
=> 49.999999999999993
round(log(x,2),1)
=> 50.0
I needed to calculate the upper bound power of two (to figure out how many bytes of entropy was needed to generate a random number in a given range using the modulus operator).
From a rough experiment I think the calculation below gives the minimum integer p such that val < 2^p
It's probably about as fast as you can get, and uses exclusively bitwise integer arithmetic.
def log2_approx(val):
from math import floor
val = floor(val)
approx = 0
while val != 0:
val &= ~ (1<<approx)
approx += 1
return approx
Your slightly different value would be calculated for a given n by
log2_approx(n) - 1
...maybe. But in any case, the bitwise arithmetic could give you a clue how to do this fast.

Average of two strings in alphabetical/lexicographical order

Suppose you take the strings 'a' and 'z' and list all the strings that come between them in alphabetical order: ['a','b','c' ... 'x','y','z']. Take the midpoint of this list and you find 'm'. So this is kind of like taking an average of those two strings.
You could extend it to strings with more than one character, for example the midpoint between 'aa' and 'zz' would be found in the middle of the list ['aa', 'ab', 'ac' ... 'zx', 'zy', 'zz'].
Might there be a Python method somewhere that does this? If not, even knowing the name of the algorithm would help.
I began making my own routine that simply goes through both strings and finds midpoint of the first differing letter, which seemed to work great in that 'aa' and 'az' midpoint was 'am', but then it fails on 'cat', 'doggie' midpoint which it thinks is 'c'. I tried Googling for "binary search string midpoint" etc. but without knowing the name of what I am trying to do here I had little luck.
I added my own solution as an answer
If you define an alphabet of characters, you can just convert to base 10, do an average, and convert back to base-N where N is the size of the alphabet.
alphabet = 'abcdefghijklmnopqrstuvwxyz'
def enbase(x):
n = len(alphabet)
if x < n:
return alphabet[x]
return enbase(x/n) + alphabet[x%n]
def debase(x):
n = len(alphabet)
result = 0
for i, c in enumerate(reversed(x)):
result += alphabet.index(c) * (n**i)
return result
def average(a, b):
a = debase(a)
b = debase(b)
return enbase((a + b) / 2)
print average('a', 'z') #m
print average('aa', 'zz') #mz
print average('cat', 'doggie') #budeel
print average('google', 'microsoft') #gebmbqkil
print average('microsoft', 'google') #gebmbqkil
Edit: Based on comments and other answers, you might want to handle strings of different lengths by appending the first letter of the alphabet to the shorter word until they're the same length. This will result in the "average" falling between the two inputs in a lexicographical sort. Code changes and new outputs below.
def pad(x, n):
p = alphabet[0] * (n - len(x))
return '%s%s' % (x, p)
def average(a, b):
n = max(len(a), len(b))
a = debase(pad(a, n))
b = debase(pad(b, n))
return enbase((a + b) / 2)
print average('a', 'z') #m
print average('aa', 'zz') #mz
print average('aa', 'az') #m (equivalent to ma)
print average('cat', 'doggie') #cumqec
print average('google', 'microsoft') #jlilzyhcw
print average('microsoft', 'google') #jlilzyhcw
If you mean the alphabetically, simply use FogleBird's algorithm but reverse the parameters and the result!
>>> print average('cat'[::-1], 'doggie'[::-1])[::-1]
cumdec
or rewriting average like so
>>> def average(a, b):
... a = debase(a[::-1])
... b = debase(b[::-1])
... return enbase((a + b) / 2)[::-1]
...
>>> print average('cat', 'doggie')
cumdec
>>> print average('google', 'microsoft')
jlvymlupj
>>> print average('microsoft', 'google')
jlvymlupj
It sounds like what you want, is to treat alphabetical characters as a base-26 value between 0 and 1. When you have strings of different length (an example in base 10), say 305 and 4202, your coming out with a midpoint of 3, since you're looking at the characters one at a time. Instead, treat them as a floating point mantissa: 0.305 and 0.4202. From that, it's easy to come up with a midpoint of .3626 (you can round if you'd like).
Do the same with base 26 (a=0...z=25, ba=26, bb=27, etc.) to do the calculations for letters:
cat becomes 'a.cat' and doggie becomes 'a.doggie', doing the math gives cat a decimal value of 0.078004096, doggie a value of 0.136390697, with an average of 0.107197397 which in base 26 is roughly "cumcqo"
Based on your proposed usage, consistent hashing ( http://en.wikipedia.org/wiki/Consistent_hashing ) seems to make more sense.
Thanks for everyone who answered, but I ended up writing my own solution because the others weren't exactly what I needed. I am trying to average app engine key names, and after studying them a bit more I discovered they actually allow any 7-bit ASCII characters in the names. Additionally I couldn't really rely on the solutions that converted the key names first to floating point, because I suspected floating point accuracy just isn't enough.
To take an average, first you add two numbers together and then divide by two. These are both such simple operations that I decided to just make functions to add and divide base 128 numbers represented as lists. This solution hasn't been used in my system yet so I might still find some bugs in it. Also it could probably be a lot shorter, but this is just something I needed to get done instead of trying to make it perfect.
# Given two lists representing a number with one digit left to decimal point and the
# rest after it, for example 1.555 = [1,5,5,5] and 0.235 = [0,2,3,5], returns a similar
# list representing those two numbers added together.
#
def ladd(a, b, base=128):
i = max(len(a), len(b))
lsum = [0] * i
while i > 1:
i -= 1
av = bv = 0
if i < len(a): av = a[i]
if i < len(b): bv = b[i]
lsum[i] += av + bv
if lsum[i] >= base:
lsum[i] -= base
lsum[i-1] += 1
return lsum
# Given a list of digits after the decimal point, returns a new list of digits
# representing that number divided by two.
#
def ldiv2(vals, base=128):
vs = vals[:]
vs.append(0)
i = len(vs)
while i > 0:
i -= 1
if (vs[i] % 2) == 1:
vs[i] -= 1
vs[i+1] += base / 2
vs[i] = vs[i] / 2
if vs[-1] == 0: vs = vs[0:-1]
return vs
# Given two app engine key names, returns the key name that comes between them.
#
def average(a_kn, b_kn):
m = lambda x:ord(x)
a = [0] + map(m, a_kn)
b = [0] + map(m, b_kn)
avg = ldiv2(ladd(a, b))
return "".join(map(lambda x:chr(x), avg[1:]))
print average('a', 'z') # m#
print average('aa', 'zz') # n-#
print average('aa', 'az') # am#
print average('cat', 'doggie') # d(mstr#
print average('google', 'microsoft') # jlim.,7s:
print average('microsoft', 'google') # jlim.,7s:
import math
def avg(str1,str2):
y = ''
s = 'abcdefghijklmnopqrstuvwxyz'
for i in range(len(str1)):
x = s.index(str2[i])+s.index(str1[i])
x = math.floor(x/2)
y += s[x]
return y
print(avg('z','a')) # m
print(avg('aa','az')) # am
print(avg('cat','dog')) # chm
Still working on strings with different lengths... any ideas?
This version thinks 'abc' is a fraction like 0.abc. In this approach space is zero and a valid input/output.
MAX_ITER = 10
letters = " abcdefghijklmnopqrstuvwxyz"
def to_double(name):
d = 0
for i, ch in enumerate(name):
idx = letters.index(ch)
d += idx * len(letters) ** (-i - 1)
return d
def from_double(d):
name = ""
for i in range(MAX_ITER):
d *= len(letters)
name += letters[int(d)]
d -= int(d)
return name
def avg(w1, w2):
w1 = to_double(w1)
w2 = to_double(w2)
return from_double((w1 + w2) * 0.5)
print avg('a', 'a') # 'a'
print avg('a', 'aa') # 'a mmmmmmmm'
print avg('aa', 'aa') # 'a zzzzzzzz'
print avg('car', 'duck') # 'cxxemmmmmm'
Unfortunately, the naïve algorithm is not able to detect the periodic 'z's, this would be something like 0.99999 in decimal; therefore 'a zzzzzzzz' is actually 'aa' (the space before the 'z' periodicity must be increased by one.
In order to normalise this, you can use the following function
def remove_z_period(name):
if len(name) != MAX_ITER:
return name
if name[-1] != 'z':
return name
n = ""
overflow = True
for ch in reversed(name):
if overflow:
if ch == 'z':
ch = ' '
else:
ch=letters[(letters.index(ch)+1)]
overflow = False
n = ch + n
return n
print remove_z_period('a zzzzzzzz') # 'aa'
I haven't programmed in python in a while and this seemed interesting enough to try.
Bear with my recursive programming. Too many functional languages look like python.
def stravg_half(a, ln):
# If you have a problem it will probably be in here.
# The floor of the character's value is 0, but you may want something different
f = 0
#f = ord('a')
L = ln - 1
if 0 == L:
return ''
A = ord(a[0])
return chr(A/2) + stravg_half( a[1:], L)
def stravg_helper(a, b, ln, x):
L = ln - 1
A = ord(a[0])
B = ord(b[0])
D = (A + B)/2
if 0 == L:
if 0 == x:
return chr(D)
# NOTE: The caller of helper makes sure that len(a)>=len(b)
return chr(D) + stravg_half(a[1:], x)
return chr(D) + stravg_helper(a[1:], b[1:], L, x)
def stravg(a, b):
la = len(a)
lb = len(b)
if 0 == la:
if 0 == lb:
return a # which is empty
return stravg_half(b, lb)
if 0 == lb:
return stravg_half(a, la)
x = la - lb
if x > 0:
return stravg_helper(a, b, lb, x)
return stravg_helper(b, a, la, -x) # Note the order of the args

Categories