I have a Python app that needs to fetch data from 2-3 different sources (SQL Server, MongoDB etc..) and it can be done in parallel, as I simply need all of the data together later, and each request does not rely on the others.
I couldn't figure which is better for this case - threads, processes or async await?
I read that differences are mostly in CPU usage and I/O. But what if I simply wish to make multiple requests simultaneously (and not sequentially)? Of course, no CPU usage here at all.
I'd suggest you have a look at python's builtin Threading module...
... a quote from the doc:
CPython implementation detail: In CPython, due to the Global Interpreter Lock, only one thread can execute Python code at once (even though certain performance-oriented libraries might overcome this limitation). If you want your application to make better use of the computational resources of multi-core machines, you are advised to use multiprocessing or concurrent.futures.ProcessPoolExecutor. However, threading is still an appropriate model if you want to run multiple I/O-bound tasks simultaneously.
in short... multithreading has the problem of GIL (e.g. global interpreter lock) but as you can read here...
...the GIL is always released when doing I/O.
I was wondering what is the most efficient way, from a performance perspective, to use the TWS/IB API in Python? I want to compute and update my strategies based on real-time data (Python has a lot of libraries that may be helpful in contrast to Java I think) and based on that send buy/sell orders. These strategies computations may involve quite some processing time, so in that sense, I was thinking about implementing some sort of threading/concurrency (for Java it uses 3 threads if I understand correctly, see *1).
I know there is IBpy (I think it is the same only wrapped up some things for convenience). I came accross IB-insync as an alternative to threading in Python due to Python's concurrency limitations, if I understand correctly:
https://ib-insync.readthedocs.io/api.html
which implements the IB API asynchronously and single-threaded.
Reading about concurrency in Python here:
https://realpython.com/python-concurrency/
async has some major advantages if I understand correctly since Python was designed using Global Interpreter Lock (GIL) (only one thread to hold the control of the Python interpreter). However, the IB-insync library may have some limitations too (but can be fixed by adapting code, as suggested below):
If, for example, the user code spends much time in a calculation, or
uses time.sleep() with a long delay, the framework will stop spinning,
messages accumulate and things may go awry
If a user operation takes a long time then it can be farmed out to a
different process. Alternatively the operation can be made such that
it periodically calls IB.sleep(0); This will let the framework handle
any pending work and return when finished. The operation should be
aware that the current state may have been updated during the sleep(0)
call.
For introducing a delay, never use time.sleep() but use sleep()
instead.
Would a multi-threading solution be better just like Java (I do not know if there is a Java Async equivalent which can be combined with a lot of easy tools/libs that manipulate data)? Or should I stick to Python Async? Other suggestions are welcome, too. With regard to multiple threads in Python (and Java), the following site:
https://interactivebrokers.github.io/tws-api/connection.html
mentions (*1):
API programs always have at least two threads of execution. One thread
is used for sending messages to TWS, and another thread is used for
reading returned messages. The second thread uses the API EReader
class to read from the socket and add messages to a queue. Everytime a
new message is added to the message queue, a notification flag is
triggered to let other threads now that there is a message waiting to
be processed. In the two-thread design of an API program, the message
queue is also processed by the first thread. In a three-thread design,
an additional thread is created to perform this task.
The phrase "The two-threaded design is used in the IB Python sample Program.py..." suggests that there are already two threads involved, which is a little bit confusion to me since the second reference mentions Python being single-threaded.
Python is not technically single-threaded, you can create multiple threads in Python, but there is GIL, which only allows one thread to run at a time, that is why it is sometimes said single-threaded ! But, GIL handles it so efficiently that it doesn't seem single threaded ! I have used multi-threading in Python and it is good . GIL handles all the orchestration of switching and swapping threads, but this proves to be a significance to single-threaded programs as a small speed boost, and a bit slow in multi-threaded programs .
I am also searching for a multi-threaded SDK for IB API ! I have not found one yet, except the Native one, which is a bit complicated for me .
And IB_Insync is not allowing for multi-threading :(
Btw, I am new to Stack Overflow, so don't mind me ...
I've been experimenting with threading recently in Python and was curious when to use what.
For example, when should I use multithreading over multiprocessing? What would be a scenario when I should be using asynchronous IO rather than threading?
I mostly understand what each does (I think) but I can't see any benefits/downsides of using one over the other.
What should I use if I was creating a small HTTP server?
What should I use if I was creating a small HTTP client?
This baffles me...
What you want talk about is not specific to python only it's about multiprocessing vs threading in general i think you can find in google lot of argument from the two side the ones that prefer threading and the others that prefer multiprocessing.
But for python multi-threading is limited (if you're using CPython) by the GIL (Global Interpreter Lock), so most python programmer prefer using the multiprocessing over the threading (it's Guido recommendation)
Nevertheless, you re right the GIL is
not as bad as you would initially
think: you just have to undo the
brainwashing you got from Windows and
Java proponents who seem to consider
threads as the only way to approach
concurrent activities, Guido van Rossum.
you can find here some more info
Python multiprocessing makes sense when you have a machine with multiple cores and/or CPUs. The main difference between using threads and processes is that processes do not share an address space, and thus one process cannot easily access the data of another process. That is why the multiprocessing module provides managers and queues and stuff like that.
The issue with threading is Pythons Global Interpreter Lock, which seriously messes with multithreaded applications.
Asynchronous IO is useful when you have long running IO operations (read large file, wait for response from network) and do not want your application to block. Many operating systems offer built-in implementations of that.
So, for your server you would probably use multiprocessing or multithreading, and for your client async IO is more fitting.
Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 9 years ago.
Improve this question
What are the modules used to write multi-threaded applications in Python? I'm aware of the basic concurrency mechanisms provided by the language and also of Stackless Python, but what are their respective strengths and weaknesses?
In order of increasing complexity:
Use the threading module
Pros:
It's really easy to run any function (any callable in fact) in its
own thread.
Sharing data is if not easy (locks are never easy :), at
least simple.
Cons:
As mentioned by Juergen Python threads cannot actually concurrently access state in the interpreter (there's one big lock, the infamous Global Interpreter Lock.) What that means in practice is that threads are useful for I/O bound tasks (networking, writing to disk, and so on), but not at all useful for doing concurrent computation.
Use the multiprocessing module
In the simple use case this looks exactly like using threading except each task is run in its own process not its own thread. (Almost literally: If you take Eli's example, and replace threading with multiprocessing, Thread, with Process, and Queue (the module) with multiprocessing.Queue, it should run just fine.)
Pros:
Actual concurrency for all tasks (no Global Interpreter Lock).
Scales to multiple processors, can even scale to multiple machines.
Cons:
Processes are slower than threads.
Data sharing between processes is trickier than with threads.
Memory is not implicitly shared. You either have to explicitly share it or you have to pickle variables and send them back and forth. This is safer, but harder. (If it matters increasingly the Python developers seem to be pushing people in this direction.)
Use an event model, such as Twisted
Pros:
You get extremely fine control over priority, over what executes when.
Cons:
Even with a good library, asynchronous programming is usually harder than threaded programming, hard both in terms of understanding what's supposed to happen and in terms of debugging what actually is happening.
In all cases I'm assuming you already understand many of the issues involved with multitasking, specifically the tricky issue of how to share data between tasks. If for some reason you don't know when and how to use locks and conditions you have to start with those. Multitasking code is full of subtleties and gotchas, and it's really best to have a good understanding of concepts before you start.
You've already gotten a fair variety of answers, from "fake threads" all the way to external frameworks, but I've seen nobody mention Queue.Queue -- the "secret sauce" of CPython threading.
To expand: as long as you don't need to overlap pure-Python CPU-heavy processing (in which case you need multiprocessing -- but it comes with its own Queue implementation, too, so you can with some needed cautions apply the general advice I'm giving;-), Python's built-in threading will do... but it will do it much better if you use it advisedly, e.g., as follows.
"Forget" shared memory, supposedly the main plus of threading vs multiprocessing -- it doesn't work well, it doesn't scale well, never has, never will. Use shared memory only for data structures that are set up once before you spawn sub-threads and never changed afterwards -- for everything else, make a single thread responsible for that resource, and communicate with that thread via Queue.
Devote a specialized thread to every resource you'd normally think to protect by locks: a mutable data structure or cohesive group thereof, a connection to an external process (a DB, an XMLRPC server, etc), an external file, etc, etc. Get a small thread pool going for general purpose tasks that don't have or need a dedicated resource of that kind -- don't spawn threads as and when needed, or the thread-switching overhead will overwhelm you.
Communication between two threads is always via Queue.Queue -- a form of message passing, the only sane foundation for multiprocessing (besides transactional-memory, which is promising but for which I know of no production-worthy implementations except In Haskell).
Each dedicated thread managing a single resource (or small cohesive set of resources) listens for requests on a specific Queue.Queue instance. Threads in a pool wait on a single shared Queue.Queue (Queue is solidly threadsafe and won't fail you in this).
Threads that just need to queue up a request on some queue (shared or dedicated) do so without waiting for results, and move on. Threads that eventually DO need a result or confirmation for a request queue a pair (request, receivingqueue) with an instance of Queue.Queue they just made, and eventually, when the response or confirmation is indispensable in order to proceed, they get (waiting) from their receivingqueue. Be sure you're ready to get error-responses as well as real responses or confirmations (Twisted's deferreds are great at organizing this kind of structured response, BTW!).
You can also use Queue to "park" instances of resources which can be used by any one thread but never be shared among multiple threads at one time (DB connections with some DBAPI compoents, cursors with others, etc) -- this lets you relax the dedicated-thread requirement in favor of more pooling (a pool thread that gets from the shared queue a request needing a queueable resource will get that resource from the apppropriate queue, waiting if necessary, etc etc).
Twisted is actually a good way to organize this minuet (or square dance as the case may be), not just thanks to deferreds but because of its sound, solid, highly scalable base architecture: you may arrange things to use threads or subprocesses only when truly warranted, while doing most things normally considered thread-worthy in a single event-driven thread.
But, I realize Twisted is not for everybody -- the "dedicate or pool resources, use Queue up the wazoo, never do anything needing a Lock or, Guido forbid, any synchronization procedure even more advanced, such as semaphore or condition" approach can still be used even if you just can't wrap your head around async event-driven methodologies, and will still deliver more reliability and performance than any other widely-applicable threading approach I've ever stumbled upon.
It depends on what you're trying to do, but I'm partial to just using the threading module in the standard library because it makes it really easy to take any function and just run it in a separate thread.
from threading import Thread
def f():
...
def g(arg1, arg2, arg3=None):
....
Thread(target=f).start()
Thread(target=g, args=[5, 6], kwargs={"arg3": 12}).start()
And so on. I often have a producer/consumer setup using a synchronized queue provided by the Queue module
from Queue import Queue
from threading import Thread
q = Queue()
def consumer():
while True:
print sum(q.get())
def producer(data_source):
for line in data_source:
q.put( map(int, line.split()) )
Thread(target=producer, args=[SOME_INPUT_FILE_OR_SOMETHING]).start()
for i in range(10):
Thread(target=consumer).start()
Kamaelia is a python framework for building applications with lots of communicating processes.
(source: kamaelia.org) Kamaelia - Concurrency made useful, fun
In Kamaelia you build systems from simple components that talk to each other. This speeds development, massively aids maintenance and also means you build naturally concurrent software. It's intended to be accessible by any developer, including novices. It also makes it fun :)
What sort of systems? Network servers, clients, desktop applications, pygame based games, transcode systems and pipelines, digital TV systems, spam eradicators, teaching tools, and a fair amount more :)
Here's a video from Pycon 2009. It starts by comparing Kamaelia to Twisted and Parallel Python and then gives a hands on demonstration of Kamaelia.
Easy Concurrency with Kamaelia - Part 1 (59:08)
Easy Concurrency with Kamaelia - Part 2 (18:15)
Regarding Kamaelia, the answer above doesn't really cover the benefit here. Kamaelia's approach provides a unified interface, which is pragmatic not perfect, for dealing with threads, generators & processes in a single system for concurrency.
Fundamentally it provides a metaphor of a running thing which has inboxes, and outboxes. You send messages to outboxes, and when wired together, messages flow from outboxes to inboxes. This metaphor/API remains the same whether you're using generators, threads or processes, or speaking to other systems.
The "not perfect" part is due to syntactic sugar not being added as yet for inboxes and outboxes (though this is under discussion) - there is a focus on safety/usability in the system.
Taking the producer consumer example using bare threading above, this becomes this in Kamaelia:
Pipeline(Producer(), Consumer() )
In this example it doesn't matter if these are threaded components or otherwise, the only difference is between them from a usage perspective is the baseclass for the component. Generator components communicate using lists, threaded components using Queue.Queues and process based using os.pipes.
The reason behind this approach though is to make it harder to make hard to debug bugs. In threading - or any shared memory concurrency you have, the number one problem you face is accidentally broken shared data updates. By using message passing you eliminate one class of bugs.
If you use bare threading and locks everywhere you're generally working on the assumption that when you write code that you won't make any mistakes. Whilst we all aspire to that, it's very rare that will happen. By wrapping up the locking behaviour in one place you simplify where things can go wrong. (Context handlers help, but don't help with accidental updates outside the context handler)
Obviously not every piece of code can be written as message passing and shared style which is why Kamaelia also has a simple software transactional memory (STM), which is a really neat idea with a nasty name - it's more like version control for variables - ie check out some variables, update them and commit back. If you get a clash you rinse and repeat.
Relevant links:
Europython 09 tutorial
Monthly releases
Mailing list
Examples
Example Apps
Reusable components (generator & thread)
Anyway, I hope that's a useful answer. FWIW, the core reason behind Kamaelia's setup is to make concurrency safer & easier to use in python systems, without the tail wagging the dog. (ie the big bucket of components
I can understand why the other Kamaelia answer was modded down, since even to me it looks more like an ad than an answer. As the author of Kamaelia it's nice to see enthusiasm though I hope this contains a bit more relevant content :-)
And that's my way of saying, please take the caveat that this answer is by definition biased, but for me, Kamaelia's aim is to try and wrap what is IMO best practice. I'd suggest trying a few systems out, and seeing which works for you. (also if this is inappropriate for stack overflow, sorry - I'm new to this forum :-)
I would use the Microthreads (Tasklets) of Stackless Python, if I had to use threads at all.
A whole online game (massivly multiplayer) is build around Stackless and its multithreading principle -- since the original is just to slow for the massivly multiplayer property of the game.
Threads in CPython are widely discouraged. One reason is the GIL -- a global interpreter lock -- that serializes threading for many parts of the execution. My experiance is, that it is really difficult to create fast applications this way. My example codings where all slower with threading -- with one core (but many waits for input should have made some performance boosts possible).
With CPython, rather use seperate processes if possible.
If you really want to get your hands dirty, you can try using generators to fake coroutines. It probably isn't the most efficient in terms of work involved, but coroutines do offer you very fine control of co-operative multitasking rather than pre-emptive multitasking you'll find elsewhere.
One advantage you'll find is that by and large, you will not need locks or mutexes when using co-operative multitasking, but the more important advantage for me was the nearly-zero switching speed between "threads". Of course, Stackless Python is said to be very good for that as well; and then there's Erlang, if it doesn't have to be Python.
Probably the biggest disadvantage in co-operative multitasking is the general lack of workaround for blocking I/O. And in the faked coroutines, you'll also encounter the issue that you can't switch "threads" from anything but the top level of the stack within a thread.
After you've made an even slightly complex application with fake coroutines, you'll really begin to appreciate the work that goes into process scheduling at the OS level.
I was recently reading this document which lists a number of strategies that could be employed to implement a socket server. Namely, they are:
Serve many clients with each thread, and use nonblocking I/O and level-triggered readiness notification
Serve many clients with each thread, and use nonblocking I/O and readiness change notification
Serve many clients with each server thread, and use asynchronous I/O
serve one client with each server thread, and use blocking I/O
Build the server code into the kernel
Now, I would appreciate a hint on which should be used in CPython, which we know has some good points, and some bad points. I am mostly interested in performance under high concurrency, and yes a number of the current implementations are too slow.
So if I may start with the easy one, "5" is out, as I am not going to be hacking anything into the kernel.
"4" Also looks like it must be out because of the GIL. Of course, you could use multiprocessing in place of threads here, and that does give a significant boost. Blocking IO also has the advantage of being easier to understand.
And here my knowledge wanes a bit:
"1" is traditional select or poll which could be trivially combined with multiprocessing.
"2" is the readiness-change notification, used by the newer epoll and kqueue
"3" I am not sure there are any kernel implementations for this that have Python wrappers.
So, in Python we have a bag of great tools like Twisted. Perhaps they are a better approach, though I have benchmarked Twisted and found it too slow on a multiple processor machine. Perhaps having 4 twisteds with a load balancer might do it, I don't know. Any advice would be appreciated.
asyncore is basically "1" - It uses select internally, and you just have one thread handling all requests. According to the docs it can also use poll. (EDIT: Removed Twisted reference, I thought it used asyncore, but I was wrong).
"2" might be implemented with python-epoll (Just googled it - never seen it before).
EDIT: (from the comments) In python 2.6 the select module has epoll, kqueue and kevent build-in (on supported platforms). So you don't need any external libraries to do edge-triggered serving.
Don't rule out "4", as the GIL will be dropped when a thread is actually doing or waiting for IO-operations (most of the time probably). It doesn't make sense if you've got huge numbers of connections of course. If you've got lots of processing to do, then python may not make sense with any of these schemes.
For flexibility maybe look at Twisted?
In practice your problem boils down to how much processing you are going to do for requests. If you've got a lot of processing, and need to take advantage of multi-core parallel operation, then you'll probably need multiple processes. On the other hand if you just need to listen on lots of connections, then select or epoll, with a small number of threads should work.
How about "fork"? (I assume that is what the ForkingMixIn does) If the requests are handled in a "shared nothing" (other than DB or file system) architecture, fork() starts pretty quickly on most *nixes, and you don't have to worry about all the silly bugs and complications from threading.
Threads are a design illness forced on us by OSes with too-heavy-weight processes, IMHO. Cloning a page table with copy-on-write attributes seems a small price, especially if you are running an interpreter anyway.
Sorry I can't be more specific, but I'm more of a Perl-transitioning-to-Ruby programmer (when I'm not slaving over masses of Java at work)
Update: I finally did some timings on thread vs fork in my "spare time". Check it out:
http://roboprogs.com/devel/2009.04.html
Expanded:
http://roboprogs.com/devel/2009.12.html
One sollution is gevent. Gevent maries a libevent based event polling with lightweight cooperative task switching implemented by greenlet.
What you get is all the performance and scalability of an event system with the elegance and straightforward model of blocking IO programing.
(I don't know what the SO convention about answering to realy old questions is, but decided I'd still add my 2 cents)
Can I suggest additional links?
cogen is a crossplatform library for network oriented, coroutine based programming using the enhanced generators from python 2.5. On the main page of cogen project there're links to several projects with similar purpose.
I like Douglas' answer, but as an aside...
You could use a centralized dispatch thread/process that listens for readiness notifications using select and delegates to a pool of worker threads/processes to help accomplish your parallelism goals.
As Douglas mentioned, however, the GIL won't be held during most lengthy I/O operations (since no Python-API things are happening), so if it's response latency you're concerned about you can try moving the critical portions of your code to CPython API.
http://docs.python.org/library/socketserver.html#asynchronous-mixins
As for multi-processor (multi-core) machines. With CPython due to GIL you'll need at least one process per core, to scale. As you say that you need CPython, you might try to benchmark that with ForkingMixIn. With Linux 2.6 might give some interesting results.
Other way is to use Stackless Python. That's how EVE solved it. But I understand that it's not always possible.